Air Traffic Sector Configuration Change Frequency

Gano Chatterji and Michael Drew

University of California, Santa Cruz
NASA Ames Research Center
Moffett Field, CA 94035
Sector Change Frequency
Main Points

• Sectors created with traffic from good-weather days can be used on other good-weather days.

• Sector configurations created for shorter periods (two-hours) can be used for longer periods (six to 12 hours).

• One to three sector configurations are adequate for a day.
Outline

• Air Traffic Dataset
• Robust Sectorization Method
• Validation Results
• Conclusions
• Future Work
Air Traffic Dataset (206 Days 2007)

The diagram illustrates the relationship between total delay (minutes) and traffic volume (number of departures) for a dataset of 206 days in 2007. The plot shows three categories: High, Medium, and Low, indicating different levels of delay and traffic volume.
Air Traffic Dataset

20 high-volume good-weather days from 2007
 • 10 days in training set
 • 10 days in test set
Air Traffic Dataset

Total delay (minutes)

Traffic volume (# departures) \(\times 10^4 \)

Training day

Test day
Training Set Data Bounds

- Upper Bound
- Average
- Lower Bound

Center-count (# aircraft)

Central Standard Time (hours)
• Airspace discretized with hexagonal tiles.

• Mixed Integer Linear Programming used for grouping tiles into sectors.

• Boundary smoothing algorithm used for final sector boundaries.
Robust Sectorization Method

1. Break 24-hours traffic data from training set into two-hour periods.

2. Create nine sector configurations for each two-hour period by varying number of sectors.

3. Create nine histograms using traffic data and sector configurations for each two-hour period.

4. Select one configuration for each two-hour period based on histograms.

5. Select few sector configurations for the entire day.
Sector Configuration Selection

Histogram of traffic counts during 6:00 – 8:00 pm Central Standard Time with airspace partitioned into two sectors based on 10 training days of traffic.
Sector Configuration Selection

- 99.9 percentile value is 2344.

- Traffic count corresponding to 2344 is 78 aircraft.
Sector Configuration (18 Sectors)

Histogram of traffic counts during 6:00 – 8:00 pm Central Standard Time with airspace partitioned into 18 sectors based on 10 training days of traffic.
Sector Configuration Selection

99.9 percentile traffic counts during 6:00 – 8:00 pm Central Standard Time with nine different configurations.
One Configuration for Each Two-Hour

Central Standard Time (hours)

Number of sectors

6pm – 12am | 12am – 6am | 6am – 6pm
Select Few Configurations

Three configurations:
- 6:00 PM – 8:00 PM
- 4:00 AM – 6:00 AM
- 10:00 AM – 12:00 Noon

Number of sectors

Central Standard Time (hours)
Validation Method

1. Create histograms using traffic data from test set days and selected sector configurations.

2. Determine 99.9 percentile traffic counts from the histograms.

3. Check if the 99.9 percentile traffic counts are below the threshold value used in the design.
Validation Results (6:00 PM – 12:00 AM)

Histogram of traffic counts with 10 test set days and 12 sectors.
Validation Results (12:00 AM – 6:00 AM)

Histogram of traffic counts with 10 test set days and 6 sectors.
Validation Results (6:00 AM – 6:00 PM)

Histogram of traffic counts with 10 test set days and 16 sectors.

Frequency (# instances)

Traffic count (# aircraft)

17 aircraft
Validation Results (24 hours)

Histogram of traffic counts with 10 test set days and 16 sectors.
Summary Validation Results

<table>
<thead>
<tr>
<th>Time Interval</th>
<th>6 PM – 12 AM</th>
<th>12 AM – 6 AM</th>
<th>6 AM – 6 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Sectors</td>
<td>12</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>Training Days</td>
<td>19</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>Test Days</td>
<td>19</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>Test Days</td>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Design threshold 20 aircraft.
Conclusions

• Sectors created with 10 training days of traffic could be used with 10 test days of traffic.

• Sector configurations created for shorter periods (two-hours) could be used for longer periods (six to 12 hours).

• One to three sector configurations were adequate for a day.
Future Work

- Extend the study to other centers.
- Analyze with traffic from high-volume bad-weather days.
- Determine the best time for changing configuration.