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ABSTRACT

The James Web Space Telescope (JWST) is a large, infrared-optimized space telescope scheduled for launch in 2014.
System-level verification of critical performance requirements will rely on integrated observatory models that predict the
wavefront error accurately enough to verify that allocated top-level wavefront error of 150 nm root-mean-squared (rms)
through to the wave-front sensor focal plane is met. This paper describes the systems engineering approach used on the
JWST through the detailed design phase.
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1. INTRODUCTION

The JWST observatory is NASA's next great space observatory, scheduled to succeed the Hubble Space Telescope
(HST) in 2014. System development is led by Goddard Space Flight Center (GSFC) and the Prime Contractor Northrop
Grumman (NG), with Ball Aerospace, the European Space Agency (ESA), the Canadian Space Agency (CSA), the
Space Telescope Science Institute (STScI), the Jet Propulsion Laboratory (JPL) and the University of Arizona as major
contributors. Its mission is to detect the first light sources that turned on in the early universe approximately 13 billion
years ago. To see these faint sources the observatory must have at least 25 square meters of light gathering area and
extremely low infrared noise levels. These are provided by a 6.3 meter diameter light weight cryogenic telescope and a
suite of state-of-the-art science instruments. To realize the cryogenic temperatures necessary for low background noise,
the observatory will be operated at the 2nd Earth-Sun Lagrangian (L2) point, located approximately 1.5 million
kilometers from the Earth and use a tennis-court sized sunshield to allow cooling of its telescope and science
instruments. The Project successfully passed its Mission Critical Design Review (CDR) in April of 2010.

This first-of-its-kind mission presents several challenges to the Systems Engineering (SE) process. This paper will
describe four of these, mass and resource control, interdisciplinary trade studies, integrated modeling and verification.

2. SYSTEM DESCRIPTION

System architecture is shown in Figure 1. An Ariane 5 Launch Vehicle (LV) will put the JWST observatory into a direct
trajectory toward the L2 point. Immediately after separation of the observatory from the upper stage of the LV, it will
perform a series of Delta-V maneuvers to correct LV dispersions followed by deployment of the sunshield and telescope.
During these critical events, the Ground Segment shall provide continuous communication coverage via NASA and
European Space Agency (ESA) assets. After the deployments, the observatory begins to cool down to its operational
temperatures. When the telescope and science instruments (SI's) attain these temperatures, images from the SI's will be
used to align and phase the telescope. After a roughly 100-day cruise period, the observatory performs some minor
Delta-V maneuvers to place it into its operational orbit around the L2 point. During the operational phase of the
mission, high-data-rate science data is transmitted to the ground segment thru a Ka band link, using the Deep Space
Network (DSN) 34-meter antennas.
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Figure 2 illustrates the overall dimensions of the stowed and deployed configurations of the observatory as well as list of
the top level capabilities. Figure 3 illustrates the architecture of the observatory and its major assemblies and elements.
The first of these is the Integrated Science Instrument Module (ISIM) which is provided by GSFC. This element
consists of five infrared SI's, the meter structure that keeps them co-aligned and the electronics to processes their data.
The four SI's are:

• The Near Infrared Camera (NIRCam), which provides imagery in the waveband from 0.6 to 5 microns.
• The Near Infrared Spectrograph (NIRSpec), which provides multi-object spectroscopy in the waveband from

0.6 to 5 microns.
• The Mid Infrared Instrument (MIRI), which provides imagery and spectroscopy in the waveband from 5 to 20

microns.
• A combined Tunable Filter Instrument (TFI), which provides adjustable narrow band imagery in the waveband

from 1.6 to 4.9 microns and Fine Guidance Sensor (FGS), which provides fine guidance pointing error signals
for the observatory Fine Guidance Control (FGC) loop.
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• Optical Telescope Element (OTE) diffraction limited at 2 micron wavelength.
n 25 m2 , 6.35 m average diameter aperture.
n Instantaneous Field of View (FOV) - 9'X 18'.
n Deployable Primary Mirror (PM) and Secondary Mirror ISM).
n 18 Segment PM with 7 Degree of Freedom (DOF) adlustability on each.

• Integrated Science Instrument Module pSiM) containing near and mid Infrared
cryogenic science Instruments

• The NIRCam SI functions as the on-board wavefront sensor for initial OTE alignment and
phasing and periodic maintenance.

• OtherSI also used for OTE initial al gnment using MultNnstrument Mulit-Field (M IMF)
• Deployable sunshield for passive cooling of OTE and ISIM.
• Mass: <6530 kg.
• Power Generation: 2000 Watts Solar Array.
• Data Capabilities: 471 Gbits on-board storage, 229 Gbitslday science data.
• Science Data Downlink: 28 Mbps.
• Lffe: Designed for 11 years (goal) of operation.
• Observatory Design will be presented in Section 9

Figure 2. The JWST Observatory Stowed and Deployed Configurations and Capabilities

The next element, the Optical Telescope Element (OTE), has a 6 meter diameter Primary Mirror (PM) made up of 18
individual controlled hexagonal Primary Minor Segment Assemblies (PMSAs). Each has 7 degree of freedom (DOF)
control to align and phase them so that they act as one coherent reflector. They are supported on the Backplane
Structure. This is a critical metering structure that has very strict specifications on its allowable distortion as the
observatory changes attitude and thermal conditions to slew to different targets. The OTE has its Secondary Minor
Assembly (SMA) supported on a deployable Secondary Mirror Support Structure (SMSS). This minor has 6 DOF
control. The Tertiary Minor (TM) and Fine Steering Minor (FSM) are housed in the Aft Optics Subsystem (AOS). The
FSM is controlled by a Fine Guidance Control (FGC) loop at rate of about 1 Hz to correct for pointing errors by using
data provided by the FGS in the ISIM. Finally, the OTE provides the cryogenic radiators that cool the SI's as part of the
ISIM enclosure which surrounds the ISIM.

The final observatory element is the Spacecraft Element (SCE), which consists of two sub-elements; the Sunshield and
the Spacecraft Bus. The Sunshield is a deployable structure with five specially coated kapton membranes which
provides the thermal insulation necessary to allow the OTE and ISIM to radiatively cool. The Spacecraft Bus contains
the traditional subsystems; Electrical Power Subsystems (EPS), Attitude Control Subsystem (ACS), Reaction Control
Subsystem (RCS), Command and Data Handling (C&DH) Subsystem, Thermal Control Subsystem (TCS) and the
Structure Mechanism Subsystem (SMS), along with the MHU Cryo-Cooler, which is the active cooling system required
to get MIRI detectors to their operational temperatures lower than 7K.
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Figure 3. The JWST Observatory Elements and Thermal Regions

Figure 2 also illustrates thermal architecture of the Observatory. It is divided into three thermal regions. Region 1
contains the hardware that must operate at temperatures between 50K and lower and Region 3 contains the hardware that
operates at normal spacecraft temperatures. These two regions are insulated from each other by the 5 layer sunshield,
which effectively attenuates the roughly 91,000 watts of solar energy that impinges on it by a factor of 5 x 10 -6 such that
less than 1 watt is allowed to leak thru to the cold side. The temperature on the hot side of the sunshield is roughly 400K
while the temperatures on the cold side average 50K or below.

Region 2 is an intermediate thermal region on the cold side of the observatory that contains processing electronics for the
SIs that must operate at temperatures typical of electronics boxes (i.e. at room temperature, 290K). These warm
electronics must reside on the cold side of the sunshield to minimize the length the electrical signals traverse from the SI
detectors to limit electrical noise. These electronics are housed in the ISIM Electronics Compartment (lEC), which
dumps their 200 watts of dissipated heat thru a series of directional radiators to prevent this energy from impinging on
the aft sunshield where it could be reflected and directed toward the ISIM cryogenic radiators resulting in a thermal
back-load.

3. MASS AND RESOURCE CONTROL

JWST's large size and distant operational location challenge designers to obtain high mass efficiency in order to stay
within the launch capabilities of the ESA-provided Ariane 5 Launcher, projected to be 6530 kg to the required direct
inject transfer trajectory. The magnitude of this challenge is evident when one compares JWST to the HST and realizes
that it must have over five times the light collecting area with roughly half the mass. The SE program addresses this
mass challenge with three techniques:

• Design Optimization
• Mass Control Plan With Continuous Risk Management
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Figure 6. The JWST Integrated Modeling Process
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• Analytical models are run in cycles (much like the familiar "Load Cycles")

n Typically 2 to 3 cycles between major reviews, each taking between 3 to 6 months

• These cycles address system level performance issues
n Used for major system level trade studies
n For Requirements/ Architecture Validation
n In the later part of the Program for verification

Figure 7. Integrated Analysis Cycles
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0	 An important aspect of the Integrated Modeling Process is the rigorous configuration control of the models. This
includes not only the careful recording of all changes to the models, but also the recording of all differences between the
models and the actual hardware design. Lists of these differences, called Liens and Threats Lists, are maintained along
with rough estimates of the impact these liens and threats represent to the computed performance. SE reviews these lists
and updates the models to incorporate these liens and threats with each subsequent integrated modeling cycle. Since
these models are a critical element of the system verification program, it is extremely important that the configuration
management and pedigree of these models be meticulously monitored and tracked.

6. VERIFICATION

Verification is the bottoms-up process of ensuring that the as-built system constituents and the integrated system itself
meet their documented requirements. This is normally a straight forward incremental process, consisting predominantly
of tests, which follows the requirements documentation tree of the system. The size and cryogenic nature of the JWST
Observatory significantly restricts the amount of testing that can be used for the verification. With a sunshield roughly
the size of a tennis court and with thermal zones that span temperature ranges from 400K to 40K, JWST cannot be tested
practically at the observatory level of assembly in a thermal vacuum chamber. SE must rely on the analytical models for
verification to a much larger extent than many past missions. With this in mind many of the verification processes must
take special care to insure the fidelity of these models is sufficient to represent the performance of the as-built hardware.

Test results at lower assembly levels are used to anchor / correlate analytical models to the hardware. These models are
then used in system-level analyses to verify performance. It therefore becomes important to guarantee that lower
assemblies are tested in a manner that not only verifies their individual requirements but also meet the needs of these
higher-level analyses. For example, it is common practice to specify component performance for worst-case conditions
for that device. However, the worst-case conditions for a component does not always ensure simulation of the worst-
case conditions for the system, which can be a complex combination of many such components. In order to make these
assessments, the JWST observatory verification program is broken down not only in terms of its constituent products,
but also in terms of performance "threads". These threads include optical, thermal, mechanical, and electrical
performance. Thread leads ensure that component and subsystem test results are properly coordinated and combined to
satisfy the needs and conditions of the system verification, especially when this is by analysis. Figure 7 summarizes the
verification of key JWST performance requirements using combinations of tests and analyses.

The test portions of the verification program are implemented as part of the JWST Integration and Test (I&T) Program
which is illustrated in Figure 8, color coded along product lines.

In addition to the tests shown on this flow, there are two key system level engineering unit tests that are used to correlate
the analytic observatory thermal models. The first, illustrated in Figure 9 is a full-scale thermal test model of the
observatory CORE region between the Spacecraft Bus and the OTE-ISIM. This is a thermal transition volume between
the warm temperature spacecraft and the cryogenic OTE-ISIM where complex radiative couplings and conductive loads
must be accurately modeled. This full-scale model was used for thermal balance testing to correlate the observatory
thermal models for this region. The second unit, illustrated in Figure 11, is a 1/3-scale thermal test model of the
sunshield, which was also subjected to thermal balance testing to correlate the sunshield thermal model. Testing on both
of these units has been completed and the data is being used for these correlation activities.
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Figure 8. The Verification of Key JWST Performance Requirements
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