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Abstract

This is a progress report on applying formal methods in the context of building an automated
diagnosis and recovery system for Autosub 6000, an Autonomous Underwater Vehicle (AUV). The
diagnosis task involves building abstract models of the control system of the AUV. The diagnosis
engine is based on Livingstone 2, a model-based diagnoser originally built for aerospace applications.
Large parts of the diagnosis model can be built without concrete knowledge about each mission, but
actual mission scripts and configuration parameters that carry important information for diagnosis are
changed for every mission. Thus we use formal methods for generating the mission control part of
the diagnosis model automatically from the mission script and perform a number of invariant checks
to validate the configuration. After the diagnosis model is augmented with the generated mission
control component model, it needs to be validated using verification techniques.

1 Introduction

There are vast areas of the Earth’s seabed that have yet to be explored or studied. Recent discoveries of
hot hydrothermal vents deep on mid oceanic ridges have revealed whole new ecosystems, many existing
independently of energy from the sun. However the global extent and variety of these features is not
known. The extensive and efficient exploration of these areas by the oceanographic science community is
one example of the use of Autonomous Underwater Vehicles (AUVs). These vehicles are able to operate
independently for several days with future developments extending this time span to several months.
The Autosub 6000 project of the National Oceanography Centre in Southampton is a continuation of a
successful series of projects, that takes the Autosub AUV to depths of up to 6000 m.

During more than 400 previous scientific missions, the predecessors of Autosub 6000 have suffered
both near losses and one actual loss. In two cases the AUV has been recovered with a remotely operated
underwater vehicle at significant expense. In once case the Autosub2 AUV was permantly lost 17Km
under the 200m thick Fimbul Ice Shelf in the Antarctic. There are numerous cases of missions that have
had to be aborted but where recovery was possible by the operations team and the attending support ship.
Based on the experience of operating the Autosub AUVs a project to apply automated diagnosis and
recovery methods for Autosub 6000 was initiated with the primary focus being on the detection of faults
that may result in collisions with the seabed. Collision with the seabed is undesirable because it is has
been demonstrated to have been one of the primary causes of vehicle loss. The approach we are taking
is to use the Livingstone 2 (L2) diagnosis engine on Autosub. L2 is a discrete, model-based diagnosis
system that is compositional, allowing models of individual comonents to be plugged together relatively
easy to build larger models. We describe L2 in more detail in the next section.

Autosub 6000 [5] provides a configurable payload space of 0.5 m3 that enables scientists to explore
deep water with a range of sensor equipment. Typical missions have included temperature and salinity
profiling, water sampling, seafloor mapping, seafloor photography and chemical analyses in areas rang-
ing from tropical waters around Bermuda to under ice in the Arctic and Antarctic. The AUV needs to be
reconfigured for each mission, meaning that the sensory equipment may be replaced and depth, position,
mission control and abort parameters are changed. Furthermore, for each mission a custom mission script
that details the waypoints which the AUV must pass and the actions to be performed must be produced.
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Figure 1: Architecture of the control system of Autosub 6000.

The fact that Autosub is frequently reconfigured between missions means that it is fundamentally
different from the space missions that L2 has previously been used for. As well as changes to the
payload of the vehicle, each mission has its own configuration script that sets a number of parameters
such as maximum depth and limits of the dive plane angles, and the activities carried out will also vary
from mission to mission. This leads to an important challenge: How can we update the diagnosis model
quickly and correctly between missions? We believe that formal methods provide part of the solution to
this challenge by allowing the mission script and configuration script to be sanity checked before use and
allowing diagnosis models to be automatically generated from the scripts that can be integrated with the
hand-built models of the components.

Generating parts of the diagnosis model automatically either requires proving the model generation
correct or applying some verification techniques to the resultant model to raise the level of confidence
that integration of the automatically created components with the rest of the model will be reliable.

It has been suggested by Kurien and R-Moreno [3] that the risks and costs of applying model-based
diagnosis outweigh the expected value. We believe that while this may be true for space missions,
applications such as Autosub are much more compelling domains for model-based diagnosis and that
the application of formal methods for automatic generation and validation of the diagnosis model can
significantly improve the diagnostic power of the system.

2 Automated diagnosis for Autosub 6000

Our diagnosis approach is based on Livingstone 2 [2, 9], a model-based diagnosis tool developed at
NASA’s Ames Research Center that has been deployed in several applications. Livingstone works using
a discrete event model of the system, and a constraint solver to detect inconsistencies between the model
and the system and finds explanations for them.

A Livingstone model is composed of components (which may map onto physical components), con-
nections between components and constraints. A component is specified by variables, with a set of
discrete, qualitative values for each variable in its local nominal and failure modes. For each mode, the
model specifies the components’ behavior and transitions.

Most of the subsystems and components of the Autosub AUV will be modelled ahead of time, i.e.
before the AUV is sent to carry out concrete tasks. Fig. 1 illustrates the network variable based control
system used in the AUV, based on the principles explained in [6]. The Mission Control component
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communicates with a number of other components in the system and could thus be a valuable resource
for improving the precision of diagnosis. The challenge is to automatically create models representing
the information in the mission script and the configuration script and to integrate them with the hand-
built component models. This has two advantages which can substantially improve the reliability of the
system. First, the mission and configuration scripts constrain the behaviour of the vehicle so diagnosis is
easier since the diagnosis engine knows more precisely what should be happening. This means that, for
example, the diagnosis engine can detect when the vehicle differs from its allowed behaviour, perhaps by
diving too deep. The second advantage is that the diagnosis model can be used as an abstract simulation
of the system, so it can be used to perform a number of tests on the mission script, for example to check
whether the vehicle can actually carry out the mission successfully if all systems remain nominal. This
is similar to the approach taken by Livingstone PathFinder [4].

3 Mission Control

The mission control node [7] is the Autosub component that executes the mission script. The script is an
event driven sequence of commands in a text file that is compiled and then downloaded to the mission
control node as part of the mission preparation procedure. When a scripted mission event occurs the next
commands are issued to the various motor, actuator and sensor control nodes. The mission control then
iterates to the next element in the mission script and waits for the next specified event. In addition to the
main mission script the operator may specify up to two alternative endings to the mission in the form
of mission termination scripts. These can be triggered by a configurable set of events and provide an
alternative ending to a mission.

A mission script contains a list of event triggered actuator mode and demand settings contained in a
basic structure format called a mission element:
when( event0, event1, event2)

mode0( demand0),

mode1( demand1),

...

moden( demandn);

)

With actual events modes and demands this might look like:
when( GotPosition, ElementTimeout),

SetElementTimer( 0:0:30:0), // Time argument 0 days, 0 hours, 30 minutes, 0 seconds.

MotorPower( 320), // Set motor to run at 320W

PositionP( N:52:30.0, W:15:0.0), // Position control navigation

Depth( 2000); // Depth control 2000m

)

Built into the mission controller are a number of event processing tasks. These range from simple
input signal polling to the maintenance of internal timers and arbitration between inputs for starting and
stopping a mission. Mission control events in general may be divided into events that are generated
within the mission control node itself and those that are received from other nodes as network variable
updates. A disjunction of up to three events may be specified to trigger a mission element.

The position, depth and motor controllers in the Autosub take commands in the form of an operation
mode setting and a demand. For example the position controller has a mode called ”heading” that is given
a demand in degrees of the compass. The mission control outputs a data structure that communicates the
required mode and demand to the respective controller. In addition auxiliary modes and demands can
be sent to payload sensors. The controllers in the Autosub act on the last received mode and demand.
There are a small number of modes and demands that affect the behaviour of the mission control. These
enable the setting of parameters that define the internal generation of mission events, in particular depth
thresholds and timeout values for mission elements.
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A number of features including obstacle avoidance, track following and beacon homing do not form
part of the Mission Script. Their effect is at a level below the operator programmer interface and event
states provide a means of programming mission script responses to them.

4 Construction and validation of the diagnosis model

The first step in the automatic construction and validation of the diagnosis model is to formalise the
general requirements that apply to all mission scripts and configuration. For example, we have identified
a number of requirements such as ”the configuration variable ncSafeMaxDepth has to be less than abort
weight release max depth” and ”the variable ncMinDepth has to be less than the maximum depth” that are
domain specific but should hold globally for all mission configurations. Previous experience shows that
the configuration files that accompany mission scripts can have errors and we expect even such simple
checks to improve the overall robustness of the system.

While constructing the diagnosis model from the mission script we apply analysis to the mission
script to make sure that demands set in the mission script do not violate any of the general domain
specific requirements or configuration parameters. The mission script is comprised of two different kinds
of statements, those which block awaiting some particular event (a when statement), and those which set
operation modes and demands after an event triggering the next step of the mission is observed. So, an
example of a safety check performed during the model generation is to make sure a mission script does
not have a demand exceeding the maximum allowed depth for the mission.

Each of the when statements is converted into two states, the state where the when statement is waiting
for the triggering event and an intermediate state where the body of the when statement is executed.
Such a setup allows the diagnosis model to monitor mission progress and detect if the mission control
component has omitted broadcasting any demands listed in the mission script. After the demands have
been seen by the diagnosis model, the model moves on to a state waiting for an event that triggers the
next when statement. The mission control component of the diagnosis model is a linear string of such
pairs of states. Those states where alternative termination scenarios are allowed can branch to similar
pairs of states specified by appropriate termination scripts.

Automatic generation of parts of the diagnosis model will necessarily raise questions about the cor-
rectness of the resultant model. While proving the model generation correct would be one option, we
will initially use techniques such as Livingstone PathFinder [4] and Livingstone model verification [8]
to verify the properties of the resultant diangosis model.

One possible way to validate the resultant model after the mission control component of the diagnosis
model has been generated is to create an example mission scenario from the excerpts of the data of
previous missions matching the constraints and demands of the appropriate step of the mission script.
This provides a way to have dry runs of successful scenarios and also various error scenarios and use an
approach like Livingstone Pathfinder to check if the diagnoses of L2 subsume the faults that have been
introduced into the scenario script. One research challenge is to see if we can build a useful abstract
model of the behaviour of the AUV that encapsulates a large number of concrete scenarios that can be
used to prove that no false positives can occur.

The diagnosis model is coupled with the actual variables of the system via monitors which convert
continuous variables into discrete values. While the discussion of how exacly the continuous variables are
tracked is out of scope of this paper, another of our research challenges is how to model such monitors
mathematically for establishing the correctness of their implementations and to further establish the
adequacy of the diagnosis model given the properties of the input signals.

Automation of verification and proof procedures in such applications is of vital importance as mission
scripts are built and modified during research cruises and it is likely that there is neither time nor expertise
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for manually validating or building the diagnosis models at sea between subsequent missions.
Another of the open challenges is the verification of the diagnosis engine itself. Ideally all code that

runs on an autonomous platform should be at least proved correct for safety policies such as memory
safety. There are technologies and tools that support such proofs based on Hoare style annotations of
pre- and postconditions and loop invariants for establishing various safety policies [1]. In addition, with
recent advances in verification tools, an engine written in C++, such as Livingstone 2, with additional
support for continuous variables is a verification challenge. The L2 code has been empirically tested
to be flight safe, but modifying it will quite likely introduce new issues which can be discovered with
verification techniques. We invite interested parties to contact us if there is interest for pursuing this path.

5 Conclusions

We have presented a work in progress on applying formal methods in the context of automated diagnosis
and recovery to Autosub 6000 AUV. The work includes several research challenges that are relevant to
the formal methods community. One of the challenges is automatic generation of the mission control
component of the diagnosis model from mission scripts and configuration. Success of such generation
can only be guaranteed by proving the resultant model to satisfy formalised safety (and liveness) policies
using verification techniques. Another open challenge is proving the Livingstone 2 engine and the hybrid
monitors that we add to the engine to be correct regarding a number of safety and liveness policies.
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