
NASA Tech Briefs, February 2006 13

Software

Generic Environment 
for Simulating Launch 
Operations

GEM-FLO (A Generic Simulation En-
vironment for Modeling Future Launch
Operations) is a computer program that
facilitates creation of discrete-event sim-
ulation models of ground processes in
which reusable or expendable launch
vehicles (RLVs) are prepared for flight.
GEM-FLO includes a component, devel-
oped in Visual Basic, that generates a
graphical user interface (GUI) and a
component, developed in the Arena
simulation language, that creates a
generic discrete-event simulation
model. Through the GUI, GEM-FLO
elicits RLV design information from the
user. The design information can in-
clude information on flight hardware el-
ements, resources, and ground
processes. GEM-FLO translates the
user’s responses into mathematical vari-
ables and expressions that populate the
generic simulation model. The variables
and expressions can represent process-
ing times, resource capacities, status
variables, and other process parameters
needed to configure a simulation model
that reflects the ground processing flow
and requirements of a specific RLV.
Upon execution of the model, GEM-
FLO puts out data on many measures of
performance, including the flight rate,
turnaround time, and utilization of re-
sources. This information can serve as
the basis for determining whether de-
sign goals can be met, and for compar-
ing characteristics of competing RLV
designs.

This program was written by Martin Steele
of Kennedy Space Center and Mansooreh
Mollaghasemi and Ghaith Rabadi of Produc-
tivity Apex, Inc. For further information, con-
tact Mansooreh Mollaghasemi at info@pro-
ductivityapex.com.
KSC-12488

Modular Aero-Propulsion
System Simulation

The Modular Aero-Propulsion Sys-
tem Simulation (MAPSS) is a graphical
simulation environment designed for
the development of advanced control
algorithms and rapid testing of these al-
gorithms on a generic computational
model of a turbofan engine and its con-

trol system. MAPSS is a nonlinear, non-
real-time simulation comprising a Com-
ponent Level Model (CLM) module
and a Controller-and-Actuator Dynam-
ics (CAD) module. The CLM module
simulates the dynamics of engine com-
ponents at a sampling rate of 2,500 Hz.
The controller submodule of the CAD
module simulates a digital controller,
which has a typical update rate of 50
Hz. The sampling rate for the actuators
in the CAD module is the same as that
of the CLM. MAPSS provides a graphi-
cal user interface that affords easy ac-
cess to engine-operation, engine-
health, and control parameters; is used
to enter such input model parameters
as power lever angle (PLA), Mach num-
ber, and altitude; and can be used to
change controller and engine parame-
ters. Output variables are selectable by
the user. Output data as well as any
changes to constants and other param-
eters can be saved and reloaded into
the GUI later. 

This program was written by Khary I.
Parker and Ten-Huei Guo of Glenn Re-
search Center. Further information is con-
tained in a TSP (see page 1).

Inquiries concerning rights for the commer-
cial use of this invention should be addressed
to NASA Glenn Research Center, Innovative
Partnerships Office, Attn: Steve Fedor, Mail
Stop 4–8, 21000 Brookpark Road, Cleveland,
Ohio 44135. Refer to LEW-17674-1.

X-Windows Socket Widget
Class

The X-Windows Socket Widget Class
(“Class” is used here in the object-oriented-
programming sense of the word) was de-
vised to simplify the task of implementing
network connections for graphical-user-in-
terface (GUI) computer programs. UNIX
Transmission Control Protocol/Internet
Protocol (TCP/IP) socket programming
libraries require many method calls to
configure, operate, and destroy sockets.
Most XWindows GUI programs use
widget sets or toolkits to facilitate man-
agement of complex objects. The widget
standards facilitate construction of
toolkits and application programs. The
X-Windows Socket Widget Class encap-
sulates UNIX TCP/IP socket-manage-
ment tasks within the framework of an X
Windows widget. Using the widget
framework, X Windows GUI programs

can treat one or more network socket in-
stances in the same manner as that of other
graphical widgets, making it easier to pro-
gram sockets. Wrapping ISP socket pro-
gramming libraries inside a widget frame-
work enables a programmer to treat a
network interface as though it were a GUI.

This program was written by Matthew R.
Barry of United Space Alliance for Johnson
Space Center. For further information, con-
tact the Johnson Innovative Partnerships Of-
fice at (281) 483-3809.
MSC-23581

Infrastructure for Rapid 
Development of Java GUI
Programs

The Java Application Shell (JAS) is a
software framework that accelerates the
development of Java graphical-user-in-
terface (GUI) application programs by
enabling the reuse of common, proven
GUI elements, as distinguished from
writing custom code for GUI elements.
JAS is a software infrastructure upon
which Java interactive application pro-
grams and graphical user interfaces
(GUIs) for those programs can be built
as sets of plug-ins. JAS provides an appli-
cation-programming interface that is ex-
tensible by application-specific plugins
that describe and encapsulate both spec-
ifications of a GUI and application-spe-
cific functionality tied to the specified
GUI elements. The desired GUI ele-
ments are specified in Extensible
Markup Language (XML) descriptions
instead of in compiled code. JAS reads
and interprets these descriptions, then
creates and configures a corresponding
GUI from a standard set of generic,
reusable GUI elements. These elements
are then attached (again, according to
the XML descriptions) to application-
specific compiled code and scripts. An
application program constructed by use
of JAS as its core can be extended by
writing new plug-ins and replacing exist-
ing plug-ins. Thus, JAS solves many
problems that Java programmers gener-
ally solve anew for each project, thereby
reducing development and testing time.

This software was written by Jeremy Jones
and Carl F. Hostetter of Goddard Space
Flight Center and Philip Miller and Philip
Wheeler of CommerceOne. Further informa-
tion is contained in a TSP (see page 1).
GSC-14769-1


