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Abstract 
 
The James Webb Space Telescope (JWST) will carry four scientific instruments, one of which is the 
Tunable Filter Imager (TFI), which is an instrument within the Fine Guidance Sensor. The Dual Wheel 
(DW) mechanism is being designed, built and tested by COM DEV Ltd. under contract from the Canadian 
Space Agency. The DW mechanism includes a pupil wheel (PW) holding seven coronagraphic masks 
and two calibration elements and a filter wheel (FW) holding nine blocking filters.   
 
The DW mechanism must operate at both room temperature and at 35K. Successful operation at 35K 
comprises positioning each optical element with the required repeatability, for several thousand occasions 
over the five year mission.    
 
The paper discusses the results of testing geared motors and bearings at the cryogenic temperature. In 
particular bearing retainer design and PGM-HT material, the effects of temperature gradients across 
bearings and the problems associated with cooling mechanisms down to cryogenic temperatures. The 
results of additional bearing tests are described that were employed to investigate an abnormally high 
initial torque experienced at cryogenic temperatures. The findings of these tests, was that the bearing 
retainer and the ball/race system could be adversely affected by the large temperature change from room 
temperature to cryogenic temperature and also the temperature gradient across the bearing. The DW 
mechanism is now performing successfully at both room temperature and at cryogenic temperature. The 
life testing of the mechanism is expected to be completed in the first quarter of 2010.   
 

Introduction 
 
The TFI, which includes the DW mechanism, is shown in Figure 1 (labelled “Filter Wheel Assembly”). The 
TFI has been designed to provide infra-red narrow band imaging in the 1.5 to 5 micrometer wavelength 
range. In order to make these observations, it has stringent temperature requirements. The TFI 
temperature is approximately 35K for JWST science observations.      
 
The role of the DW mechanism is to place optical elements into the optical path, in any combination of 
corona graphic mask and blocking filter. The optical elements must be placed accurately and in a highly 
repeatable manner.  
 
The paper discusses the following topics. First, the design of the DW is described in some detail so that 
the function of each component is clarified for the reader. Secondly, the test results of component parts 
and the DW assembly are described in more detail. 
 
The geared motor test results are described first and the bearing tests second. The bearing tests 
revealed an abnormally high start up torque, at cryogenic temperatures, which led to an in depth 
investigation of this issue. 
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Figure 1. Fine Guidance Sensor – TFI Side 
 
The high initial start up torque at 35K of the bearings was attributed to three causes. The first cause was 
mitigated by a retainer design change. The second and third causes have been investigated and 
understood, such that confidence in the flight design is high. The results of the investigation are 
presented, together with the lessons learned from the problem. Finally, the results of the flight model 
testing are discussed.  
 

Design Description 
 
A general arrangement of the DW mechanism is shown in Figure 2. The main components are the pupil 
and filter wheels, bearings, gears, static hub, motor/resolver support plate and the support bracket. The 
DW mechanism also includes geared stepper motors, resolvers and variable reluctance sensors. A cross 
section of the DW mechanism is shown in Figure 3. Each wheel (approximately 280-mm diameter) rotates 
on a duplex pair of angular contact preloaded bearings.  
 
A stepper motor is used to drive each wheel, through a reduction gear train. The stepper motor has been 
geared down to enable the positional accuracy requirements for each optical element to be met. A 
resolver provides feedback to confirm that each wheel is in the correct position. Flight software uses the 
resolver reading to calculate a position adjustment to bring the wheels to the correct position.  
 
All moving parts are lubricated with MoS2 dry lubricant to be compatible with the cryogenic temperature 
requirements. The wheels (the bearing housing) and the hub (the bearing shaft) were machined from 
titanium Ti-6Al-4V. The selection of titanium alloy was dictated by a requirement for low mass and also to 
closely match the coefficient of thermal expansion (CTE) of the 440C stainless steel bearings.    
 
The bearings were manufactured by ADR of France, with the MoS2 dry lubricants and the PGM-HT 
retainer added by ESR Technology in the UK. The bearings are located at the center of gravity of each 
wheel in order to reduce the bending moments acting on the bearings during launch. The bearing size, 
ball diameter, and preload are designed to balance the critical requirements – high enough preload to 
meet the stiffness requirement, but still low enough to allow low running torques and stresses.   
  

NASA/CP-2010-216272



 

403 

 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 

Figure 2. Dual Wheel Mechanism – General Arrangement 
 
Each bearing is secured in place with clamping nuts. Each nut includes a flexure, which is preloaded by 
the action of torquing the nuts into place. The flexures maintain the preload on the bearings, despite the 
slight difference in the coefficient of thermal expansion between the 440C bearings and titanium 
housings. The PW bearing installation is shown in detail in Figure 4. The FW bearing installation is 
similar.  
 
The bearing “fits” to the wheel and hub are sized so that a line on line to a clearance fit is obtained at the 
mechanism operating temperature range of 35K. The selection of a small clearance fit at the cryogenic 
temperature, necessitates that an interference fit between the bearings and shafts exist at room 
temperature, at the outer diameter. The use of a clearance fit at the cryogenic temperatures is to 
eliminate bearing race distortion, which could cause variations in bearing preload. The bearing fits were 
verified using a bread board model (BBM) filter wheel mechanism, tested at 35K. The BBM also served to 
determine bearing torque at 35 K and to determine a suitable baseline for the motor drive current.  
 
The PW and the FW wheel are each rotated via a pinion and ring gear. The pinion gears are made from 
stainless steel 13-8 PH and the ring gears are made from stainless steel 17-4 PH. Both gears are 
lubricated with MoS2 dry lubricant. The gear tooth size was evaluated using AGMA standards for tooth 
contact stress and tooth bending stress.  
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Figure 3. Dual Wheel Mechanism – Cross Section 
 
The gear ratios were selected to give the desired size of granularity of movement of the PW and FW 
wheel and to reduce same tooth encounters between the pinion gear teeth and the ring gear teeth. 
 
Each wheel is driven by a geared motor. The geared motor drives a pinion gear, which meshes with each 
ring gear. The geared motor was procured from CDA Intercorp and is comprised of an 8 pole, 3 phase 
stepper motor, having a 15° step angle and a planetary gear stage having a ratio of 9.6:1. The geared 
motor bearings and planetary gears were lubricated with Ball Aerospace MoS2 lubricant.  
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Figure 4. Pupil Wheel Bearing Installation 
 
The geared motors support wheel rotational speeds of 1.5 RPM. The geared motor sizing was based on 
providing sufficient torque margin when taking into account the resistive torques, due to accelerating the 
rotational inertia of the wheels and the resistive torque of the bearings. The appropriate factors were 
applied to the resistive torques, in order to calculate torque margins. The specified output torque of the 
geared motor was based upon previous measured performance of geared motors completed by CDA 
Intercorp and the estimate of the resistive torques was based upon measurements of the BBM filter wheel 
bearing at cryogenic temperatures.       
 
The DW mechanism design has to meet the positioning and repeatability requirement having considered 
the contributing errors. These errors include the variation in stepper motor step angle, geared motor 
backlash error, resolver error, ring / pinion gear backlash, tooth pitch variation, thermal distortion and 
component machining tolerances. Having analyzed the errors, the granularity of wheel motion (and hence 
gear ratios) were sized to be smaller than the required accuracy.  
 
A resolver position sensor provides feedback to confirm that the wheel is in the proper position. An anti-
backlash gear is used on the resolver output pinion to increase the accuracy of this gear train. Since the 
resolver is geared up by a factor of 9, the resolver turns 9 times for every rotation of the wheel. The 
resolver provides an absolute read-out, but pending a loss of memory due to a fault condition, the 
resolver would be unable to determine which 1/9th of a segment the wheel would be in. A reference signal 
is therefore provided to indicate a home position. The reference signal is provided by a variable 
reluctance sensor (VR sensor).  
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Geared Motor Testing – Lessons Learned 
 
The actuation to rotate each wheel is provided by a geared motor. The geared motor is a combination of 
a three phase stepper motor (step size of 15 deg.) and a single stage planetary gear. The geared motor 
for the PW is shown in Figure 5. 
The geared motor testing was first completed at room temperature. It was important to establish a 
baseline of the motor performance at room temperature before testing at cryogenic temperatures. 
 
Any issues with the geared motor would have to be found before introducing the motor drive electronics. 
The motor drive electronics are a COM DEV design. The drive electronics cater to room temperature and 
cryogenic operation of the motor. This is achieved through a continuous real time measurement of motor 
winding resistance and a subsequent adjustment of voltage (through time modulation techniques).  
 
The first round of room temperature testing yielded a pull in torque value of 17 N-cm versus a specified 
requirement of 23 N-cm. This was thought to be a simple shortfall in motor performance and certainly not 
a design problem. It was decided to proceed to cryogenic temperature testing. The testing at cryogenic 
temperatures was carried out in a cryogenic chamber together with a feed thru shaft out of the chamber 
coupled to a torque measurement machine.    
 
The first test at 35K did not result in full rotation of the motor. The motor exhibited some stalling and an 
investigation was started through the material review board process. Considering the observations, the 
motor performance appeared normal at room temperature, but the performance at 35K was abnormal. 
The cause was immediately thought to be a deficiency in the motor and that the cryogenic environment 
must be causing more friction in the motor bearings and planetary gears.  
 

 
 

Figure 5. Geared Motor – Pupil Wheel 
 
The geared motor vendor (CDA Intercorp) was requested to use their own design of drive electronics with 
the geared motor tested again at cryogenic temperature. The material review board chose the motor “no 
load response rate” as the most appropriate data to obtain at cryogenic temperature. The “no load 
response rate” is the maximum speed that the motor can rotate at, in a stable manner, without any load. 
The “no load response rate” provides a good indication of the health of the geared motor. Higher friction 
in the geared motor would lead to clear change in the “no load response rate”. 
  
At 35K with the vendor drive electronics, the geared motor was able to rotate at the same “no load 
response rate” that was obtained at room temperature. This finding proved that the geared motor was not 
suffering from increased friction at cryogenic temperatures. It was therefore concluded that in some way 
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the drive electronics were not providing the correct pulses to the motor. The fact that the motor had 
provided full rotation and a pull in torque value of at least 75% of the specified requirement, at room 
temperature, seemed to indicate that all was well with the drive electronics. 
 
The first review of the drive electronics test data showed that the current, voltage and power being 
delivered to the motor at 35K were indeed correct. We expected that these parameters would in some 
way, be out of specification.   
 
A more detailed and thorough review of the drive electronic motor pulses revealed a problem in the 
stepping sequence. The stepper motor operates using a six step sequence of closed and open circuits for 
the three windings. The sequence is provided to the motor by virtue of programming of an FPGA in the 
drive electronics. It was found that the sequence in the FPGA was actually making the motor step from 
position 1 to position 3 to position 5 and then to position 1 again. This did cause the motor to rotate, but 
with diminished torque and half the power. This caused the anomalous behavior at cryogenic temperature 
and the below specification pull in torque at room temperature. When the sequence was corrected and 
the motor was tested again at 35K, motor performance was excellent.  
 
Several new technologies had been put into one test, dominated by a new motor design, and its new 
drive electronics; all operating at the cryogenic temperature environment. This fact made it very difficult to 
determine the root cause of the issue. The anomalous behavior was incorrectly attributed to the geared 
motor because the assumption that the drive electronics were correct had been established at room 
temperature. A month later the problem had been traced back to the stepping sequence in the drive 
electronics. Also, all of the motor test data gathered at ambient and cryogenic temperature had to be 
repeated. The lesson learned was that a test should not try to combine too many new technologies in the 
first test. A check of all items that could affect motor performance should be completed before assigning a 
cause to a problem.      
 
Thanks go to our vendor, CDA Intercorp, for their timely assistance in trouble shooting this problem. In 
this case, it was very beneficial to have a “reference” set of drive electronics to expedite testing at the 
cryogenic temperatures.        
 

Ball Bearing Testing 
 
The PW and the FW wheel bearings are critical items for the dual wheel mechanism. For each 
mechanism, the torque ratio would in large part be determined by the torque exhibited by these bearings 
at cryogenic temperatures. An extensive test program was devised to determine bearing performance at 
cryogenic temperatures.  
 
The design parameters of each bearing are shown in Table 1. A single bearing for the PW and the duplex 
pair bearing for the PW installed in the PW machining is shown in Figure 6.  
 
It was decided early in the program that the initial bearing tests would be carried out with the bearings 
already installed in the wheel and hub assembly. It was originally thought to be highly desirable to test the 
bearings in their actual flight configuration and that “bearing only” tests would be un-necessary. This 
philosophy would later prove to be overly optimistic. 
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Table 1: Bearing Design Parameters 

 
The cryogenic chamber test set up for the wheel / hub assembly is shown in Figure 7. Note that the 
cryogenic chamber has a cold plate surface, to which the device under test (DUT) is directly attached. 
 
Each wheel/hub assembly was run-in for 100 revolutions CW and 100 revolutions CCW at room 
temperature. The torque of the bearings was then measured. Each bearing torque at room temperature 
was in the range of 8 to 12 N-cm. This was certainly acceptable and proved that the bearings had been 
successfully installed into the wheels. The next set of torque tests would be carried out at cryogenic 
temperature.    

 
 
 
           
 
 
 
  

Figure 6. Single Pupil Wheel Bearing & Duplex Pair installed in Pupil Wheel Machining 
 
The wheel/hub assembly was installed in the cryogenic chamber. The chamber was purged with dry N2 
gas for a period of 2 hours (this was the standard purging used for all cryogenic tests) and then a vacuum 
was drawn in the chamber. The DUT was then cooled down to 32K and a record was maintained of the 
wheel and hub temperature. It was noted that the wheels cooled at a much slower rate than the hub, 
leading to a 100K temperature gradient across the bearings. 
 
The PW bearing (cryogenic) torque was measured first. The initial torque measurement was carried out 
with a hand held torque meter. The initial torque measurement was abnormally high at 202 N-cm. This 
result was unexpected and indicated that a problem with the bearing was occurring. An investigation of 
the problem was started and it was decided to continue rotation of the bearing to further characterize the 
problem. After 4 revolutions, the torque had dropped from 56 to 46 N-cm. After a further 100 revolutions 
the torque had reduced to 20 N-cm. After a total of 200 revolutions the torque had reduced to 6 N-cm. 
 
The FW bearing (cryogenic) exhibited a similar problem, with an initial torque measurement of 196 N-cm. 
The behavior when further rotated was similar to the PW bearing, with the torque reducing to an 
acceptable value of 5 N-cm over the first 100 revolutions.  
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Figure 7. Wheel / Hub Assembly in the Cryogenic Chamber 
 
The bearings were being impeded by something when initially rotated. Over the first four revolutions the 
torque reduced but was still very high. Eventually an acceptable value of torque (approx. 5 N-cm) was 
achieved on both bearings after 200 revolutions. The fact that the bearing torque at cryogenic 
temperature was similar to the ambient torque, after 200 revolutions was encouraging because it implied 
that the bearings were not permanently distorted by the wheel and hub at 35K. If they were permanently 
distorted, it did not seem credible that they would ever run well. It was decided to disassemble the 
wheel/hub assembly, to the extent possible, to make a visual inspection of the bearings. The visual 
inspection revealed particles of material in the form of flakes and small threads in the vicinity of the 
retainer and the races. The particle contamination in the bearing is shown in Figure 8.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Wheel / Hub Assembly in the Cryogenic Chamber 
 
The particles were identified (by chemical analysis) to be MoS2 and PGM-HT. Therefore, it was concluded 
that the retainer was implicated in the problem. The retainer design was reviewed and a dimensional 
shrinkage analysis of the retainer and race was undertaken.    
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The retainer design for these bearings had to address two modes of operation. The first, being a floating 
retainer at room temperature and second, an inner race riding retainer at cryogenic temperature. The 
extreme temperature change, combined with the large CTE value of PGM-HT, means that the retainer 
would have only a small clearance from the inner race at cryogenic temperature.   
 
Differential thermal contraction between the cages and the bearing races must be taken into account in 
the design since operational range is 295K – 35K, hence for this design the validity of CTE data is critical. 
When the retainer was originally designed, the CTE values used for calculating clearances at 35K was  
52 x 10-6 K-1 for PGM-HT and 8 x 10-6 K-1 for 440C [1] over the temperature range of 295K – 35K. A 
review of more recent test data (provided by ESR Technology) revealed that the CTE of PGM-HT could 
vary from 80 x 10-6 K-1 at 295K to 60 x 10-6 K-1 at 125 K. No data existed below 125K, so CTE values for 
the temperature range of 125K to 35K were extrapolated from the most recent data.  
 
The larger values of CTE were used in a dimensional shrinkage analysis of the retainer and the bearing 
inner race. The results of the analysis showed an interference condition could occur between the retainer 
and the inner race at approximately 90K for the PW bearing and 60K for the FW bearing.  
 
It was decided to confirm the findings of the analysis by test. The PW bearing was tested again at 
cryogenic temperature, with torque measurements made at 50, 70, 90 and 100K. The test revealed that 
below 80K, torque was greater than 50 N-cm. When above 100K, torque was only 10 N-cm. This test 
confirmed our supposition that an interference was occurring and it was decided to re-make new retainers 
with a larger inside diameter. The new CTE value was used for the new retainer design. Thanks go to our 
vendor, ESR Technology for their timely assistance with this issue.          
 
With all bearings having a revised larger retainer installed, the test philosophy of the program was 
revised. Both the PW bearing and the FW bearing would be tested at the bearing level, at cryogenic 
temperature. A bearing test fixture was designed by ESR Technology and COM DEV. A novel feature 
was the addition of a “window” so that a direct view of the retainer could be seen at cryogenic 
temperature. Temperature sensors were also added to directly monitor inner and outer race 
temperatures.  
 
The first cryogenic test of a bearing (with the new retainer) gave us a surprise. The bearing still exhibited 
a high torque when initially rotated at cryogenic temperature (approx. 50 N-cm) but a lower value than 
that seen before. The bearing recovered quickly to a normal value (10 N-cm) when rotated two 
revolutions. The good news was that the retainer could be seen to have the design clearance of 
approximately 0.4 mm from the inner race at cryogenic temperature. The fixture “window” and the 
clearance are shown in Figure 9.     
 
The post test inspection of the bearing showed no flakes and particles had come off the retainer. The 
conclusion of the test was that there was still a problem with the bearing, but not necessarily related to 
the retainer interference issue. A solution to the problem had not yet been found, but the initial torque of 
50 N-cm could easily be accommodated by the driving torque available for the geared motor. As a 
precaution, it was decided to torque test all bearings at 35K. The tests revealed that all bearings had a 
higher than normal torque when initially rotated at cryogenic temperature. However, bearings having the 
lowest values of initial torque (≤50 N-cm) were selected for flight and the life test program.  
 
The investigation team was re-convened to establish a root cause for the problem. All evidence from the 
tests to date was reviewed and it was decided to further investigate the effects of the large thermal 
gradient, which was occurring across the bearing during the cool down. It was already known at this time 
that the cool down of the DW mechanism over a period of 6 days or less would invite the large thermal 
gradient across the bearing to occur and therefore may cause the high initial torque at cryogenic 
temperature to occur in the DW mechanism. A further series of pupil wheel bearing tests were carried out 
to further characterize the problem and investigate possible mitigation strategies.      
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Figure 9. Pupil Wheel Bearing Test at 35K viewed through Test Fixture Window 
 
Bearing Test 1 Objective: To quantify the temperature gradient across the bearing when preload is lost. 
Pupil wheel bearing was torque tested with various temperature gradients across the bearing. Result: 
Preload was lost when temperature gradient exceeded 5K. This result agreed with analytical prediction. 
Preload is lost because outer race is temporarily too large to maintain contact with the balls.   
 
Bearing Test 2: Objective: To measure the bearing initial torque at 35K, having periodically rotated the 
bearing from 150K down to the operating temperature. The purpose of the test was to see if a mitigating 
strategy could be implemented during the cooling down of the bearing. Result: The rotating of the bearing 
during the cool down (temperature gradient > 5K) did not eliminate the high initial torque when rotated at 
35K. Rotating the bearing with no preload on the ball / race system was in-effective.            
 
Bearing Test 3: Objective: To measure the bearing initial torque at 35K, having maintained the 
temperature gradient across the inner and outer races at less than 5K. In essence, the bearing would be 
cooled in an iso-thermal manner. Providing an iso-thermal cool down of the bearing could be achieved, 
the preload between the balls and the races would be maintained during the entire cool down from 295K 
to 35K. Result: The temperature gradient across the bearing was maintained during the entire cool down 
at 4K or less. Therefore, it was assumed that the preload had been maintained on the bearing. However, 
a high initial torque of 80 N-cm occurred, but it was observed that the torque reduced down to 10 N-cm in 
only 10 degrees of bearing rotation. This rapid drop in torque had not been observed on any previous 
bearing test. It was concluded that the iso-thermal cool down had resulted in better bearing behavior at 
35K, but the retainer itself could not be eliminated as a possible contributor to the high initial torque. 
 
In parallel with the individual bearing tests the flight wheel / hub assembly (bearings having the enlarged 
retainer) was torque tested at 35K. The results of the pupil wheel bearing test was an initial torque of  
167 N-cm. Dropping to 31 N-cm after 270 degrees of bearing rotation. The torque trace of the next three 
and a half revolutions is shown in Figure 10. The torque value drops from 27 N-cm to 13 N-cm in non-
linear manner with respect to the rotation angle. Over the next 50 revolutions the torque reduced to an 
acceptable low value of only 7 N-cm.  
 
The wheel / hub assembly still showed a high initial torque at 35K, despite the use of the larger diameter 
retainer. A review of the temperature data during the cool down revealed that the bearing had 
experienced a very high temperature gradient across the races (at one point the wheel being 100K 
warmer than the hub). This large temperature gradient led to a loss of bearing preload and when the 
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preload is lost the balls and the retainer could “fall” in the presence of 1G loads into non-optimal locations. 
These non-optimal locations would be “locked in” when the balls and races re-register, when all bearing 
components reach 35K. It is theorized that over the first four revolutions the balls are being put back into 
optimal locations by the act of rotating the bearing.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Wheel / Hub Assembly Torque Test at 35 K 
 
The test also proved that the bearing high initial torque could not be due to frozen moisture in the MoS2. 
The reason for this conclusion is that a high torque (if due to this phenomena) should clear itself in a 
single rotation of each ball relative to the races. But the bearing took four rotations to recover. It was not 
considered plausible that frozen moisture in the MoS2 could affect the bearing for this many rotations.      
 

Dual Wheel Mechanism Flight Model Tests 
 
It was decided to proceed with the assembly of the DW flight model. Initially, both wheels were tested at 
room temperature, to establish a clear baseline for performance before testing at 35K. The minimum 
current for successful operation of each wheel was established at room temperature and then a torque 
ratio was calculated, based on the maximum motor drive current available. The torque ratios at room 
temperature were 4.4 for the PW and 4.1 for the FW. After vibration tests were completed, the torque 
ratios were unchanged. Vibration tests were deemed to be successful.      
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Dual Wheel Mechanism Flight Model 
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The first cryogenic temperature test at 35K was completed and the results were satisfactory in terms of 
overcoming the high torque of the bearings when initially turned at 35K. The torque ratio available to 
initiate rotation of the wheels (some missed steps permitted), at 35K, was 5.0 for the PW and 3.0 for the 
FW. The torque ratio is defined as the maximum motor current available divided by the minimum motor 
current required to simply achieve wheel rotation. 
 
After a run in of the bearings (25 revolutions of each bearing) the torque ratio at the start of science 
operations (no missed motor steps permitted) at the beginning of life of the mechanism was 2.75 for the 
PW and 1.83 for the FW. The difference in the torque ratio values was attributed to the fact that the PW 
geared motor demonstrated a higher pull in torque (31 N-cm) at 35K than the FW geared motor (22 N-
cm).    
 
The temperature gradient measured across the bearings (during the cool down) was only 30K. A much 
lower value than that measured during the cool down of “bearing only” tests. This was attributed to the 
larger thermal inertia of the all up DW mechanism assembly. It was learnt that each different configuration 
of hardware cooled to 35K produced very different thermal gradients within the assembly.  
 
The repeatability of positioning each optical element was demonstrated at 35K. The repeatability of the 
FW was ±0.133 mm and the PW was ±0.183 mm, versus a requirement for each wheel of ±0.2 mm. 
 

Conclusions and Lessons Learned 
 
Item (1) – The bearing retainer suffered an interference condition with the inner race at the cryogenic 
temperature. This was attributed to an inappropriate CTE design value for the PGM-HT material. The 
interference was eliminated by enlarging the inside diameter of the retainer. Visual evidence of adequate 
clearance was obtained by adding a window to the bearing test fixture. It is recommended that precise 
knowledge of the CTE value of non-metallic retainers be used for designs intended for cryogenic 
applications.  
 
Item (2) - A non-metallic bearing retainer may be in a non-optimal location when a bearing is initially 
rotated at cryogenic temperature. This causes a higher than normal torque. This may be caused by the 
relatively large dimensional change of the retainer cooling down to the cryogenic temperature. The 
retainer being under a 1G load and being offset from an ideal location may magnify this problem. This 
problem was rectified by a 10 degree rotation of the bearing provided the bearing was cooled in an 
isothermal manner. A metallic retainer may eliminate this problem. 
 
Item (3) – When a bearing is cooled in such a way that a large thermal gradient occurs across the 
bearing, the bearing preload is lost. The loss of preload allows the ball and race system to be in a non-
optimal location during the bearing cool down. Also, it is possible that the 1G load pulls the balls and the 
retainer off center. The balls re-register with the races in a non-optimal location when the preload is re-
applied at the cryogenic temperature. The non-optimal location of the balls causes a higher than normal 
torque when initially rotated at cryogenic temperature. This problem can be rectified by up to four 
rotations of the bearing. It is recommended that mechanisms be cooled in an isothermal manner. The 
requirement to cool isothermally is problematic if accelerated cool downs are required for supporting 
ground tests.   
 
Item (4) – The mechanism level tests cool the DW mechanism in six days. This invites item (3) to occur. 
Item (2) will always occur even if the mechanism is cooled isothermally over a long period of time.  
 
Item (5) – Bearings behave in a normal manner after items (2) and (3) have been overcome. Tests 
confirmed that a mechanism torque ratio of greater than 3.0 was available to overcome the problem from 
items (2) and (3).   
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Item (6) – The JWST mission cool down is over a several week period. COM DEV expect item (2) to 
occur in the mission, but not item (3) to occur. However, it was decided to use the accelerated six day 
cool down as the basis for qualification. Future ground based testing at the instrument level will also have 
to cool down in six days. This is more severe than the mission itself but now serves as the environment 
for qualification.        
 
The bearing anomalies described could not be eliminated from the design. However, a successful test 
campaign of the flight model ultimately lead to establishing acceptable torque ratios to overcome the 
anomalies.      
 
The authors wish to express their gratitude to COM DEV and Canadian Space Agency management and 
to COM DEV technical and test personnel for their considerable support in tackling the complex design, 
build and test campaign for the DW mechanism. 
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