
jFuzz: A Concolic Whitebox Fuzzer for Java
Karthick Jayaraman
Syracuse University
kjayaram@syr.edu

David Harvison, Vijay Ganesh, Adam Kieżun∗

MIT
{dharv720, vganesh, akiezun}@mit.edu

Abstract

We present jFuzz, a automatic testing tool for Java programs. jFuzz is a concolic whitebox
fuzzer, built on the NASA Java PathFinder, an explicit-state Java model checker, and a framework
for developing reliability and analysis tools for Java. Starting from a seed input, jFuzz automatically
and systematically generates inputs that exercise new program paths. jFuzz uses a combination of
concrete and symbolic execution, and constraint solving.

Time spent on solving constraints can be significant. We implemented several well-known op-
timizations and name-independent caching, which aggressively normalizes the constraints to reduce
the number of calls to the constraint solver. We present preliminary results due to the optimizations,
and demonstrate the effectiveness of jFuzz in creating good test inputs. The source code of jFuzz is
available as part of the NASA Java PathFinder.

jFuzz is intended to be a research testbed for investigating new testing and analysis techniques
based on concrete and symbolic execution. The source code of jFuzz is available as part of the NASA
Java PathFinder.

1 Introduction

We present jFuzz, a concolic whitebox fuzzer for Java built on top of the NASA Java PathFinder
(JPF) [4]. jFuzz takes a Java program and a set of inputs for that program. For each input, jFuzz
creates new inputs that are modified (or fuzzed) versions of the input and exercise new control paths in
the program.

jFuzz (similarly to other concolic whitebox fuzz testing tools [7, 11]) executes the program both con-
cretely and symbolically [7, 9, 14]. jFuzz converts the symbolic execution into a logical formula called
a path constraint. jFuzz systematically negates every conditional along the execution path, conjoins the
conditional with the corresponding path constraint, and queries a constraint solver. The solution, if one
exists, is in terms of values for parts of the input. jFuzz uses the solution to fuzz (modify) these parts to
obtain a new input. The appropriately fuzzed inputs can thus explore previously unexamined branches
along the execution path. Thus, jFuzz can systematically explore every control-flow path.

The time spent in constraint solving can be significant [11], because (i) constraints may be hard to
solve, or (ii) the solver may be repeatedly solving a large number of very similar problems. We im-
plemented well-known optimizations such as constraint caching, constraint independence and subsump-
tion [9, 11, 14] that seek to simplify the interaction of the testing tool with the solver. In addition, we
also implemented name-independent caching, a new optimization that aggressively normalizes path con-
straints generated during concolic execution. This technique detects equivalence between two constraints
modulo variable renaming. Thus, jFuzz caches solutions to already-solved constraints, and whenever
jFuzz detects an equivalence between as yet unsolved constraint and an already-solved constraint, the
cached solution is denormalized and reused, thus reducing the number of calls to the solver.

Contributions

• Concolic execution mode in JPF: Concolic execution combines concrete and symbolic execution.
Having this mode implemented in a reliable open-source framework such as JPF will facilitate
further research in systematic software testing. The source code of the concolic execution mode is
available as part of JPF.

E. Denney, D. Giannakopoulou, C.S. Păsăreanu (eds.); The First NASA Formal Methods Symposium, pp. 121-125
∗To whom correspondence should be addressed.

121

jFuzz: A Concolic Whitebox Fuzzer for Java Jayaraman, Harvison, Ganesh, and Kieżun

[1] public static int modtenadd(int x, Int y) {

[2] int z;

[3] if(x >= 10 || y >=10)
[4] {
[5] throw new InvalidArgumentException();
[6] }

[7] z = x + y;

[8] if(z >= 10)
[9] {
[10] z = z - 10;
[11] }
[12] return z;
[13] }

(a) A Java function that performs modulo 10 addition

Fuzzed Inputs

Input
Java Program

Seed Inputs

Fuzzer

JPF
Concolic
Execution

Mode

Input Java Program
and Program Inputs

Path Constraints

Constraint
Solver

Negated
Path Constraints

Solutions

jFuzz

(b) jFuzz architecture. Given the program under test and seed
inputs, jFuzz generates new inputs by modifying (fuzzing) the
seed inputs so that each new input executes a unique control-flow
path.

• jFuzz: jFuzz is a concolic whitebox fuzzer for Java, built on top of the JPF’s concolic execution
mode (which can be used independently of jFuzz). jFuzz is intended as a research vehicle for
development of smart fuzzing techniques. The source code of the concolic execution mode is
available as part of JPF.

• Experimental Evaluation: We present preliminary experimental results. We evaluated the ef-
ficiency of the concolic execution mode, effectiveness jFuzz’s, and the performance of name-
independent caching. In our experiments, the concolic mode added only 15% overhead above
normal JPF execution. Tests created by jFuzz achieved slightly higher coverage than random
fuzzing (18% vs. 15% line coverage). The constraint optimizations that we added reduced the
time spent in constraint solving that ranged between 25%-30% to 1%.

2 Example

We illustrate whitebox fuzzing on an example (Figure 1(a)) Java function that performs modulo-10 ad-
dition on two integers. To start whitebox fuzzing, we provide the program and an initial concrete input
x = 3,y = 4 to the fuzzer. Concolic execution produces a result of z = 7 and symbolic constraints
(x < 10)

∧
(y < 10)

∧
(x+ y < 10).

Now, the whitebox fuzzer sequentially inverts each constraint and produces three sets of constraints.

1. (x < 10)
∧

(y < 10)
∧

(x+ y >= 10)

2. (x < 10)
∧

(y >= 10)

3. (x >= 10)

The whitebox fuzzer solves these constraints using a constraint solver and obtains three new inputs
(6,6),(3,11),(11,3). Each of the three generated inputs exercises a distinct execution path in the pro-
gram. The whitebox fuzzer repeats the process with the new inputs for either a pre-specified number of
executions or time duration.

122

jFuzz: A Concolic Whitebox Fuzzer for Java Jayaraman, Harvison, Ganesh, and Kieżun

3 jFuzz Overview

jFuzz is built on top of the NASA Java PathFinder framework [4]. The Java PathFinder is an explicit state
software model checker for Java bytecode, that also provides hooks for a variety of analysis techniques.
Figure 1(b) illustrates the architecture of jFuzz. jFuzz works in three steps:

1. Concolic Execution: jFuzz executes the subject program in the concolic-execution mode on the
seed input, and collects the path constraint. Each byte in the seed inputs is marked symbolic. The
path constraint is a logical formula that describes the set of concrete inputs that would execute the same
control-flow path as the seed input.

2. Constraint Solving: Once the concolic execution has completed, jFuzz systematically negates the
conditionals encountered on the executed path. jFuzz conjoins the corresponding path constraint with
the negated conditional, to obtain a new constraint query for the solver. The solution is in terms of input
bytes, i.e., describes the values of the input bytes.

3. Fuzzing: For each solution, jFuzz changes the corresponding input bytes of the initial seed input to
obtain a new fuzzed input for the program under test.

3.1 Concolic Execution Mode in Java PathFinder

One of the contributions of this paper is the concolic execution mode in JPF. This mode can be used inde-
pendently of jFuzz, to construct new research tools that employ concolic techniques. The concolic mode
is inspired by the symbolic execution mode already available in Java PathFinder [12]. JPF provides
the facility to associate attributes with runtime values. Concolic (and symbolic) execution mode uses
attributes to associate symbolic constraints with runtime values, and extends the Java bytecode instruc-
tions to update the symbolic constraints during concolic execution. The differences between concolic
and symbolic mode are:

• Concolic mode preserves concrete values for runtime values, while symbolic mode loses them.
• Concolic mode does not fork and backtrack the execution. This improves performance because it

does not require state matching. Debugging concolic execution is also much simpler.

3.2 Name-Independent Caching
 Path Condition 1:
 [1] a + b < 10
 [2] b > 6
 [3] a < 3
 [4] a != 2

 Path Condition 2:
 [1] x + y < 10
 [2] y > 6
 [3] x < 3
 [4] x != 2

Figure 1: Two path conditions that are equivalent
under name-independent caching.

A key issue with whitebox fuzzing is that the cu-
mulative time spent in constraint solving can be a
signification percentage of the time taken for pro-
ducing new fuzzed inputs [11].

In jFuzz, we implemented several well-
known optimizations such as constraint caching,
constraint independence and subsumption [9,
11, 14]. Additionally, we implemented name-
independent caching, an optimization that normalizes path constraints generated during concolic execu-
tion. This technique detects equivalence between two constraints modulo variable renaming. Thus, solu-
tions to already-solved constraints are cached, and whenever equivalences between as yet unsolved con-
straints and already-solved constraints are detected, the cached solutions are denormalized and reused,
resulting in reduced number of calls to the solver. For example, consider the two path constraints in
Figure 1. The name-independent cache detects that the two path constraints are structurally equivalence

123

jFuzz: A Concolic Whitebox Fuzzer for Java Jayaraman, Harvison, Ganesh, and Kieżun

coverage
mode inputs line block
Seed inputs 15 13% 12%
Random fuzzing 300 14% 13%
jFuzz 264 18% 17%

(a) Coverage results for 1-hour test-runs.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 20 40 60 80 100 120

N
um

be
r

of
 In

pu
t F

ile
s

G
en

er
at

ed

Time (minutes)

No Caching
Name Independent Cache

(b) Number of input files generated with and without
name-independent caching in a given amount of time.

Figure 2: Experimental Results

and passes only one to the constraint solver. Without this optimization, a fuzzing tool redundantly calls
the constraint solver for both constraints.

4 Experimental Evaluation

We evaluated the efficiency of the concolic execution mode, jFuzz’s effectiveness, and the performance
of name-independent caching.

Experimental Setup. As a subject program, we used SAT4J [5], a Boolean SAT solver (19419 lines of
Java code). We obtained 15 seed inputs from the SAT competition website [3] All experiments were per-
formed on an Intel Centrino Duo 1.4 GHz processor with 2GB RAM running the GNU/Linux operating
system (Ubuntu version 8.04). Each testing technique (or testing mode) was given 1 hour testing time.
We measured line and block coverage using the Emma tool [2]. The time required by the random fuzzer
and jFuzz to construct their test suites is included in the testing time. Consequently, both the random
fuzzer and jFuzz had lower timeout per test.

Results. The concolic mode adds only modest overhead to JPF. We compared the execution times
of 18 test programs when executed using the JPF concolic execution mode, Java PathFinder, and the Java
virtual machine. Compared to the Java virtual machine, Java PathFinder (in simulation mode) has an
average slow down of 12×, while the concolic execution mode has an average slow down of 14×.

jFuzz creates effective tests. Inputs generated by jFuzz achieve better coverage than randomly gen-
erated inputs and markedly increase coverage from seed inputs (Table 2(a)).

The optimizations are effective. The proportion of time spent in constraint solving ranged between
25% to 30% without optimizations, compared to 1% with the optimizations. Also, the caching increased
the number of generated files, per unit of time, by 16% (Figure 2(b)). The optimizations reduced the
number of redundant calls to the constraint solver and enables jFuzz to spend more time on generating
new input files. The cache hit-rate, depending on the example, ranged between 30% and 50%.

5 Related Work

A number of testing tool are based on combined concrete and symbolic execution [1, 6, 7, 8, 9, 11, 13,
14]. However, as far as we know, only CREST [1] (a tool for testing C programs) is publicly avail-

124

jFuzz: A Concolic Whitebox Fuzzer for Java Jayaraman, Harvison, Ganesh, and Kieżun

able. Furthermore, most of these tools are end-user tools, and thus not necessarily extensible by other
researchers.

jFuzz builds on top of extensible and mature technology, Java PathFinder explicit-state software
model checker and dynamic-analysis framework. We believe that jFuzz will provide an extensible plat-
form for researchers to try new concolic-based reliability techniques.

jFuzz’s name-independent caching is a simple yet effective technique to reduce the cumulative time
spent in constraint solver. Testing tools use constraint caching [7, 8, 10, 11], and other optimizations
such as syntactic subsumption [11], and unrelated constraint elimination [9, 14]. However, as far as we
know, the name-independent caching scheme that we implemented in jFuzz has not been used before in
systematic testing.

jFuzz represents work in progress, and our results are preliminary. We plan to use jFuzz to test many
larger Java programs. We believe that other researchers will find jFuzz useful as a testbed to try new
concolic-based techniques.

Acknowledgments

We thank Corina Pǎsǎreanu and Peter Mehlitz from the JPF team for their assistance with the develop-
ment of the concolic mode and in getting jFuzz included in Java Path Finder.

References
[1] CREST: automatic test generation tool for c. http://code.google.com/p/crest.
[2] EMMA: A Java code coverage tool. http://emma.sourceforge.net/.
[3] The international SAT competitions web page. http://www.satcompetition.org/.
[4] NASA Java PathFinder. http://javapathfinder.sourceforge.net.
[5] SAT4J: A Java sat solver. http://www.sat4j.org/.
[6] Shay Artzi, Adam Kieżun, Julian Dolby, Frank Tip, Danny Dig, Amit Paradkar, and Michael Ernst. Finding

bugs in dynamic Web applications. In ISSTA, 2008.
[7] Christian Cadar, Vijay Ganesh, Peter M. Pawlowski, David Dill, and Dawson R. Engler. EXE: automatically

generating inputs of death. In CCS, 2006.
[8] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: Unassisted and automatic generation of high-

coverage tests for complex systems programs. In OSDI, 2008.
[9] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed automated random testing. In PLDI,

2005.
[10] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. Active property checking. In EMSOFT, 2008.
[11] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. Automated whitebox fuzz testing. In NDSS,

2008.
[12] Corina S. Pǎsǎreanu, Peter C. Mehlitz, David H. Bushnell, Karen Gundy-Burlet, Michael Lowry, Suzette

Person, and Mark Pape. Combining unit-level symbolic execution and system-level concrete execution for
testing NASA software. In ISSTA, 2008.

[13] K. Sen and G. Agha. CUTE and jCUTE: Concolic unit testing and explicit path model-checking tools.
LECTURE NOTES IN COMPUTER SCIENCE, 4144:419, 2006.

[14] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: A concolic unit testing engine for C. In FSE, 2005.

125

