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Abstract— In many complex engineered systems, the ability
to give an alarm prior to impending critical events is of great
importance. These critical events may have varying degrees of
severity, and in fact they may occur during normal system opera-
tion. In this article, we investigate approximations to theoretically
optimal methods of designing alarm systems for the prediction of
level-crossings by a zero-mean stationary linear dynamic system
driven by Gaussian noise. An optimal alarm system is designed
to elicit the fewest false alarms for a fixed detection probability.
This work introduces the use of Kalman filtering in tandem with
the optimal level-crossing problem. It is shown that there is a
negligible loss in overall accuracy when using approximations to
the theoretically optimal predictor, at the advantage of greatly
reduced computational complexity.

Index Terms— Optimal alarm theory, Level-crossing theory,
Kalman prediction

I. INTRODUCTION

THIS article introduces a novel approach of combining
the practical appeal of Kalman filtering with the design

of an optimal alarm system for the prediction of level-
crossing events. A comprehensive demonstration of practical
application for the design of optimal alarm systems has been
covered in the literature [1], [2], [3]. However, the background
theory for optimal alarm systems has seen modest coverage
by other authors as well [4], [5], [6], [7]. The latter is by no
means a comprehensive list, but illustrates a cross-section of
the primary authors responsible for introducing optimal alarm
systems in a classical and practical sense.

It was shown by Svensson [1], [2] that an optimal alarm
system can be constructed by finding relevant alarm system
metrics (as are used in ROC curve analysis) as a function of a
design parameter by way of an optimal alarm condition. The
optimal alarm condition is fundamentally an alarm region or
decision boundary based upon a likelihood ratio criterion via
the Neyman-Pearson lemma, as shown in [5], [6]. This allows
us to design an optimal alarm system that will elicit the fewest
possible false alarms for a fixed detection probability. This be-
comes important when considering the numerous applications
that might benefit from an intelligent tradeoff between false
alarms and missed detections.

Due to the fact that optimal alarm regions cannot be
expressed in closed form, one of the aims of this study is
to investigate approximations for the design of an optimal
alarm system. The resulting metrics can easily be compared
to competing methods that may also provide some level of
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predictive capability, but have no provision for minimizing
false alarms for the prediction of level-crossing events.

There are several examples of level-crossing events to be
studied, varying from a simple one-sided case to a more com-
plicated two-sided case. The former one-sided case involves
exceedances and/or upcrossings of a single level spanning two
adjacent time points for a discrete-time process. This is the
case that has traditionally been studied in previous work and
invokes ARMA(X) prediction methods [1], [2], [4], [5], [6],
[7]. The latter two-sided case involves a level crossing event
that may span many time points and exceed upper and lower
levels symmetric about the mean of the process many times
during this timeframe.

A variant of the latter more complicated two-sided case has
been investigated by Kerr [8] and uses a Kalman filter-based
approach. The two-sided case is more practically relevant
when monitoring residuals that may be derived from the
output of other machine learning algorithms or transformed
parameters that relate to system performance. We investigate
the two-sided case here, and also use a Kalman filter-based
approach in an optimal manner relevant for the prediction of
level-crossings.

The prediction of such a level-crossing event is also very
similar to what has been established as the state of the art for
newly minted spacecraft engines, as studied in [9], however
no guarantees of optimality exist. This provide us additional
practical motivation for investigating a level crossing event that
spans many time points, moving beyond what has previously
been studied in this vein. In general, the design of optimal
alarm systems demonstrates practical potential to enhance re-
liability and support health management for space propulsion,
civil aerospace applications, and other related fields. Due to
the great costs, not to mention potential dangers associated
with a false alarm due to evasive or extreme action taken
as a result of false indications, there are great opportunities
for cost savings/cost avoidance, and enhancement of overall
safety. Nonetheless, our intent is to demonstrate the utility
of optimal level-crossing prediction from a more theoretical
perspective.

There is an extensive history of invoking Kalman-filter-
based approaches within the failure detection literature. A few
of the most groundbreaking articles that discuss the use of
Kalman filter methods for failure detection have been authored
by Kerr [8], and Willsky and Jones [10]. Both of these
articles have a long history of related methods descending
from them, i.e., [11] which alludes to the use of the Neyman-
Pearson lemma. More recently, the use of the Kalman filter
has been used to address the level-crossing prediction problem
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in application to condition monitoring [12], however without
any theoretical guarantees of optimality. A competitor to the
optimal alarm system is described in [13], and uses adap-
tive optimal on-line techniques in a Bayesian formulation,
providing more modeling flexibility. However, there are still
considerable computational issues with such an approach, and
a well-defined cost function is still required, even when the
posterior probability is adaptively updated.

One recent criticism of [10] addresses the claim of its
optimality by Kerr [14]. This method, presented by Willsky
and Jones, is characterized by a formulation of the failure
detection problem involving the GLR (Generalized Likelihood
Ratio) test. The method derived by Kerr shows how to derive
a failure detection algorithm whose design is performed by
computing false alarm and correct detection probabilities over
a time interval. Neither method is optimal in the sense used
to predict level-crossings, as introduced by DeMaré [5] and
Svensson et al. [2]. Other standard methods based upon the
GLR test, and SPRT (Sequential Probability Ratio Test) invoke
hypothesis tests that are geared more for detection of the
change of model parameters, as opposed to level-crossings.

As was previously mentioned in this section, we aim to
more precisely close the gap between the use of Kalman
filtering and optimal alarm systems in this article. Although
this article is motivated by fault detection and prediction,
and it is recognized that the literature in this area is quite
expansive, our investigation aims to shed light on a segment
of the literature that has been largely overlooked.

II. PERFORMANCE ANALYSIS

As mentioned previously, relevant alarm system metrics
such as ones used in ROC curve analysis can be expressed as a
function of a design parameter via an optimal alarm condition.
These same metrics will act as the basis for comparison
to competing methods that are functions of different design
parameters. These competing methods may provide some level
of predictive capability, but have no provision for minimizing
false alarms. The two primary methods to provide a baseline
for comparison are to compare the process value with a
fixed threshold, or the “redline” method, and to compare
future predicted process value with a fixed threshold, or the
“predictive” method.

However, in both cases it is important to make the distinc-
tion between the critical level, L, associated with the level
crossing event to be predicted and the fixed threshold referred
to above, denoted as LA. The critical level represents the
threshold above which damage or some significant decrease in
quality of a behavior or process may potentially occur. There
are some cases in which this critical level, L, is not known,
have not been designed a priori, or when known critical levels
yield alarm systems that are practically infeasible. As such,
sometimes it is beneficial to use values that are based upon
statistical outlier detection and hypothesis testing via the p-
value.

The fixed threshold, LA, essentially acts as a design pa-
rameter with which to tune the alarm system sensitivity. Its
value is the level at which an alarm would be triggered, whose

selection may be performed with the aid of ROC analysis. The
main utility of using two distinct levels, however, is to enable
the decoupling of alarm design from construction of the critical
event itself. Two levels are also often used in practice for the
design of fault detection algorithms that involve limit-based
abort decisions. A “yellow-line” limit check is often used as
a precursor caution and warning threshold to the “redline”
abort threshold. The former can be used as an alarm system
design parameter, where the latter may serve as a hard limit
determined apriori via extensive experimental validation.

To recap, the redline and predictive techniques both use
fixed thresholds, LA, and the optimal level-crossing predictor
uses an optimal alarm condition (or approximations of it).
All three techniques are leveraged to predict another distinctly
more critical level-crossing event (based upon the critical level,
L), and all are preferable to the use of a single level for a
number of reasons. For one, ROC curve statistics (the true and
false positive rates) can be expressed directly as a function of
the model parameters when using these techniques. Therefore,
design of the alarm system can proceed without the need to
observe actual examples of failures, and there is no need to
estimate the alarm system metrics empirically. This obviates
the need to rely upon having actual available examples of
failures for alarm system design to generate the ROC curve.

It is not possible to construct an ROC curve as a function
of model parameters when using a single level. In this case
the ROC curve statistics can only be estimated empirically
with observational and truth data. Truth data in this case
can either be represented by model generated level-crossing
events, or failures generated from a complex system. The
construction of an ROC curve in this manner can be used for
any alarm system technique. However, in the absence of actual
observations of failures, the “Monte-Carlo” style method of
generating truth data can be computationally intensive, and
is still based purely upon simulated model-generated level-
crossings. As such, it is imperative that the gap between
model-generated failures and actual observations of failures
be made as small as possible. The level-crossing event must
sufficiently characterize an actual physical failure to realize
the advantage of expressing the ROC curve of as a function
of the model parameters, and thus to design an alarm system
without the need to observe actual examples of failures.

The redline, predictive, and optimal techniques are prefer-
able to the use of a single level for another reason. The former
three techniques generate ROC curve statistics that are based
upon the use of distinct design spaces for construction of a
critical event and their respective alarm systems, providing a
measure of functional distinction. The critical event can be
constructed such that multiple level-crossings span multiple
time steps into the future, implicitly enabling a predictive
assessment capability for alarm system design. Using a single
level-based alarm system merges the functionality of limit
checking and the use of an alarm design parameter. As such
it is not possible to decouple independent alarm design from
the critical event, and thus this method provides no measure of
functional distinction. It is also the one most commonly found
in the literature, i.e., [15], [8], [10]. Arguably, the critical event
should be constructed to emulate the physics of the failure, and
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the alarm system should independently be designed to predict
it. The distinction between these two paradigms is one of the
most discernable differences in the theoretical techniques used
here and in other literature, [1], [2], [3], [4], [5], [6].

III. METHODOLOGY

A level-crossing event is defined with a critical level, L,
that is assumed to have a fixed, static value. The level is
exceeded by some critical parameter than can be represented
by a dynamic process, and is often modeled as a zero-mean
stationary linear dynamic system driven by Gaussian noise.
Most of the theory that follows is based upon this standard
representation of the optimal level-crossing problem. As such,
our underlying assumption is that we can fit measured or
transformed data to a model represented by a linear dynamic
system driven by Gaussian noise. The state-space formulation
is shown in Eqns. 1-3, demonstrating propagation of both
the state, xk ∈ Rn which is corrupted by process noise
wk ∈ Rn, and the state covariance matrix, Pk, which evolve
with the time-invariant system matrix A. The output, yk ∈ R
is univariate, and is corrupted by measurement noise vk ∈ R.

xk+1 = Axk + wk (1)
yk = Cxk + vk (2)

Pk+1 = APkAT + Q (3)

where

wk ∼ N (0,Q), Q � 0

vk ∼ N (0, R), R > 0
x0 ∼ N (µx,P0)

A summary of the notation to be used henceforth is provided
in Table I. As mentioned previously, there is great flexibility
in constructing a mathematical representation for the level-
crossing event, Ck. Ostensibly, the target application will drive
the definition of this event. As such, in this paper the event
of interest is shown in Eqn. 4, cf. Kerr [8] in consideration
of the motivating factors described in the introduction. This
level-crossing event represents at least one exceedance outside
of the threshold envelope specified by [−L,L] of the process
yk within the specified look-ahead prediction window, d.

Ck
4
=

d⋃
j=1

Sk+j =
d⋃

j=1

E′k+j = I \
d⋂

j=1

Ek+j (4)

where

Ek+j
4
= {|yk+j | < L}, ∀j ≥ 1

Sk+j
4
=

{
E′k+j j = 1⋂j−1

i=1 Ek+i, E
′
k+j ∀j > 1

Fig. 1 illustrates the relationship between subevents Sk+j

and Ek+j , when d = 5. The event Ck can be represented
as the union of disjoint subevents, Sk+j , or as the union of

Mathematical
Representation Nomenclature

µ• E[•](Expectation)
•̂k+j|k E[•|y0, . . . , yk] (Conditional Expectation)
•̃k Orthonormal rotation of •k in vector space

•∗ Result of vector space orthonormal rotation in
probability or event space

Pk+i,k+j State autocovariance matrix
PL

ss Solution to Discrete Algebraic Lyapunov Equation

PR
ss

Solution to Discrete Algebraic Riccati Equation (A
priori steady-state error covariance matrix)

P̂R
ss (A posteriori steady-state error covariance matrix)

Fk+1|k Kalman Gain
Fss Steady-State Kalman Gain

Vk+j|k
Conditional prediction variance for future output
value

Ck Level-crossing event
Sk+j Level-crossing subevent (disjoint)
Ek+j Level-crossing subevent (non-disjoint)
I Universe of all events
Ak Optimal alarm event (sublevel set)

ΩC
Region in vector space spanned by level-crossing
event

LA
Level set for optimal alarm event or design thresh-
old for “redline” and “predictive” methods

ΩAj

Sublevel set for subevent (used in root-finding
approximation to optimal alarm event)

Aj
k

Sublevel set for subevent (used in closed-form
approximation to optimal alarm event)

Ai,j
k

Sublevel set for decomposed subevent (used in
closed-form approximation to optimal alarm event)

LAj

Level set for subevent (used in (either) approxima-
tion to optimal alarm event)

L Critical level
d Prediction horizon
Pb Border Probability
Pbcrit

Critical Border Probability (Domain Boundary)
Pd Detection Probability
Pfa False Alarm Probability

TABLE I
SUMMARY OF MATHEMATICAL NOTATION

overlapping subevents, E′k+j . However, due to DeMorgan’s
theorem, the latter can be expressed in a more compact fashion
via a single term when computing the probability of the overall
event. This obviates the need for use of the inclusion/exclusion
rule for the realization of all relevant terms in a probability
computation based upon the union of overlapping subevents,
E′k+j , where the number of terms would be exponential in d.
It also obviates the need for computing the probability based
upon the former union of disjoint subevents, Sk+j , where there
is no need for use of the inclusion/exclusion rule. However, the
number of terms would still be linear in d, as the probability
computation of the union of disjoint subevents is represented
by the sum of terms involving Sk+j . Thus Eqn. 5 represents
the unconditional probability of the level-crossing event in its
most compact representational form.

P (Ck) = 1−
∫ L

−L

· · ·
∫ L

−L

N (yd;µyd
,Σyd

)dyd (5)

where
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Fig. 1. Level-Crossing Event Realization

yd
4
=

 yk+1

...
yk+d

 , µyd
= 0d =

 0
...
0


Σyd

4
=

{
CPkC> +R ∀i = j ∈ [1, . . . , d]
CPk+i,k+jC> ∀j > i ∈ [1, . . . , d]

and Pk+i,k+j
4
= Aj(Pk −PL

ss)(A>)i + Aj−iPL
ss

We may approximate Σyd
as shown in Eqn. 6 by substitut-

ing the steady-state version of the Lyapunov equation given
previously as Eqn. 3, PL

ss, in place of Pk, which agrees with
our assumption of stationarity.

Σyd
≈
{

CPL
ssC

> +R ∀i = j ∈ [1, . . . , d]
CAj−iPL

ssC
> ∀j > i ∈ [1, . . . , d]

(6)

This approximation, while it introduces error with regards
to the probability of a level-crossing event, P (Ck) at a specific
point in time, k, is ostensibly negligible and will provide for
a great computational advantage in the design of all alarm
systems that it is based upon. Instead of designing an optimal
alarm system for each time step, we design a single alarm
system based upon the limiting statistics that are reached at
steady-state, greatly reducing the computational burden. The
steady-state assumption has not been used in work by Antunes
et al. [13], but doing so also incurs much greater computational
effort.

Theorem 1, which can be found in Appendix I, provides the
mathematical underpinnings for the optimal alarm condition
corresponding to the level-crossing event, shown here as
Eqn. 7. Alternatively, the optimal alarm condition derived in
Theorem 1 can be expressed in terms of the subevents Ek+j ,
as shown in Eqn. 8.

P (Ck|y0, . . . , yk) ≥ Pb (7)

⇔ P (
d⋂

j=1

Ek+j |y0, . . . , yk) ≤ 1− Pb (8)

The optimal alarm condition has therefore been derived
from the use of the likelihood ratio resulting in the conditional
inequality as given in Eqn. 7. This basically says “give alarm
when the conditional probability of the event, Ck, exceeds the
level Pb.” Here, Pb represents some optimally chosen border or
threshold probability with respect to a relevant alarm system
metric. It is necessary to find the alarm regions in order to
design the alarm system. This alarm region is parameterized
by future process output predictions and covariances, which
can be derived from standard Kalman filter Eqns. 9 - 13.
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ŷk|k = Cx̂k|k (9)
x̂k+1|k = Ax̂k|k (10)

Fk+1|k
4
= Pk+1|kCT (CPk+1|kCT +R)−1 (11)

Pk+1|k = APk|kAT + Q (12)
Pk+1|k+1 = Pk+1|k − Fk+1|kCPk+1|k (13)

where

x̂k|k
4
= E[xk|y0, . . . , yk]

Pk|k
4
= E[(xk − x̂k|k)(xk − x̂k|k)T |y0, . . . , yk]

Relevant predictions, covariances and cross-covariances are
given below as Eqns. 14- 18, respectively.

ŷk+j|k = CAjx̂k+j|k (14)

Pk+j|k = Aj(Pk|k −PL
ss)(A>)j + PL

ss (15)

≈ Aj(P̂R
ss −PL

ss)(A>)j + PL
ss (16)

Pk+i,k+j|k = Aj(Pk|k −PL
ss)(A>)i + Aj−iPL

ss(17)

≈ Aj(P̂R
ss −PL

ss)(A>)i + Aj−iPL
ss (18)

P̂R
ss = PR

ss − FssCPR
ss (19)

Fss = PR
ssC

T (CPR
ssC

T +R)−1 (20)

PR
ss is the combined steady-state version of Eqns. 12 and

13 given previously, or the discrete algebraic Riccati equation,
and P̂R

ss is the steady-state a posteriori covariance matrix
given in Eqn. 19. Eqn. 20 is also used in Eqn. 19, which
is the steady-state version of the Kalman gain from Eqn. 11.

The approximations shown in Eqns. 16 and 18 will provide
for a great computational advantage in design of the optimal
alarm system and its corresponding approximations for reasons
stated previously. Due to the approximation of Pk|k with P̂R

ss

shown in these equations, the Kalman filter will be suboptimal,
as cited by Lewis [16]. However, the assumption of stationarity
is required for the design of an optimal alarm system as defined
by Theorem 1, and holds here as well.

A more formal representation of the optimal alarm region
is shown in Eqn. 21, which essentially defines a sublevel set
of g(ŷd)

4
=P (

⋂d
j=1Ek+j |y0, . . . , yk) as a function of ŷd.

Ak
4
= {

d⋂
i=1

ŷk+i|k : P (Ck|y0, . . . , yk) ≥ Pb} (21)

4
= {

d⋂
i=1

ŷk+i|k : P (
d⋂

j=1

Ek+j |y0, . . . , yk) ≤ 1− Pb}

Eqns. 22-23 give the multivariate normal probability com-
putation to be performed via numerical integration, required
for enabling the optimal alarm condition.

P (
d⋂

j=1

Ek+j |y0, . . . , yk) =
∫ L

−L

· · ·
∫ L

−L

N (yd; ŷd, Σ̂yd
)dyd

(22)

=
∫ L−ŷk+1|k

−L−ŷk+1|k

· · ·
∫ L−ŷk+d|k

−L−ŷk+d|k

N (yd; 0d, Σ̂yd
)dyd (23)

where

ŷd
4
= E[yd|y0, . . . , yk] =

 ŷk+1|k
...

ŷk+d|k


Σ̂yd

4
=

{
Vk+i|k ∀i = j ∈ [1, . . . , d]

CPk+i,k+j|kC> ∀i 6= j ∈ [1, . . . , d]

Vk+i|k
4
= CPk+i|kC> +R

The feasible region for values of Pb can easily be de-
termined by applying an intermediate value theorem from
calculus which provides sufficient conditions for finding a
level set solution. The sufficient conditions are shown as Eqns.
24-25, and the resulting level set is shown as Eqn. 26.

g(0d) ≥ 1− Pb (24)
lim

|ŷd|\ŷk+j|k→∞
g(ŷd) < 1− Pb, ∀j ∈ [1, . . . , d] (25)

LA
4
={

d⋂
j=1

ŷk+j|k : g(ŷd) = 1− Pb} (26)

The notation that represents the limiting condition shown in
Eqn. 25 is |ŷd|\ ŷk+j|k →∞, and is meant to indicate that all
elements of ŷd other than ŷk+j|k approach ±∞. Application
of this condition yields Pb < 1, which is true by definition,
and application of the sufficient condition shown in Eqn. 24
yields Pb ≥ 1 − g(0d). Thus the feasible region for Pb is
Pb ∈ [1− g(0d), 1].

It is not possible to obtain a closed-form representation of
the parametrization for the optimal alarm region shown in Eqn.
21. As such, resulting ROC curve statistics can not be com-
puted analytically by means of numerical integration as will be
shown to be possible for other methods. As an alternative, we
must use the Monte Carlo style approach discussed previously.
This will alow for the ROC curve statistics to be estimated
empirically with observational and truth data generated from
the existing model and corresponding simulations of level-
crossing events.

However, as will be shown, with the aid of two distinct
approximations we can generate ROC curve statistics by
numerically integrating expressions for the computation of
relevant multivariate normal probabilities. These multivariate
probability computations are performed by using an adaptation
of Genz’s algorithm [17], which is based upon a robust and
computationally efficient technique designed to be used for
integrations in multiple dimensions for multivariate normal
distributions. This provides a tool necessary for the design
of approximations to an optimal alarm system, and also other
failure detection algorithms such as the one most often used by
Kerr [18], who specifically cites issues with the computation
of these types of integrals. As such, we can avoid otherwise
often very time and computationally intensive simulation runs
when using Monte-Carlo style empirical estimation.
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A. Root-finding Approximation

The optimal alarm region, Ak, can be approximated by
the alarm region specified by

⋃d
j=1 ΩAj . Fundamentally, the

approximation is constructed by solving for asymptotic bounds
on the exact alarm region. By using asymptotes, we are
implicitly making a geometrical approximation by forming
a hyperbox around the alarm region. Simple 2-dimensional
examples of such hyperboxes for various values of L, and
Pb are shown in Fig. 2. There is visual evidence that limiting
effects for this approximation exist, as both L and Pb approach
the extremities of their feasible ranges. These effects will be
touched on briefly later in the results section, but will be
investigated in earnest in a sequel article.

Fig. 2. Root-finding approximations for optimal alarm region

Mathematically, the approximation is formed by solving a
root-finding problem which yield bounding asymptotes. The
root-finding problem is posed by first taking the limit as each
dimension of Eqn. 21 approaches 0, other than the one for
which the asymptote is being derived. Eqn. 27 expresses this
limiting condition as a function of the dimension of interest.

f(ŷk+j|k)
4
= lim

ŷd\ŷk+j|k→0
P (

d⋂
j=1

Ek+j |y0, . . . , yk) (27)

Having defined f(ŷk+j|k), it is now possible to express ΩAj

by Eqns. 28-29.

ΩAj = {ŷk+j|k : f(ŷk+j|k) ≤ 1− Pb} (28)
= {|ŷk+j|k| ≥ LAj} (29)

where the root-finding problem is given by numerically
solving Eqn. 30.

LAj

4
={|ŷk+j|k| : f(ŷk+j|k) = 1− Pb} (30)

Thus the root-finding approximation to the optimal alarm
region is given by

⋃d
j=1 ΩAj

≈ Ak. Note that the function f
incorporates all elements of the covariance matrix Σ̂yd

when
computing the asymptotes, just as when constructing the sub-
level set for the the exact optimal alarm region. Furthermore,
the feasible region for Pb is identical to the sublevel set of the
exact optimal alarm region, Pb ∈ [1−g(0d), 1] ≡ [1−f(0), 1]
by using a similar argument and set of sufficient conditions,
as shown in Eqns. 31-32 below.

f(0) ≥ 1− Pb (31)
lim

|ŷk+j|k|→∞
f(ŷk+j|k) < 1− Pb (32)

However, there is one primary difference between this
approximation and exact alarm region. As far as the condi-
tional mean, ŷd, is concerned, the asymptotic approximation
is parameterized only by the corresponding dimension of the
conditional mean, ŷk+j|k. The exact optimal alarm region uses
all dimensions of the distribution and thus the conditional
mean, ŷd, simultaneously.

It is possible to generate formulae for the true and false
positive rates as a function of LAj

by appealing to Eqns. 33-
34, where in place of Ak its approximation

⋃d
j=1 ΩAj

may be
used.

True positive rate:

Pd = P (Ck|Ak) =
P (Ck, Ak)
P (Ak)

(33)

False positive rate:

Pfa = P (Ak|C
′

k) =
P (C

′

k, Ak)
P (C ′

k)
(34)

=
P (Ak)− P (Ck, Ak)

1− P (Ck)

Because we have already introduced the formula for P (Ck)
in Eqn. 5, which holds regardless of the alarm system being
used, we must only find expressions for P (Ck, Ak) and
P (Ak). They are given in Eqns. 35-36, where Pbcrit

4
=1 −

g(0d) = 1− f(0), and they are also implicitly expressed as a
function of the design parameter, Pb, as a consequence of Eqn.
30. Note also that the off-diagonal blocks of the covariance
matrix Σz are equivalent to Σ̂ŷd

as a consequence of the
projection theorem.
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P (Ak) =
{
P (
⋃d

j=1 ΩAj
) Pb > Pbcrit

1 Pb ≤ Pbcrit

(35)

=
{

1− P (
⋂d

j=1 Ω′Aj
) Pb > Pbcrit

1 Pb ≤ Pbcrit

P (Ck, Ak) =
{
P (Ck)− P (A′k) + P (C ′k, A

′
k) Pb > Pbcrit

P (Ck) Pb ≤ Pbcrit

(36)
where

P (A′k) = P (
d⋂

j=1

Ω′Aj
) = P (

d⋂
j=1

|ŷk+j|k| < LAj )

=
∫ LA1

−LA1

· · ·
∫ LAd

−LAd

N (ŷd;µyd
, Σ̂ŷd

)dyd

and

Σ̂ŷd

4
= Σyd

− Σ̂yd

= O(PL
ss − P̂R

ss)O>

O
4
=

 CA
...

CAd


Furthermore,

P (C ′k, A
′
k) = P (

d⋂
j=1

Ek+j ,

d⋂
j=1

Ω′Aj
)

=
∫ L

−L

· · ·
∫ L

−L

∫ LA1

−LA1

· · ·
∫ LAd

−LAd

N (z;µz,Σz)dz

where

z
4
=

[
yd

ŷd

]
µz

4
=

[
µyd

µyd

]
Σz

4
=

[
Σyd

Σ̂ŷd

Σ̂ŷd
Σ̂ŷd

]

B. Closed-form Approximation

The optimal alarm region, Ak, can also be approximated by
an alarm region specified by

⋃d
j=1A

j
k, with a successive ap-

proximation on Aj
k; Aj

k is defined in Eqn. 37. Fundamentally,
the approximation can be constructed in the same fashion as
the root-finding method, by solving for asymptotic bounds on
the exact alarm region.

Aj
k = {ŷk+j|k : P (Ek+j |y0, . . . , yk) ≤ 1− Pb} (37)

A containment relationship between the exact optimal alarm
region and the union of inequalities

⋃d
j=1A

j
k ⊆ Ak can easily

be shown with a linear transformation of the conditionally
defined Gaussian vector yd to a vector of independent vari-
ables. The integrand of Eqn. 23 is a multivariate Gaussian

density whose conditional covariance matrix is given by Σ̂yd
.

The orthonormal decomposition of this covariance matrix and
density of the corresponding transformed vector ỹd are shown
in Eqns. 38 - 40.

ỹd = Λyd (38)
Σ̂yd

= ΛΓΛ> (39)

N (yd; 0d, Σ̂yd
) = N (ỹd; 0d,Γ) (40)

Here, the elements of ỹd are independent, and thus Γ is
diagonal. As such, geometric containment easily follows when
considering a revised expression for Ak and

⋃d
j=1A

j
k. Thus,

the latter approximation to the exact alarm region can be
rewritten in the transformed probability space as shown in
Eqn. 41. The superscript ∗ for all probabilities included in
this expression refers to the transformed values that results
after the orthonormal rotation. Note that this expression does
not change significantly from what was given in Eqn. 37.

d⋃
j=1

Aj
k =

d⋃
j=1

{ŷk+j|k : P (E∗k+j |ỹ0, . . . , ỹk) ≤ 1− P ∗b } (41)

The exact alarm region Ak can be rewritten in the trans-
formed probability space as shown in Eqn. 42, however the
expression changes significantly, and in such a manner to allow
for direct comparison to Eqn. 41.

Ak = {
d⋂

i=1

ŷk+i|k : P (
d⋂

j=1

E∗k+j |ỹ0, . . . , ỹk) ≤ 1− P ∗b }

= {
d⋂

i=1

ŷk+i|k :
d∏

j=1

P (E∗k+j |ỹ0, . . . , ỹk) ≤ 1− P ∗b } (42)

Because containment in this probability space is invariant
under orthonormal rotations, it follows from Eqns. 41- 42,
that

⋃d
j=1A

j
k ⊆ Ak, so that the approximate alarm region

is a proper subset of the exact alarm region. Fig. 3 provides
illustrative evidence of this containment in the transformed
probability space when d = 2. Here, the union of the red and
blue colored sections represents Ak (formula shown below)
and the blue colored section represents the approximation A1

k∪
A2

k.

Ak = {(ỹk+1|k, ỹk+2|k) : P (E∗k+1|ỹ0, . . . , ỹk) ·
P (E∗k+2|ỹ0, . . . , ỹk) ≤ 1− P ∗b }

A successive approximation is required in order to obtain
a closed-form representation and parametrization of the alarm
region without having to resort to root-finding required for
solving P (Ek+j |y0, . . . , yk) ≤ 1− Pb, which is equivalent to
P (|yk+j | > L|y0, . . . , yk) ≥ Pb. This second approximation
is given by Eqn. 43, which breaks this condition containing
an absolute value into constitutive inequalities.

Ai,j
k = {ŷk+j|k : P (Ei′

k+j |y0, . . . , yk) ≥ Pb} (43)
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Fig. 3. Containment of the approximation by exact alarm region

where

i ∈ B ≡ {L,U}
EU

k+j = {yk+j < L}
EL

k+j = {yk+j > −L}

Thus P (EU ′

k+j |y0, . . . , yk) + P (EL′

k+j |y0, . . . , yk) ≥ Pb is
approximated by two distinct inequalities given by the union
of P (EU ′

k+j |y0, . . . , yk) ≥ Pb and P (EL′

k+j |y0, . . . , yk) ≥ Pb.
This subsequent approximation can easily be visualized in Fig.
4. The union of the red and blue colored sections shown in
Fig. 4, represents A1

k. Thus the blue colored section alone from
Fig. 4 is a subset of this area, such that AU,1

k ∪ AL,1
k ⊆ A1

k.
If we replicate Fig. 4 for j ∈ [1, . . . , d], then it becomes clear
that more generally Eqn. 44 holds, which summarizes all of
the containment relationships for the approximations covered
in this subsection.

d⋃
j=1

⋃
i∈B

Ai,j
k ⊆

d⋃
j=1

Aj
k ⊆ Ak (44)

By using this successive approximation, we can now repre-
sent the alarm region in “closed-form,” as shown in Eqn. 45
below.

d⋃
j=1

⋃
i∈B

Ai,j
k =

d⋃
j=1

|ŷk+j|k| ≥ L+
√
Vk+j|kΦ−1(Pb) ≡ LAj

(45)
Φ−1(·) represents the inverse cumulative normal standard

distribution function, and LAj
∀j ∈ [1, . . . , d] represent the

limits of integration. The LAj
values can now been re-defined

to replace the integration limits used for the root-finding
method in Eqns. 33 - 36. As such, these same equations are
valid for computing Pd and Pfa in order to construct an
ROC curve using this “closed-form” approximation as well.
However, in place of Ak when using these equations, the
approximation

⋃d
j=1

⋃
i∈B A

i,j
k is used.

Fig. 4. Closed-form approximation in probability space

The domain of feasibility for this approximation now
changes, and Pbcrit

takes on a new value, which differs from
identical values of Pbcrit

= 1 − g(0d) and Pbcrit
= 1 − f(0)

corresponding to the feasibility regions for the optimal alarm
region and the root-finding approximation, respectively. A
derivation for the new value of Pbcrit

is provided in Eqns.
46-50 below. The derivation is based upon the premise that
LAj

> 0, where the last step from Eqn. 49 to 50 uses Lemmas
2-5 which can be found in Appendix I, and the fact that R > 0.

LAj > 0 ∀j ∈ [1, . . . , d] (46)

L+
√
Vk+j|kΦ−1(Pb) > 0 ∀j ∈ [1, . . . , d] (47)

d⋂
j=1

Pb > Φ

(
−L√
Vk+j|k

)
4
=Pbj

(48)

Pbcrit > max
j
Pbj (49)

= Φ

(
−L√
Vk+d|k

)
= Pbd

(50)

Again, by using asymptotes we implicitly make a geomet-
rical approximation by forming a hyperbox around the alarm
region. As before, simple 2-dimensional examples of such
hyperboxes for various values of L, and Pb are shown in Fig. 5.
Furthermore, just as for the root-finding approximation, visual
evidence that limiting effects for this approximation also exist,
as both L and Pb approach the extremities of their feasible
ranges. Note that both the approximation represented by Fig.
3 and the successive approximation represented by Fig. 4 have
been applied to yield the vector space result shown in Fig. 5.
Both Figs. 3 and 5 have been illustrated for the case when
d = 2.

Due to the containment relationship labeled Eqn. 44, qual-
itative arguments for the under-reporting of Pd and Pfa can
be made for this approximation. A less aggressive, more opti-
mistic strategy will result in comparison to the exact optimal
method. It is unclear if this approximation will be more or
less accurate than the previous root-finding approximation.
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Fig. 5. Closed-form approximations for optimal alarm region

However, we do know that the off-diagonal elements of the
covariance matrix Σ̂yd

are not used for computing the asymp-
totes of this “closed-form” approximation. Recall that the root-
finding method incorporates all elements of the covariance
matrix when computing the asymptotes. Yet both methods use
asymptotic approximations which are parameterized only by
the corresponding dimension of the conditional mean, ŷk+j|k.

As is apparent intuitively from Figs. 2 and 5, Aj
k ⊆ ΩAj ,

thus
⋃d

j=1A
j
k ⊆

⋃d
j=1 ΩAj

. It is clear from visual comparison
of these figures that this containment relationship exists be-
tween the root-finding and “closed-form” approximations. For
a mathematical proof of this containment, recall Eqns. 28-29
for ΩAj , shown again below, and compare them to Eqn. 37
for Aj

k, also shown again below.

ΩAj
= {ŷk+j|k : f(ŷk+j|k) ≤ 1− Pb}
= {|ŷk+j|k| ≥ LAj

}
Aj

k = {ŷk+j|k : P (Ek+j |y0, . . . , yk) ≤ 1− Pb}

If we look closely at the regions of integration for f(ŷk+j|k)
and P (Ek+j |y0, . . . , yk), as shown in Eqns. 51-55 below, we
will notice that a clear containment relationship exists.

f(ŷk+j|k) = lim
ŷd\ŷk+j|k→0

P (
d⋂

j=1

Ek+j |y0, . . . , yk) (51)

=
∫
DΩ

N (yd; ŷd, Σ̂yd
)dyd (52)

=
∫ L

−L

· · ·
∫ L−ŷk+j|k

−L−ŷk+j|k

· · ·
∫ L

−L

N (yd; ŷd, Σ̂yd
)dyd (53)

P (Ek+j |y0, . . . , yk) =
∫
DA

N (yd; ŷd, Σ̂yd
)dyd (54)

=
∫ ∞
−∞
· · ·
∫ L−ŷk+j|k

−L−ŷk+j|k

· · ·
∫ ∞
−∞
N (yd; ŷd, Σ̂yd

)dyd (55)

where

X = {[−L,L]} ⊂ R
DΩ = {Xd−1 × [−L− ŷk+j|k, L− ŷk+j|k]}
DA = {Rd−1 × [−L− ŷk+j|k, L− ŷk+j|k]}

It is clear that DΩ ⊆ DA due to the fact that Xd−1 ⊆ Rd−1.
As such, f(ŷk+j|k) ≤ P (Ek+j |y0, . . . , yk) easily follows due
to the fact that both expressions share a common integrand.
It is therefore evident that our original claim Aj

k ⊆ ΩAj
, and

thus
⋃d

j=1A
j
k ⊆

⋃d
j=1 ΩAj is mathematically sound.

According to this newly derived containment relationship,
and by again using qualitative arguments, it is clear that the
root-finding approximation will be more aggressive, and less
optimistic than the closed form approximation. However, there
is no containment relationship that can be established between
the root-finding method and the exact optimal alarm region as
could be performed for the closed form approximation. As
such, even though the root-finding method incorporates all
elements of the covariance matrix when computing its asymp-
totes, this approximation strategy may be overly aggressive
and overshoot the performance of the exact optimal method
under certain circumstances. This mathematical intuition will
be supported by demonstrating this effect with examples later
in the results section.

C. Redline and Predictive Alarm Systems

The two baseline alarm systems mentioned previously (red-
line and predictive) will be compared to the optimal alarm
system and its approximations. All methods will attempt to
predict the level-crossing event defined by Eqn. 4. The redline
alarm system attempts to define an envelope, [−LA, LA],
outside of which an alarm will be triggered to forewarn of the
impending level-crossing event. The probabilities necessary
to compute Pd and Pfa based upon Eqns. 33-34 for this
alarm system are provided in Eqns. 56-59, where we re-define
Ak = {|yk| > LA}, such that the alarm is based only on the
current process value.

P (Ak) = P (|yk| > LA) (56)

= 2Φ

 −LA√
CPL

ssC +R

 (57)

P (Ck, Ak) = P (Ck)− P (A′k) + P (C ′k, A
′
k) (58)

P (C ′k, A
′
k) =

∫ LA

−LA

∫ L

−L

· · ·
∫ L

−L

N (z;µz,Σz)dz (59)
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where

z
4
=

[
yk

yd

]
µz

4
=

[
µyk

µyd

]
= 0d+1

Σz ≈
{

CPL
ssC

> +R ∀i = j ∈ [0, . . . , d]
CAj−iPL

ssC
> ∀j > i ∈ [0, . . . , d]

The “redline” alarm system is termed as such in order to
indicate that a simple alarm level crossing is used to predict
a second more critical level-crossing. In this case two levels
are used, L as the failure threshold, and LA as the design
threshold. For reasons stated earlier, this alarm system would
be superior to a redline system that uses only a single level
L, even though predicted future process values are not used.

The “predictive” alarm system does incorporate the use of
predicted future process values, and defines the same envelope,
[−LA, LA], outside of which an alarm will be triggered to
forewarn of the impending level-crossing event. However, the
alarm definition differs from the redline method, such that
Ak = {|ŷk+d|k| > LA}. The predicted future process value
ŷk+d|k is found from standard Kalman filter Eqn. 14. The
probabilities necessary to compute Pd and Pfa based upon
Eqns. 33-34 for this alarm system are provided in Eqns. 60-
63.

P (Ak) = P (|ŷk+d|k| > LA) (60)

= 2Φ
(
−LA√
λa

)
(61)

P (Ck, Ak) = P (Ck)− P (A′k) + P (C ′k, A
′
k) (62)

P (C ′k, A
′
k) =

∫ L

−L

· · ·
∫ L

−L

∫ LA

−LA

N (z;µz,Σz)dz (63)

where

z
4
=

[
yd

ŷk+d|k

]
µz

4
=

[
µyd

µŷk+d|k

]
= 0d+1

Σz
4
=

[
Σyd

Λ>a
Λa λa

]
λa = CAd(PL

ss − P̂R
ss)(A>)dC>

Λa = CAd(PL
ss − P̂R

ss)O>

Note that λa and Λa have been derived with the aid of the
projection theorem. All of the alarm systems described thus
far will be compared using the area under the ROC curve
(AUC). This provides a performance metric that characterizes
the ability of each alarm system to accurately predict the level-
crossing event. The AUC has been deemed as a theoretically
valid metric for model selection and algorithmic comparison
[19]. The parameters of interest are LA for the redline and
predictive methods, and Pb for the optimal alarm system
and its approximations. Results will follow in the subsequent
section.

IV. EXAMPLE

The example to be used for the presentation of our results
has no specific application, but is generic and based upon the
same example used by Svensson [2]. The model parameters
are provided in Eqns. 64-67.

A =
[

0 1
−0.9 1.8

]
(64)

C =
[

0.5 1
]

(65)

Q =
[

0 0
0 1

]
(66)

R = 0.08 (67)

Unless otherwise stated, all cases to be compared will use a
threshold of L = 16 while varying d, or a prediction window
of d = 5 while varying L.

V. RESULTS & DISCUSSION

A comparison of the AUC for all alarm systems for a
prediction window of d = 5 while varying L ∈ [2.89, 17.83]
is shown in Fig. 6.

Fig. 6. AUC for all alarm systems a function of critical threshold, L

It is very clear that the optimal alarm system and its
approximations outperform the redline and predictive methods,
over the entire range of values shown for L, as expected.
Another important point to note is that the approximations
shown as dashed and dash-dotted blue lines, approximate the
exact optimal performance (in solid blue) quite well over most
of the range of values shown for L. However, as L → 0,
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the approximation breaks down as evidenced by the notable
divergence of AUC values. More careful analysis of the
reasons for this divergence, including its relation to the design
parameter Pb will be presented subsequently.

The ROC curves for the exact optimal alarm system were
computed using the Monte-Carlo style simulation described
earlier, and based upon a computationally efficient method
documented by Fawcett [20]. The corresponding AUC values
were computed using a trapezoidal integration method pre-
sented by Bradley [19]. The same simulation-based method
for generating ROC curve statistics and subsequently the AUC
value can be used for both the redline and predictive methods,
as shown in Fig. 6.

The ROC curve statistics for both approximations to the
optimal alarm system were generated by the use of Eqns.
33-34, as were the redline and predictive alarm systems.
The latter were verified by comparison to the corresponding
simulation-based AUC values, which matched quite well. The
use of Genz’s [17] numerical integration technique to compute
the probabilities given in Eqns. 33-34 are inherently based
upon Monte Carlo sampling. As such, a fixed number of
random samples must be chosen to guide the resolution for
all integrations. All of the results presented in this article use
3600 as the number of random samples for each integration
performed.

The ROC curve statistics in this case were computed in
a different manner than their simulation-based counterparts.
The design parameters of interest, LA or Pb were varied
over their feasible ranges in an adaptive pointwise manner in
order to construct ROC curves that targeted a fixed resolution.
However, the AUC values were still computed based upon
the same trapezoidal integration methods presented by Bradley
[19] as before.

It is necessary to ensure that the smoothness of the ROC
curves and AUC curve as a function of L constructed by using
these different methods are comparable. We appeal to use of
the standard error to reconcile the contrasting magnitudes of
error introduced. It is well known that the Hanley-McNeil
method [19] for estimating the standard error of the AUC
yields confidence bounds that are often too conservative and
excessively wide. As such, a bootstrap resampling method was
used to form confidence bounds for the AUC values resulting
from the application of Eqns. 33-34 to construct corresponding
ROC curves.

The resulting SE(AUC) values were then subsequently
used to guide establishing a partial termination criterion for
the ROC curves constructed via simulation. This provides
some assurance that the smoothness of the ROC and AUC
curves using the two different methods are comparable. An
additional termination criterion to complement the SE(AUC)
value criterion is to use the fixed resolution targeted for
construction of the ROC curve as before. Since we now
have some assurance of comparability of smoothness of the
AUC curve and resolution of the ROC curve, the issue of
computational complexity can be addressed. Table II provides
a summary of the empirically generated timing tests which
illustrate both off-line design-time and on-line run-time com-
putational complexity.

TABLE II
EMPIRICAL ANALYSIS OF COMPUTATIONAL COMPLEXITY

Mean Design-Time Mean Run-Time
Optimal 81 min 9.5 msec

Closed-form 48.5 sec 0.15 msec
Root-finding 57.3 sec 0.12 msec

The second column of Table II includes the mean design
time of both the redline and predictive alarm systems as well as
the optimal system or its approximations across all values of L.
Clearly, there is an order of magnitude greater computational
burden by using the simulation-based method of designing
alarm systems. Also, as expected the mean design-time for
the root-finding approximation exceeds that of the closed-form
approximation. As is clear by Fig. 6, there is no great loss
in accuracy by using these approximations except for small
values of L, where there is a perceptible, but perhaps still
negligible loss.

The third column of Table II provides the mean run-time
across all values of L, where it is evident again that the
computational requirements of the optimal alarm condition
exceed those of its approximations. In this case, the approxi-
mations involve only the time for limit checking of the type
governed by Eqn. 45. Thus the actual time for root-finding is
not included in the reported time for that approximation as
shown in Table II, which might account for the fact that it is
on par with the time for the closed form approximation. The
mean run-time for checking the exact optimal alarm condition
is based upon computing Eqns. 22-23, which naturally requires
more time than a simple limit check.

Note that we have summarized these empirical complexity
results in a tabular rather a graphical fashion, aggregating the
results by taking the mean over all values of L. The main
reason for doing so is that there is no perceptible trend across
L for any of the cases, with the possible exception of the
design time for both the closed form and root finding approx-
imations. For these exceptions, there is a general upward trend
of the design time (which again include design times for both
the redline and predictive alarm systems) as L increases. This
effect is intuitive because it becomes more difficult to construct
an ROC curve for low probability events (higher L) that have
the same target resolution as higher probability events (lower
L), when employing numerical integration.

It is also of interest to investigate the case when using a
fixed threshold of L = 16 while varying d ∈ [2, . . . , 24]. A
comparison of the AUC for all alarm systems for this case
is shown in Fig. 7. As is clear from Fig. 7 and corroborated
by Fig. 6, the optimal alarm system and its approximations
outperform the redline and predictive methods as before, this
time over the entire range of values shown for d. Furthermore,
as the prediction window increases, the predictive performance
as characterized by the AUC decreases for all alarm systems,
as is to be expected. A more detailed study on the limiting
effects of AUC as d → ∞ will be conducted in a sequel
article. Due to the use of a modestly large fixed threshold of
L = 16 however, there are no deleterious effects as a result



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-XX, NO. X, XXX 2010 12

Fig. 7. AUC for all alarm systems as a function of prediction window, d

of using approximations to the optimal alarm system as were
found when investigating the case when varying L to small
values.

Characterization of complexity as d increases is also of
interest. For the most part, the results are very similar to what
was presented in Table II for the case in which a prediction
window of d = 5 was used while varying L. Specifically, the
mean design time for the exact optimal alarm system (along
with redline and predictive alarm systems) was on par with
what was shown in Table II (74 min in lieu of 81 min).
However, the run-time in this case increases linearly as shown
in Fig. 8.

Fig. 8. Empirical run-time complexity as a function of prediction window

As the prediction window increases, the runtime for check-
ing the exact optimal alarm condition based upon computing

Eqns. 22-23 naturally requires more time for larger prediction
horizons. A key advantage in using approximations can there-
fore be realized. For both the closed form and root finding
approximations, the mean runtime is exactly on par with what
was presented in Table II for the case in which a prediction
window of d = 5 was used while varying L (averaging 0.11
msec). This is primarily due to the fact that, again, runtime
for the approximations involve only limit checking of the type
governed by Eqn. 45.

As for the design time of the approximations, they too
exhibit similar characteristics to what was presented and
discussed in conjunction with Table II. Specifically, there is a
general upward trend of the design time (which again include
design times for both the redline and predictive alarm systems)
as d increases. The mean design times are moderately higher
than what was presented in Table II (111 sec in lieu of 44.2
sec for the closed-form approximation and 129 sec in lieu of
55.2 sec for the root-finding approximation).

Now we return to addressing the issue of the limitations of
using the optimal alarm approximations, which break down
as L → 0. A notable divergence of AUC values was evident
in Fig. 6 under this condition. We may gain insight into the
reasons for this divergence by examining a candidate ROC
curve corresponding to a small value of L. In Fig. 9, we
can visually discern how both approximations break down as
related to the design parameter Pb for a small value of L ≈ 4
compared to a larger value of L ≈ 10.

There are many observations which can be made about
Fig. 9. The topmost panels of the figure illustrate ROC
curves corresponding to the different values of L. It is clear
that appealing to different methods of constructing the ROC
curves for the predictive and redline optimal alarm systems
yield almost identical results. This also serves to verify the
correctness and equivalence of using either method of ROC
curve construction for these alarm systems. They manifest a
reasonably similar level of resolution and smoothness due to
proper choice of termination criteria.

However, for the optimal alarm system in solid blue, the two
approximations shown as dashed and doted blue lines yield
ROC curves that are close but not identical to the exact optimal
result when L ≈ 4. On the top right panel when L ≈ 10,
the ROC curve approximations appear to be much closer than
on the top left panel where L ≈ 4. This substantiates a
previous observation made from Fig. 6, that as L decreases,
the approximation loses its accuracy. Furthermore, from the
previous section, Figs. 2 and 5 showed the optimal alarm
regions and their approximations to provide further evidence
of this loss of accuracy as L decreases. Those figures were
based upon the same example used to generate the results
presented in this section.

Further insight can be gained by inspecting the bottom two
panels of Fig. 9 as well. Note that the bottom panels show
the missed detection and false positive rates as a function
of Pb. The complement of the former is the true positive
rate, which along with the false positive rate, is used to
construct the ROC curves shown on the top panels. There are
a few important observations to be made in regards to these
bottom panels. First, the closed form approximations to the
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Fig. 9. ROC Curves and supporting statistics for all alarm systems, demonstrating negligible loss in accuracy for both approximations, and superiority of
root-finding approximation over closed-form approximation

optimal alarm system yield true and false positive rates that
are systematically underreported for both values of L shown.
This corroborates the mathematical observation made from
the previous section based upon the containment relationship
of the closed form approximation to the exact optimal alarm
region,

⋃d
j=1

⋃
i∈B A

i,j
k ⊆

⋃d
j=1A

j
k ⊆ Ak. For the smaller

value of L ≈ 4, this underreporting of the true and false
positive rates is even more striking than for the larger value
of L ≈ 10.

Furthermore, the root finding approximations to the optimal
alarm system yield true and false positive rates that are
overreported for both values of L shown. This is much more
clear for the smaller value of L ≈ 4 than for the larger value
of L ≈ 10. Hence, again this corroborates an inference made
from mathematical observations made in the previous section.
Recall the containment relationship between the root finding
and closed form approximation to the exact optimal alarm
region

⋃d
j=1A

j
k ⊆

⋃d
j=1 ΩAj

. It was suggested that the root
finding approximation strategy may be overly aggressive and
overshoot the performance of the exact optimal method under
certain circumstances. This is clear for the smaller value of
L ≈ 4.

There is one last important note about the root finding
approximations that is evident in the bottom two panels of
Fig. 9. The feasible range of values for Pb is identical to

the exact optimal alarm region of feasibility, which was also
proven mathematically in the previous section. The same is not
true for the closed form approximation, where the region of
feasibility is clearly different, and drastically so for the smaller
value of L ≈ 4.

Finally, it is evident that the underreporting of true and false
positive rates as demonstrated in the bottom two panels of Fig.
9 does not translate to the same visually striking disparities
for the ROC curves on the top two panels. These striking
disparities are obfuscated by the fact that the ROC curve is
a parametric function of the design parameter. As such, great
caution should be taken when using the ROC curve as the
sole basis for the design of alarm systems based up the given
approximations. Specific criteria for the design of an alarm
system based upon provisions for maximum allowable false
positive or missed detection rates may be given. With these
constraints, the supporting statistics as shown on the bottom
panels of Fig. 9 should be used to complement design based
upon the ROC curve.

VI. CONCLUSIONS & FUTURE WORK

In this article we have introduced a novel state-space
approach to the optimal alarm systems literature, and hope to
have also participated in the Kalman filter-based fault detection
literature discussion from a different theoretical angle as well.
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In doing so, we have demonstrated that there is a negligible
loss in overall accuracy when using approximations to the
theoretically optimal predictor for a stationary linear Gaussian
process, at the advantage of greatly reduced computational
complexity. The negligibility of the loss in accuracy was
demonstrated by comparing approximations to the optimal
level-crossing predictor to two competing methods which were
clearly outperformed over various ranges for both L and d.
However, care should be taken when designing alarm systems
for which level-crossing events are defined with small values
of L. Specifically, when using approximations, alarm system
design should be governed both by ROC curve analysis as well
as supporting false positive or missed detection rate statistics
parameterized by the design parameter Pb.

In future work, we will investigate limiting effects of
AUC for the closed-form approximation introduced in this
article. Specifically, limiting values for relevant statistics as
Pb, L, R, and d approach the extremities of their feasible
ranges will be examined. In doing so we hope to facilitate
a new and broader context for the design of an optimal
alarm system as related more to important engineering design
parameters. Furthermore, we aim to the investigate control
theoretic implications and ramifications of using the Kalman
filter in tandem with optimal alarm theory that naturally
follow. Here it will also be possible to gain further insight
into important engineering design considerations for both the
analysis and synthesis of algorithms used for mitigation of
potential failures from a practical standpoint. Relaxing some of
the inherent assumptions made in this article to the point where
non-parametric methods such as particle filtering may also
provide a natural vehicle for the extension of optimal alarm
theory to other practical research domains. Finally, extension
of this work to systems containing both multivariate inputs and
outputs is important, and has practical appeal to the field of
data mining. As such, scalability and complexity will remain
important considerations.
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APPENDIX I
THEOREMS AND LEMMAS

Theorem 1: From Eqns. 1-3 it is clear that successive output
values of the stationary stochastic process, yk admit a well-
defined jointly Gaussian probability density function. Also, the
level-crossing event, Ck, defined through Eqn. 4, represents
at least one exceedance outside of the threshold envelope
specified by [−L,L] of the process yk. Then the optimal level-
crossing predictor can be written as P (Ck|y0, . . . , yk) ≥ Pb,
where the condition for optimality is as specified and defined
by the use of the likelihood ratio criterion, shown in Eqn. 68
as a result of the Neyman-Pearson Lemma, shown by DeMaré
[5], and more explicitly by Lindgren [6],[21].

p(y0, . . . , yk|C
′

k)
p(y0, . . . , yk|Ck)

≤ λ (68)

Proof: Using Lemma 1 (which curiously appears very
much like Bayes’ rule, but can be distinguished from it due
to the use of both probabilities and density functions), we can
rewrite Eqn. 68 as follows:

p(y0, . . . , yk|C
′

k)
p(y0, . . . , yk|Ck)

≤ λ

P (C
′
k|y0,...,yk)(((((p(y0,...,yk)

P (C
′
k)

P (Ck|y0,...,yk)(((((p(y0,...,yk)
P (Ck)

≤ λ

P (C
′

k|y0, . . . , yk)P (Ck)
P (Ck|y0, . . . , yk)P (C ′

k)
≤ λ

However, due to the assumption of stationarity of the
process, the size of the alarm region, P (Ck), associated with
the uniformly most powerful test of the hypothesis H0 is by
definition a constant value. The hypothesis being tested in this
case is of the level-crossing event, Ck. Due to the size of alarm
region being fixed, we can define new constants as shown
below.

1− P (Ck|y0, . . . , yk)
P (Ck|y0, . . . , yk)

≤ λ
P (C

′

k)
P (Ck)

4
=γ

P (Ck|y0, . . . , yk) ≥ 1
1 + γ

4
=Pb

⇔ P (Ck|y0, . . . , yk) ≥ Pb

Lemma 1:

p(y0, . . . , yk|Ck) =
P (Ck|y0, . . . , yk)p(y0, . . . , yk)

P (Ck)
(69)

Proof:

p(y0, . . . , yk|Ck)
4
=

∫
· · ·
∫

ΩC
p(y0, . . . , yk+d)dyd

P (Ck)

=

∫
· · ·
∫

ΩC
p(y0, . . . , yk+d)dyd

p(y0, . . . , yk)

· p(y0, . . . , yk)
P (Ck)

=
P (Ck|y0, . . . , yk)p(y0, . . . , yk)

P (Ck)
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where by definition P (Ck|y0, . . . , yk)
4
=∫

· · ·
∫

ΩC

p(yk+1, . . . , yk+d|y0, . . . , yk)dyd

=

∫
· · ·
∫

ΩC
p(y0, . . . , yk+d)dyd

p(y0, . . . , yk)

and ΩC = {yd ∈ Rd : Ck
4
=

d⋃
j=1

Sk+j}

Lemma 2:
Pbd

= max
j
Pbj

m
Vk+j+1|k > Vk+j|k, ∀j ∈ [1, . . . , d]

Proof: The posited claim is true iff

Pb1 < . . . < Pbj
< Pbj+1 < . . . < Pbd

More compactly,

Pbj
< Pbj+1 , ∀j ∈ [1, . . . , d]

The following chain of inequalities is true ∀j ∈ [1, . . . , d].

Pbj
< Pbj+1

Φ−1(Pbj
) < Φ−1(Pbj+1)(

−L
Φ−1(Pbj+1)

)2

>

(
−L

Φ−1(Pbj
)

)2

Vk+j+1|k > Vk+j|k

Lemma 3:
PR

ss � P̂R
ss

⇓
Vk+j+1|k > Vk+j|k, ∀j ∈ [1, . . . , d]

Proof:

PR
ss � P̂R

ss

PR
ss − P̂R

ss � 0
x>(PR

ss − P̂R
ss)x ≥ 0, ∀x ∈ Rn

x>(P̂R
ss + Q−PR

ss)x ≤ x>Qx, ∀x ∈ Rn

By using the steady-state version of Eqn. 12 and the discrete
algebraic Lyapunov equation we now have the following, ∀x ∈
Rn.

x>(P̂R
ss −AP̂R

ssA
>)x ≤ x>(PL

ss −APL
ssA

>)x
x>(P̂R

ss −PL
ss)x ≤ x>A(P̂R

ss −PL
ss)A>x

Let x>
4
=CAj , ∀j ∈ [1, . . . , d], and add CPL

ssC
> + R

to both sides of the inequality above. It then follows that the
following relations hold true, ∀j ∈ [1, . . . , d].

CPk+j|kC> +R ≤ CPk+j+1|kC> +R

Vk+j+1|k > Vk+j|k

Lemma 4: R > 0⇒ PR
ss � P̂R

ss

Proof: It is true that

R > 0⇔ R−1 > 0

Under the condition that C ∈ R1×n, where n > 1, with no
rank condition on C, Lemma 5 can be used to support the
following implication:

R−1 > 0⇒ CTR−1C � 0

Also, given the matrix inversion lemma applied to Eqn. 19
shown below, the subsequent series of equations proves that
PR

ss � P̂R
ss.

P̂R
ss = PR

ss −PR
ssC

T (CPR
ssC

T +R)−1CPR
ss

M.I.L=
[
(PR

ss)−1 + CTR−1C
]−1

∴ (P̂R
ss)−1 = (PR

ss)−1 + CTR−1C

CTR−1C � 0
(P̂R

ss)−1 − (PR
ss)−1 � 0

(P̂R
ss)−1 � (PR

ss)−1

PR
ss � P̂R

ss

Lemma 5: Given L ∈ Rn×d, for which d > n and there
exists no rank condition on L: M � 0⇒ LT ML � 0

Proof:

M � 0
∴ xT Mx ≥ 0,∀x ∈ Rn

x
4
= Ly

Null(L)
4
= {y : Ly = 0}

dimNull(L) ≥ d− n > 0
∃y : Ly = 0

yT LT MLy ≥ 0,∀x ∈ Rn

LT ML � 0
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