Process Analysis Tradeoff Tool (PATT).
Typical inputs to PATT models include
industry-average values of product size
(expressed as number of lines of code),
productivity (number of lines of code per
hour), and number of defects per source
line of code. The user provides the num-
ber of resources, the overall percent of ef-
fort that should be allocated to each
process step, and the number of desired
staff members for each step. The output
of PATT includes the size of the product,
a measure of effort, a measure of rework
effort, the duration of the entire process,

and the numbers of injected, detected,
and corrected defects as well as a number
of other interesting features.

In the development of the present
model, steps were added to the IEEE
12207 waterfall process, and this model
and its implementing software were
made to run repeatedly through the se-
quence of steps, each repetition repre-
senting an iteration in a spiral process.
Because the IEEE 12207 model is
founded on a waterfall paradigm, it en-
ables direct comparison of spiral and
waterfall processes. The model can be

used throughout a software-develop-
ment project to analyze the project as
more information becomes available.
For instance, data from early iterations
can be used as inputs to the model, and
the model can be used to estimate the
time and cost of carrying the project to
completion.

This work was done by Carolyn Mizell of
Kennedy Space Center, Charles Curley of
ASRC Aerospace Corp., and Umanath
Nayak of Portland State University. Further
information is contained in a TSP (see page
1). KSC-13094

¢3 Algorithm That Synthesizes Other Algorithms for Hashing

A synthesized algorithm is guaranteed to be executable in constant time.
NASA's Jet Propulsion Laboratory, Pasadena, California

An algorithm that includes a collec-
tion of several subalgorithms has been
devised as a means of synthesizing still
other algorithms (which could include
computer code) that utilize hashing to
determine whether an element (typi-
cally, a number or other datum) is a
member of a set (typically, a list of num-
bers). Each subalgorithm synthesizes an
algorithm (e.g., a block of code) that
maps a static set of key hashes to a some-
what linear monotonically increasing se-
quence of integers. The goal in formu-
lating this mapping is to cause the
length of the sequence thus generated
to be as close as practicable to the origi-
nal length of the set and thus to mini-
mize gaps between the elements.

The advantage of the approach em-
bodied in this algorithm is that it com-
pletely avoids the traditional approach

of hash-key look-ups that involve either
secondary hash generation and look-up
or further searching of a hash table for a
desired key in the event of collisions.
This algorithm guarantees that it will
never be necessary to perform a search
or to generate a secondary key in order
to determine whether an element is a
member of a set. This algorithm fur-
ther guarantees that any algorithm that
it synthesizes can be executed in con-
stant time. To enforce these guaran-
tees, the subalgorithms are formulated
to employ a set of techniques, each of
which works very effectively covering a
certain class of hash-key values. These
subalgorithms are of two types, summa-
rized as follows:
¢ Given a list of numbers, try to find one
or more solutions in which, if each
number is shifted to the right by a con-

stant number of bits and then masked
with a rotating mask that isolates a set
of bits, a unique number is thereby
generated. In a variant of the forego-
ing procedure, omit the masking. Try
various combinations of shifting, mask-
ing, and/or offsets until the solutions
are found. From the set of solutions,
select the one that provides the great-
est compression for the representation
and is executable in the minimum
amount of time.

¢ Given a list of numbers, try to find one
or more solutions in which, if each
number is compressed by use of the

modulo function by some value, then a

unique value is generated.

This work was done by Mark James for Cal-
tech for NASA’s Jet Propulsion Laboratory.
Further information is contained in a TSP
(see page 1). NPO-45175

¢3 Algorithms for High-Speed Noninvasive Eye-Tracking System
One of the algorithms enables tracking at a frame rate of several kilohertz.
NASA’s Jet Propulsion Laboratory, Pasadena, California

Two image-data-processing algo-
rithms are essential to the successful op-
eration of a system of electronic hard-
ware and software that noninvasively
tracks the direction of a person’s gaze in
real time. The system was described in
“High-Speed Noninvasive Eye-Tracking
System” (NPO-30700) NASA Tech Briefs,
Vol. 31, No. 8 (August 2007), page 51.

To recapitulate from the cited article:
Like prior commercial noninvasive eye-

34

tracking systems, this system is based on
(1) illumination of an eye by a low-
power infrared light-emitting diode
(LED); (2) acquisition of video images
of the pupil, iris, and cornea in the re-
flected infrared light; (3) digitization of
the images; and (4) processing the digi-
tal image data to determine the direc-
tion of gaze from the centroids of the
pupil and cornea in the images. Most of
the prior commercial noninvasive eye-

tracking systems rely on standard video
cameras, which operate at frame rates of
about 30 Hz. Such systems are limited to
slow, full-frame operation.

The video camera in the present sys-
tem includes a charge-coupled-device
(CCD) image detector plus electronic cir-
cuitry capable of implementing an ad-
vanced control scheme that effects read-
out from a small region of interest (ROI),
or subwindow, of the full image. Inas-

NASA Tech Briefs, July 2010



much as the image features of interest
(the cornea and pupil) typically oc-
cupy a small part of the camera frame,
this ROI capability can be exploited to
determine the direction of gaze at a
high frame rate by reading out from
the ROI that contains the cornea and
pupil (but not from the rest of the
image) repeatedly.

One of the present algorithms ex-
ploits the ROI capability. The algo-
rithm takes horizontal row slices and
takes advantage of the symmetry of
the pupil and cornea circles and of
the gray-scale contrasts of the pupil

and cornea with respect to other
parts of the eye. The algorithm deter-
mines which horizontal image slices
contain the pupil and cornea, and, on
each valid slice, the end coordinates of
the pupil and cornea. Information from
multiple slices is then combined to ro-
bustly locate the centroids of the pupil
and cornea images.

The other of the two present algo-
rithms is a modified version of an older
algorithm for estimating the direction
of gaze from the centroids of the pupil
and cornea. The modification lies in the
use of the coordinates of the centroids,
rather than differences between the co-
ordinates of the centroids, in a gaze-

mapping equation. The equation lo-
cates a gaze point, defined as the inter-
section of the gaze axis with a surface of
interest, which is typically a computer
display screen (see figure). The ex-
pected advantage of the modification is
to make the gaze computation less de-
pendent on some simplifying assump-
tions that are sometimes not accurate.

This work was done by Ashit Talukder,
John-Michael Morookian, and James Lambert
of Caltech for NASA’s Jet Propulsion Labora-
tory. Further information is contained in a
TSP (see page 1).

The Vector Between the Centroids of pupil and corneal reflections is computed and then used to compute
the direction of gaze and the gaze point.

In accordance with Public Law 96-517,
the contractor has elected to retain title to this
invention. Inquiries concerning rights for its
commercial use should be addressed to:

Innovative Technology Assets Management

JPL

Mail Stop 202-233

4800 Oak Grove Drive

Pasadena, CA 91109-8099

L-mail: iaoffice@jpl.nasa.gov

Refer to NPO-30699, volume and number
of this NASA Tech Briefs issue, and the
page number.

¢» Adapting ASPEN for Orbital Express

Declarative modeling brings efficiency to encoded procedures and allows for guarantees on

resource usage and time usage.

NASA’s Jet Propulsion Laboratory, Pasadena, California

By studying the Orbital Express mis-
sion, modeling the spacecraft and sce-
narios, and testing the system, a tech-
nique has been developed that uses
recursive decomposition to represent
procedural actions declaratively, schema-
level uncertainty reasoning to make un-
certainty reasoning tractable, and light-
weight, natural language processing to
automatically parse procedures to pro-
duce declarative models.

Schema-level uncertainty reasoning
has, at its core, the basic assumption that
certain variables are uncertain, but not
independent. Once any are known, then
the others become known. This is im-
portant where a variable is uncertain for
an action and many actions of the same
type exist in the plan. For example, if
the number of retries to purge pump
lines was unknown (but bounded), and
each attempt required a sub-plan, then,

NASA Tech Briefs, July 2010

once the correct number of attempts re-
quired for a purge was known, it would
likely be the same for all subsequent
purges. This greatly reduces the space of
plans that needs to be searched to en-
sure that all executions are feasible.

To accommodate changing scenario
procedures, each is ingested into a tabu-
lar format in temporal order, and a sim-
ple natural-language parser is used to
read each step and to derive the impact
of that step on memory, power, and com-
munications. Then an ASPEN (Activity
Scheduling and Planning Environment)
model is produced based on this analy-
sis. The model is tested and further
changed by hand, if necessary, to reflect
the actual procedure. This results in a
great savings of time used for modeling
procedures.

Many processes that need to be mod-
eled in ASPEN (a declarative system)

are, in fact, procedural. ASPEN includes
the ability to model activities in a hierar-
chical fashion, but this representation
breaks down if there is a practically un-
bounded number of sub-activities and
decomposition topologies. However, if
recursive decomposition is allowed,
HTN-like encodings are enabled to rep-
resent most procedural phenomena.
For example, if a switch requires a vari-
able (but known at the time of the at-
tempt) number of attempts to switch on,
one can recurse on the number of re-
maining switch attempts and decompose
into either the same switching activity
with one less required attempt, or not de-
compose at all (or decompose into a
dummy task), resulting in the end of the
decomposition. In fact, any bounded
procedural behavior can be modeled
using recursive decompositions assum-
ing that the variables impinging the dis-

35



