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Abstract 
 
Once the lunar lander has touched down on the moon problems can occur if the crew module is not level. 
To mitigate, compliant landing gear provide a solution that would allow the module to be leveled once it 
has landed on some ground slope. The work presented here uses compliant joints, or flexures, for each 
leg of the module and optimizes the mechanics of these flexures such that the module can be passively 
leveled over a range of landing slopes. Preliminary results suggest that for landing on a slope of up to 12 
deg the effective slope of the module can be reduced to a maximum of 2.5 deg. 
 

Introduction 
 

During the next lunar mission one of the challenges that will be faced is the possibility of landing on a 
slope of up to twelve degrees. Among other potential issues caused by landing on a slope, such as 
difficulties while offloading cargo, is the concern of “fly-out” problems during ascent from the lunar 
surface. By considering the lunar module and its four deployable legs as a single spatial mechanism, the 
legs can be designed in a novel manner with the objective of passive self-leveling in mind.  
 
Additionally, to avoid issues associated with lubricating joints this problem can be approached using 
compliant joints, or flexures, which are thin members that provide the relative rotation between two 
adjacent rigid members through bending. Previous work has shown how flexures can be approximated as 
linear torsion springs with stiffness k [1]. From this, a variety of techniques can be applied to find 
appropriate flexure stiffness of each joint so that the combination of the weight of the lunar lander and the 
resistance to deflection from the flexures will effectively reduce the relative angle of the module with 
respect to the horizontal plane over the range of potential ground slopes. 
 

Background 
 
It should be noted that the approaches presented here model the module with four identical equally 
spaced legs. Furthermore, each leg is designed to have a joint connecting it to the module, a joint 
connecting it to the landing pad at the bottom of the leg, and a third joint spaced somewhere between the 
first and second joints. 
 
Assumptions 
For these analyses, the following initial assumptions were made: 

1. The landing area of the lunar surface can be modeled as a plane. In other words, there are no 
craters or boulders that would affect a single leg. 

2. There is a uniform probability of landing on any ground slope between zero and twelve degrees. 
3. There is a uniform probability of landing at any twist angle. Here twist angle is defined as rotation 

of the module in the ground plane. A 0 deg twist angle means that the line between one set of two 
opposing pads is orthogonal to the local gravity field, or that those two pads are level. A 45 deg 
twist angle means that line between two adjacent pads is orthogonal to the local gravity field, or 
that they are level. It follows that the other set of two adjacent pads will also be level with respect 
to each other. 
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4. Upon landing, the landing pads will remain fixed relative to one another as they were in the 
undeflected configuration; landing impact will not affect the placement of individual pads on the 
ground. 
 

Leg Numbering System 
Figure 1 and Figure 2 show the leg numbering system that is used to describe joint orientations. 
 

 
 

Figure 1. Top view of module with legs numbered 
 
 

 
 

Figure 2. Front view of module with legs numbered 
 
Joints 
As mentioned previously, each leg will have a joint that connects the leg to the module. For the analyses 
presented here these joints will be flexures whose bending axes are perpendicular to the plane formed by 
that leg and the opposing leg when the landing gear is in its undeflected configuration. For example, in 
Figure 2 the flexure axes of legs 1 and 3 will be out of the page while the flexure axes of legs 2 and 4 will 
be parallel to the page. For each leg, this flexure will be called flexure f. 
 
Additionally, the joints that connect the legs to the landing pads will be spherical joints and thus will not 
have any resistance to rotation. 
 
Next, the joint in the middle of each leg will be the flexure equivalent of a universal joint with 
perpendicular axes. This is accomplished by having two flexures serially connected as depicted in Figure 
1. One of the bending axes will be parallel to the bending axis of the joint which connects the leg to the 
module while the other axis will be in the plane formed by that leg and the opposing leg. For each leg, the 

13 2,4

1 

2 

3 

4 

NASA/CP-2010-216272



 

329 

flexure with the bending axis parallel to that leg’s bending axis of flexure f will be called flexure d while the 
serially connected flexure will be called flexure e.  
 
Because it has been shown that flexures can be modeled as linear torsion springs, subsequent modeling 
will assume that the flexures are traditional revolute or universal joints with torsion springs to resist 
rotation about the bending axes. For the model of each analysis, it is assumed that the bending axes of 
flexures d and e both pass through the same point. 

 
 

 
Figure 1. Universal flexure created by serially connecting two flexures [2] 

 
 

Analysis 
 
Two-Dimensional Analysis 
The first analysis performed was a two-dimensional analysis in which the plane that was analyzed was 
that which is formed by two opposing legs in the undeflected configuration. The active flexures for the 
planar analysis of legs 1 and 3 are shown in Figure 4. It can be seen that legs 2 and 4 together form a 
single middle leg that has one flexure. Additionally, to account for the change in length of legs 2 and 4 
projected onto the plane due to the out of plane motion, the middle leg is of variable length. This variable 
length is depicted in Figure 4 by a double headed arrow. 
 

 
 

Figure 2. Joints and links for planar analysis 
 
The three spring stiffnesses will be determined as follows: 

1. Give an initial guess of spring constants for flexures d, e, and f.  
2. For a given ground slope find the angle of each joint as described below. 
3. Using static balancing equations find the required lunar weight of the module such that the 

combination of the weight of the vehicle and the resistance to bending in the springs will put the 
module in static equilibrium. For a given set of spring stiffnesses there exists one unique solution 
of required weight that will hold the module in static equilibrium at the desired level configuration. 

4. Repeat steps 2 and 3 for n steps of ground slope between 0 deg and 12 deg. 
5. Calculate the average required weight from the n steps in step 4. 
6. Use forward divided differences with steps 4 and 5 to estimate the gradient of average required 

weight with respect to the stiffness of each spring. 
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7. Use steepest descent to find the set of stiffnesses (d, e, f) that minimizes the difference between 
the calculated average required weight and the known lunar weight of the module using the 
estimate of the gradient from step 6 for each iteration. 

 
This planar mechanism has seven bodies (including the ground) and eight revolute joints resulting in two 
degrees of freedom. Addition of the variable length of the middle leg gives a total of three degrees of 
freedom. 
 
Because the mechanism has three degrees of freedom, three choices regarding its configuration must be 
made. The first choice, which should be the most obvious, is that the module be level with respect to the 
local gravity field. The second choice is the length on the adjustable leg which will account for any ground 
slope going into the page. Lastly, the angle of flexure d on the uphill leg is assumed to be constant at an 
angle of 180 deg. This assumption remains valid for any configuration that would otherwise try to extend 
the angle beyond 180 deg if the leg is designed with a mechanical stop preventing a greater angle. An 
example of a configuration after these three choices is shown in Figure 5. 

 

 
Figure 5. Configuration of leveled module 

 
Three-Dimensional Analysis 
The second analysis performed was a three-dimensional analysis. This analysis looks at the mechanism 
as a whole instead of just a projected plane while also providing a slightly different approach to finding the 
optimized spring stiffnesses.  
 
This approach is as follows: 

1. Give an initial guess of spring constants. 
2. For a given ground slope and twist angle find the mechanism configuration as described below. 
3. Using static balancing equations find the required lunar weight of the module such that the 

combination of the weight of the vehicle and the resistance to bending in the springs will put the 
module in static equilibrium. For a given set of spring stiffnesses there exists one unique solution 
of required weight that will hold the module in static equilibrium at the desired level configuration. 

4. Use forward divided differences with step 3 to calculate the gradient of required weight with 
respect to the stiffness of each spring. While there exists a unique solution of required weight for 
a set of spring constants, for the inverse problem when given the required weight there exists a 
plane of solutions for the set of spring stiffnesses. The calculated gradient is the normal vector to 
all of the planes of solutions for any given required weight. 

5. Calculate the point that is closest to the initial guess of spring constants and on the plane of 
solutions when the required weight is equated to the given weight of the module. 

6. Using the point found in step 5 and the normal vector, calculate the equation of the plane. 
7. Repeat steps 2 through 6 for m steps of twist angle between 0 and 45 deg. Because of symmetry 

any twist angle can be modeled by a twist angle between 0 deg and 45 deg. 
8. Repeat step 7 for n steps of ground slope between 0 deg and 12 deg. 
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9. Using linear least squares, find the point that minimizes the L2-norm of the vector of the distance 
between this point and each plane found in step 8. This point is defined to be the set of optimum 
spring stiffnesses. 

  
This spatial mechanism has ten bodies (including the ground), four spherical joints, four universal joints, 
and four revolute joints. This gives six degrees of freedom, which means that the module itself can be 
positioned and oriented in any manner within its workspace.  
 
Similar to the planar analysis, it is first necessary to find the angles of each joint to then find the optimum 
spring stiffnesses. Also similar to the planar analysis, the orientation is assumed to be level. This reduces 
the degrees of freedom by two because the module must be level about two orthogonal horizontal axes. 
The third choice of configuration is that the module is at some assumed height which is below its 
undeflected height on a level surface. Essentially this is saying that on a level surface, the weight of the 
module would cause some sort of deflection in the joints and would sink by some amount. This analysis 
assumes that the height of the module will be at 90% of its undeflected height.  
 
After these two constraints on orientation and one constraint on position, three degrees of freedom still 
remain. It is assumed that the preferred leveled equilibrium configuration of the module will be one which 
minimizes the deflections in the flexures, where here minimization is defined as minimization of the L2-
norm of the vector of the twelve flexure deflections. Using the Matlab fmincon function, these remaining 
degrees of freedom, two of which are position in the horizontal plane and the third is the rotation in the 
horizontal plane, can be found which minimize the deflections. 
 

Results and Conclusions 
 
For both the two-dimensional and 3-dimensional analysis, the flexure has the dimensions as depicted in 
Figure 6. The stiffness for flexure can be approximated in terms of its geometric dimensions as follows: 
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Two-Dimensional Analysis 
The optimum spring stiffnesses as determined by the first analysis were found to be:  
  

 

3

4

4

3.841 10
5.562 10
5.840 10

d

e

f

k
N mk
rad

k

⎡ ⎤⎡ ⎤ ×
⋅⎢ ⎥⎢ ⎥ = ×⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥ ×⎣ ⎦ ⎣ ⎦

 (2) 

 
From this and the spring stiffness approximation of equation (1), the dimensions of the flexures as shown 
in Figure 6 are on the order of: 
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Using these spring stiffnesses and the given weight of the module a static analysis was performed for a 
range of ground slopes between 0 deg and 12 deg. The maximum angle of the module in this range was 
2.5 deg at a ground slope of 12 deg. 
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Figure 3. Flexure dimensions [2] 
 
Three-Dimensional Analysis 
The optimum spring stiffnesses as determined by the second analysis were found to be:  
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From this and the spring stiffness approximation of equation (1), the dimensions of the flexures as shown 
in Figure 6. Flexure dimensions are on the order of: 
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The static analysis that was performed for the calculated spring stiffnesses for the two-dimensional 
analysis has not yet been performed for the three-dimensional analysis. This will be completed in future 
work. 
 
Comparing the results of the two analyses it is seen that the optimum stiffness as found by the two-
dimensional analysis is only about one-fourth as that obtained from the three-dimensional analysis. This 
discrepancy is likely due to the different assumptions of the two analyses, specifically the length of the 
adjustable leg and the fixed angle of the uphill leg in the two-dimensional analysis. Additionally, because 
of the assumption that the bending axes of flexures d and e pass through the same point, it follows that 
the flexure radius R must be small because the flexures are actually serially connected. Because of this, 
the three-dimensional analysis might prove more accurate because of this much smaller dimension. 
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Future Work 
 
In addition to the three-dimensional static analysis for the calculated spring stiffnesses there are a few 
other .tasks that can improve the robustness of this method. These include calculating and minimizing the 
stresses in the flexures and taking into account the change in module weight once the payload has been 
unloaded. Additionally, minimizing the effect of single-leg disturbances, such as one leg landing on a 
boulder or in a small crater or being displaced by landing impact, would increase the robustness. Also, for 
more insight into the actual bending mechanics, a finite-element analysis might prove more accurate than 
the linear spring approximation. Lastly, looking at different flexure shapes, as described in [3], might 
provide a better flexure system. 
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