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Orion Active Thermal Control System Dynamic Modeling Using 
Simulink/MATLAB 

 
Xiao-Yen J. Wang and James Yuko 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

Abstract 
This paper presents dynamic modeling of the crew exploration vehicle (Orion) active thermal control 

system (ATCS) using Simulink (Ref. 1). The model includes major components in ATCS, such as heat 
exchangers and radiator panels. The mathematical models of the heat exchanger and radiator are 
described first. Four different orbits were used to validate the radiator model. The current model results 
were compared with an independent Thermal Desktop (Ref. 2) (TD) model results and showed good 
agreement for all orbits. In addition, the Orion ATCS performance was presented for three orbits and the 
current model results were compared with three sets of solutions—FloCAD (Ref. 3) model results, 
SINDA/FLUINT (Ref. 4) model results, and independent Simulink model results. For each case, the fluid 
temperatures at every component on both the crew module and service module sides were plotted and 
compared. The overall agreement is reasonable for all orbits, with similar behavior and trends for the 
system. Some discrepancies exist because the control algorithm might vary from model to model. Finally, 
the ATCS performance for a 45-hr nominal mission timeline was simulated to demonstrate the capability 
of the model. The results show that the ATCS performs as expected and approximately 2.3 lb water was 
consumed in the sublimator within the 45 hr timeline before Orion docked at the International Space 
Station.  

Introduction  
The Orion project is under the Constellation program for the space exploration vision initiated by 

President Bush in 2004. The Constellation program is responsible for providing the elements that will 
transport humans and cargo to both the International Space Station (ISS) and the Moon. These elements 
are the crew exploration vehicle (Orion), the crew launch vehicle (Ares I), the lunar surface access 
module (Altair), and the cargo launch vehicle (Ares V). Orion, with a crew of up to four astronauts, will 
launch on Ares I and then use its main engine to insert itself into a safe orbit to either dock with the ISS or 
with Altair. For ISS missions, Orion will be responsible for separation, entry, descent, and landing. For 
lunar missions, Orion also will have to maintain itself in low lunar orbit and perform a trans-Earth 
injection maneuver to return from the Moon. Orion consists of the launch abort system (LAS), crew 
module (CM), service module (SM), and spacecraft adapter (SA). The CM is a capsule design that 
provides the primary structure for crew support, incorporates the bulk of the avionics systems, and 
provides the capability for entry and parachute landing. The LAS will safely extract the CM from the 
launch configuration in the event of an early launch abort. The SM, the structure on which the CM rests, 
interfaces with Ares I. It will perform in-space flight propulsion operations and power generation and 
provide the heat rejection for the Orion active thermal control system. 

This study focuses on Orion’s ATCS. The purpose of the ATCS is to control the crew environment 
inside the CM, while maintaining the temperature of all avionics under their temperature limits. As shown 
in Figure 1, two CM fluid loops will pass through the CM, take heat generated inside the CM and from all 
electronics, then pass the heat to the SM fluid loops through two interface heat exchangers (IFHXs). The 
SM fluid loops will carry the heat to the radiator panels and radiate the heat to space. On the CM side, 
there will be a phase-change  
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material (PCM) heat exchanger (HX) and a sublimator for the purpose of thermal topping. The control 
loop will have several set points, such as the fluid temperature entering the CM and the maximum 
temperature at the cold plates associated with the batteries on the SM. There will be a bypass flow path at 
the upstream of the IFHX on the CM side and a bypass flow path before the regenerative heat exchanger 
(Regen HX) on the SM side. 

The current modeling effort is part of independent validation and verification (IV&V) of the analysis 
results. Simulink and MATLAB are used to build a dynamic model independently to simulate the Orion 
ATCS. The model includes all major components in the ATCS, such as the cabin HX and cold plates on 
both CM and SM sides, IFHX, Regen HX, and the radiator with fluid loops on the SM side. The control 
system also is modeled to meet the thermal requirement for the ATCS. The user must define the initial 
conditions and provide the ambient radiation sink temperature for the radiator. This model focuses on the 
thermal performance of the ATCS. The hydraulic performance of the pump and the pressure drop at each 
component in the ATCS are not reported here.  

In the following sections, the mathematical models of the HX and the radiator with the fluid loops are 
described first, followed by the validation of the ATCS radiator model using four different orbits. The 
numerical results are compared with the corresponding results from independent resources. The per-
formance of the ATCS is presented for a 45-hr nominal mission timeline; then conclusions are drawn. 

Nomenclature 
A  heat transfer area 
Ap  radiator panel area 
Ap,i  area of the three sections on the panel (where i = 1, 2, 3) 
cp,c  specific heat of cold fluid in heat exchanger 
cp,f  specific heat of fluid in heat exchanger 
cp,HX  specific heat of heat exchanger 
cp,h  specific heat of hot fluid in heat exchanger 
cp,r  specific heat of radiator panel 
Dh  hydraulic diameter of the fluid channel 
hAcold  heat transfer rate for cold fluid in heat exchanger 
hAhot  heat transfer rate for hot fluid in heat exchanger 
k  thermal conductivity of the fluid 
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mc  mass of cold fluid in heat exchanger 
mf,1, mf,2  mass of fluid in the two loops 
mHX  mass of heat exchanger  
mh  mass of hot fluid in heat exchanger 
mi  mass of the three sections on the panel (where i = 1, 2, 3) 

cm  mass flow rate of cold fluid in heat exchanger 

hm  mass flow rate of hot fluid in heat exchanger 

21 , mm  mass flow rates of the two loops 

Pr  Prandtl number 
Qa  total heat flux on the radiator panel from solar, albedo, and planetshine  
Qhot2wall  heat flux from the hot stream to the wall 
Qwall2cold  heat flux from wall to the cold stream 
q1, q2  heat flux 
R1, R'1  convection resistances between fluid and channel wall 
R2, R'2  conduction resistances through panel thickness 
R3, R4  conduction resistances along panel 
R5, R6, R7  adiation resistances between panel surface and ambient environment 
Ta  equivalent ambient or sink temperature 
Tc,e  cold-stream exit temperature 
Tc,i  cold-stream inlet temperature 
Th,e  hot-stream exit temperature 
Th,i  hot-stream inlet temperature  
Twall  wall temperature  
Ti,1, Ti,2  fluid inlet temperatures for the two fluid loops  
Tp,a  temperature at panel between the two fluid channels 
Tp,1, Tp,2  temperatures at panel right above the fluid channel 
Tw,1 Tw,2  wall temperatures of fluid channel 
Re  Reynolds number 
T1,i, T2,i, fluid inlet temperatures 

T1,o, T2,o  fluid exit temperatures  
t time 
ε  surface emissivity 
σ  Stefan-Boltzmann constant 
β the angle between the solar vector and the orbit plane 

Mathematical Models of the Heat Exchanger and Radiator 
One-Dimensional Transient Model for the Heat Exchanger 

The heat exchanger considered here is a typical compact HX with plain-fin surfaces as shown in 
Figure 2. It is in a counter-flow arrangement.  
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The inlet and exit temperatures are Th,i and Th,e, respectively, for the hot-stream, Tc,i and Tc,e. for the 
cold-stream. Given the inlet temperature of both sides, Th,e, Tc,e , and the wall temperature Twall can be 
solved through the following ordinary differential equations: 
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t is time; Qhot2wall and Qwall2cold are the heat flux from the hot stream to the wall and from the wall to the 
cold stream; hAhot and hAcold are the heat transfer rates for the hot and cold fluids; mh, mc, and mHX are the 
masses of the hot fluid, cold fluid, and the heat exchanger itself; cp,h, cp,c, and cp,HX are the specific heats of 
the hot fluid, cold fluid, and heat exchanger; and are the mass flow rates of the hot and cold 
fluids, respectively. 

ch mm and

One-Dimensional Transient Model of the Radiator Panel With Fluid Loops 

The radiator panel has a thin surface with fluid channels attached at its interior surface. The interior 
surface is covered by multilayer insulation (MLI) blankets. The exterior surface is coated with material 
that has high emissivity. The fluid loop will come into the header and split the flow through a number of 
channels along the panel. For the two-loop (A and B) flow configuration, the channel will flow alternately 
along fluid loops A and B. The flow condition in the two loops can be different. A cross section of the 
radiator panel in the flow direction (sketched in Fig. 3) shows the two neighboring fluid channels denoted 
as loop A and loop B. On the exterior surface of the radiator panel, Tp,1 and Tp,2 are the temperatures at the 
panel right above the fluid channel, Tp,a is the temperature at the panel between the two fluid channels, 
and Tw,1 and Tw,2 are the wall temperatures of the fluid channel. 
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The corresponding thermal circuit is plotted in Figure 4. R1 and R'1 are the convection resistances 
between the fluid and the channel wall; R2 and R'2 are the conduction resistances through the panel and 
the adhesive layer thickness; R3 and R4 are the conduction resistances along the panel; R5, R6, and R7 are 
the radiation resistances between the panel surface and the ambient environment; Ti,1 and Ti,2 are the fluid 
inlet temperatures for the two fluid loops (assumed to be given); and Ta is the equivalent ambient or 
radiation sink temperature. In space, the radiator panel is exposed to the Sun, the planet, and deep space. 
For this model, Qa is the total heat flux from the Sun, albedo, and planetshine on the radiator panel. It is 
assumed that  with Ap being the radiator panel area, σ the Stefan-Boltzmann Constant, and 
ε the surface emissivity. Then the radiation sink temperature Ta can be used to represent the ambient 
condition. For all cases, the sink temperatures were computed using a separate Thermal Desktop model 
and were used as input to the Simulink model. The Thermal Desktop model performed full three-
dimensional transient analysis for orbit heating on all the radiator panels and averaged the results over the 
entire panel to generate one sink temperature for each panel. Radiation between the large structures, such 
as solar arrays and radiator panels, is included in the model.  

,4apa TAQ σε=

In the model, mi and Ap,i (where i = 1, 2, 3) denote the mass and the area of the three sections of the 
panel; cp,r and cp,f are the specific heats of the radiator panel and the fluid, mf,1 and mf,2 are the masses of 
the fluid in the two loops, and are the mass flow rates of the two loops. The equations for 21 and mm
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solving the three panel wall temperatures, Tp,1, Tp,2, and Tp,a, and two fluid exit temperatures, T1,o and T2,o, 
follow: 
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with 
hA = 7.54 kA/Dh             for Re ≤ 2000  
 
hA = 0.023*Re0.8Pr0.333 kA/Dh  for Re > 2000  (Colburn equation) 

 
where q1 and q2 are the heat flux from the stream to the panel, A is the heat transfer area, Re is the 
Reynolds number, Pr is the Prandtl number, k is the thermal conductivity of the fluid, and Dh is the 
hydraulic diameter of the fluid channel. 

Validation of the Radiator Mathematical Models 

Since the radiator will be one of the major components in the ATCS, the transient model must be 
validated. The radiator studied here is a cylindrical surface divided into eight panels. Two flow loops go 
through all seven panels in series as shown in Figure 5. The eighth panel does not have flow channels 
attached to it and remains a panel to close out the structure. Four cases were used for the validation and 
described as follows. 

The first case was low Earth orbit (LEO) hot case at an altitude of 230 km, β = 56°, aft to the Sun, 
with pitch/yaw/roll/ (P/Y/R) angles of 5°/–5°/0°. The Thermal Desktop results of the non-dimensional 
sink temperature and the equivalent heat flux from the environment were plotted in Figures 6(a) and 6(b) 
for one orbit cycle time of 1.5 hr. With a given mass flow rate and the inlet fluid temperature, the 
computed results of the non-dimensional fluid temperature at the exit of the last panel and the total heat 
rejection were plotted in Figures 6(c) and 6(d) in comparison with the corresponding Thermal Desktop 
(TD) results. The maximum difference between the current result and the TD result was less than 2 to 3 
percent in the fluid temperature and total heat rejection.  

The second case was LEO hot case at the altitude of 230 km, β = 75°, nose forward, with P/Y/R 
angles of 0°/0°/0°. The environmental heat fluxes were similar to the first case except that the average 
seven-panel heat flux had abrupt changes for the first case. The corresponding results were plotted in 
Figure 7 showing a similar agreement as in the first case.  
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The third case was lunar transit, aft to the Sun, with P/Y/R angles of 0°/0°/0°. It was a cold steady-
state case. The non-dimensional fluid exit temperature maximum difference between the two solution sets 
was within 1.5 percent as shown in Figure 8. 

The fourth case was low lunar orbit (LLO) hot case at an altitude of 90 km, β = 0°, nose forward, with 
P/Y/R angles of 0°/0°/0°. The non-dimensional sink temperautre and the equivalent orbit heating flux 
were plotted in Figure 9 for an orbit time of 2 hr. It can be seen that the environment is more severe and 
could be extremely hot and cold. The computed fluid temperature and heat rejection results show similar 
trend as shown in TD results.  
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In summary, the one-dimensional transient model results agree reasonably well with the three-
dimensional Thermal Desktop model results for all four orbits. It can be concluded that the one-
dimensional transient model for the radiator can capture the radiator performance accurately.  

Active Thermal Control System Model Validation  
The ATCS for the ISS mission will have an eight-panel radiator with no PCM HX, whereas the 

ATCS for the lunar mission will have a seven-panel radiator with a PCM HX since the LLO environment 
is generally much worse than that in LEO.  

Three orbit cases were used for validation. The first case was for an ISS mission, LEO aft-to-Sun hot 
at an altitude of 230 km, β = 75º, P/Y/R angles of 5º/–5º/0º, and a power load of 4683 W; The second case 
was for a lunar mission, LLO nose-nadir hot at an altitude of 75 km, β = 0º, P/Y/R angles of –20º/20º/0º, 
and a power load of 2571 W; and the third case also was for a lunar mission, LLO aft-to-Sun cold at an 
altitude of 400 km, β = 90º, P/Y/R angles of 0º/0º/0º, and a power load of 1725 W.  

Four sets of solution were compared: (1) current Simulink model results, (2) an independent Simulink 
model results, (3) SINDA/FLUINT model results, and (4) FloCAD model results. The modeling details of 
the other three models were not available. The current Simulink model uses the same heat transfer 
characteristic of all HXs in the ATCS as those used in other three models. The SINDA/FLUINT model 
has a full three-dimensional radiator model. All models use a similar mathematical approach. Simulink is 
a commercial tool for modeling, simulating and analyzing multidomain dynamic systems. 
SINDA/FLUINT is a comprehensive finite-difference, lumped parameter (circuit or network analogy) 
tool for heat transfer design analysis and fluid flow analysis in complex systems. FloCAD is a Thermal 
Desktop module that allows a user to develop and integrate both fluid and thermal systems within a CAD 
based environment. Like Thermal Desktop, FloCAD is a graphical user interface for SINDA/FLUINT. 

In the current Simulink/MATLAB model, 20 mesh points are used in the flow direction for the IFHX, 
30 mesh points are used in the flow direction for the Regen HX, and two mesh points are used in the flow 
direction for the sublimator and PCM HX. The heat transfer rate for the IFHX, Regen HX, sublimator, 
and PCM HX were referred to in Reference 5. For the cabin HX and cold plate for the CM and SM sides, 
a constant heat load based on the power load was imposed. For the radiator, two mesh points were used 
for each panel, and all panels were modeled.  

The solver used in the Simulink model is ODE45(Dormand-Prince) with a variable time step. The 
maximum Δt was 0.5 s, otherwise the result would have diverged. The model took approximately 20 min 
to simulate a three-orbit (4.5-hr) run.  

For each case, the non-dimensional fluid temperatures on the CM side (including the cabin inlet, SM 
cold plate inlet, IFHX inlet, PCM inlet, and sublimator inlet) and the fluid temperatures on the SM side 
(including the IFHX cold side exit, Regen HX exit, and radiator exit temperature) were plotted. The IFHX 
bypass flow fraction and Regen HX bypass flow fraction also were plotted. Four sets of solution were 
plotted side by side for comparison.  

Figure 10 shows plots of the non-dimensional Thermal Desktop results of the sink temperature for the 
eight radiator panels for the LEO aft-to-Sun hot case. Figures 11 and 12 show plots of the all four model 
results for both the CM and SM sides. The non-dimensional sink temperature changed from –1.70 to 0.55, 
showing a mild orbit heating environment. All four model results show similar trends for the IFHX 
bypass flow changes and a similar on-and-off pattern for the sublimator. Some oscillations exist in the 
FloCAD model because of the algorithm for turning the sublimator water on and off. On the SM side, all 
four models show that the Regen HX is not used.  
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Figures 13 to 15 show the corresponding results for the second case. The sink temperature varied 
from –2.50 to 1.20. On the CM side, all models show a maximum IFHX bypass flow rate of 50 to 54 
percent. On the SM side, all models show a similar pattern of Regen HX bypass flow changes. The 
maximum Regen HX flow rate was 40 to 65 percent. The fluid temperature drop across the radiator was 
similar for all the models: there was a 0.33 to 0.34 drop when the Regen HX was operating at the 
maximum flow rate. The difference in the Regen HX flow percentage could be due to the varying 
performance of the Regen HX. However, the total heat rejection should be similar for all models. When 
the Regen HX has no flow passing through, each model has different ways of book keeping the Regen 
cold exit temperatures, as shown in Figure 15. The Regen cold exit temperature is not used in the model 
when no flow goes through regen HX. 

For the third case—a steady-state cold case—very good agreement was achieved, as shown in  
Figures 16 to 18. The sink temperature changed from –1.60 to –0.60. On the CM side, all models show a 
68- to 69-percent IFHX bypass flow. On the SM side, the current model and SINDA/FLUINT model 
show 78 to 80 percent flow to the Regen HX flow, FloCAD data show 90 percent flow to the Regen HX. 
For all models, the temperature drop across the radiator panel was approximately 0.20.  
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In summary, there is reasonable agreement among the four models with the possible exception that 

the control algorithm in each model might be different, which would cause the transient phenomena to be 
slightly different, as shown in the first and second cases. All four models show simiar trends and 
performance for the ATCS.  

ATCS Performance for a 45-hr Nominal Mission Timeline 
To further demonstrate the capability of this model, a timeline for the 45-hr nominal mission timeline 

was simulated to show the ATCS performance. During the mission timeline, the attitude of Orion and 
power loads on the ATCS vary with time. With defined attitude and power load timelines, the ATCS 
performance is computed and the non-dimensional fluid temperature variations on both the CM and SM 
sides are plotted in Figures19 and 20. The non-dimesnional heat rejection is shown in Figure 21. During 
the first 45 hr before docking, the ATCS was relatively “cool” compared with some hot cases studied 
previously. The radiator fluid inlet temperature was within 0.40 to 0.60 most of the time. The Regen HX 
was on most of the time, whereas the maximum regenerative flow rate was approximately 50 percent. The 
sublimator turned off at t = 18 min and stayed off. The total sublimated water was 2.3 lbm. Note that 
ascent heating was not included here. The model took approximately 3 hr to simulate for the 45-hr run. 
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Conclusions 
A dynamic Simulink model of the Orion ATCS was presented. Details of the mathematical models of 

the heat exchanger and radiator were described. The active thermal control system model was validated 
using three different orbits by comparing the corresponding three results from independent resources. The 
agreement of the results for all four models is reasonable. All four models predict similar ATCS behavior 
for all three cases. Some unexplained discrepancies exist among the four models and are thought to be 
due to possible variations in the control algorithm used in each model. Control algorithm details were not 
available for this study. 
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