

Optimizing Medical Kits for Space Flight

Charles G. Minard*, Mary Freire de Carvalho, and M. Sriram Iyengar

Wyle Integrated Science and Engineering, Houston, TX NASA, Johnson Space Center, Houston, TX

> Winter Simulation Conference Baltimore, MD 2010

Introduction

- Space is an inherently hostile environment
- Altered incidence, mitigation and recovery from adverse medical events

- Medical system
 - Physical limitations
 - Limited resupply

Optimization Goal

- Optimize medical kit using IMM results
 - Specific mission profile

- Two scenarios
 - 1) Best outcome given resource constraints
 - Minimize resources given desired outcome(s)

http://spaceflight.nasa.gov/gallery/images/shuttle/sts-133/html/sts133-s-002.html

IMM Outcomes

- Crew Health Index (CHI)
- Probability of evacuation
- Probability of loss of crew life
- Resources utilization
- Combined metric

Resource Constraints

Multiple constraints on medical resources

- Mass
- Volume
- Cost
- Packaging
- Bandwidth
- Power
- Etc.

Consider Scenario 1

- Best outcome given resource constraints
 - Define resource requirements
 - Maximum mass
 - Maximum volume
 - Decide which outcome(s) are of interest
 - Maximize CHI
 - Minimize Pr(evacuation)
 - Fill medical kit with the most efficient set of medical resources

Optimization Scenario 1

 Maximize outcome(s) of interest subject to resource constraints

Are Constraints Satisfied?

NASA

Additional Considerations

- Essential vs. Nonessential
 - Nonessential resources will be removed first
 - Band-aids, thermometer, etc.
- Consumable vs. Nonconsumables
 - Number of units
 - Frequency of use
- Tie breakers
 - Mass
 - Volume
 - Cost
 - Etc.

Results

- Maximize CHI
- Mission Length
 - 24 days
- Number of crew members
 4 (2M, 2F)
- Resource constraints
 - 4.3 kg
 - 6421.7 cm3

Results (24 days, 4 crew)

Resource constraints

- 4.3 kg
- 6421.7 cm3

	Medical Kit		
Parameter	Minimum	Optimum	Maximum
Mass (kg)	0	3.42	67.3
Volume (cm3)	0	6421.7	191434
Mean CHI (SD)	15.2 (12.3)	94.3 (4.9)	94.9 (3.9)
Median CHI	13.5	96.3	96.4

CHI Distribution by Medical Kit

Optimization Scenario 2

- Minimize resources subject to constraints on the outcome(s)
 - Define outcome requirements
 - $Pr(evac) \leq 10\%$
 - CHI ≥ 90%
 - Identify the medical kit

Optimization Scenario 2

 Minimize resources subject to constraints on the outcome(s)

Results

- Minimize Mass and Volume
- Mission Length
 - 24 days

- Number of crew members
 4 (3M, 1F)
- Evacuation constraints
 - Pr(Evacuation) < 2%

Results (24 days, 4 crew)

Evacuation constraints

Pr (Evacuation) < 2%

	Medical Kit		
Parameter	Minimum	Optimum	Maximum
Mass (kg)	0	38.66	81.86
Volume (cm3)	0	94,527.73	201,669.01
Mean CHI (SD)	78.27(8.52)	91.38 (3.74)	95.21 (2.35)
Evacuation Probability	16.01%	1.94%	0.37%

Additional Considerations

Goal is to minimize resources

 Some conditions will not satisfy outcome constraints even if treated

Resources are used to treat medical events
Not primary prevention

Flexibility

Resource inclusion and exclusion criteria

- Flight surgeons
- Personal medical kits

- Customized metrics
 - Outcomes

Conclusions

- Trade-off
 - Occurrence
 - Impact

Acknowledgements

- Wyle Integrated Science and Engineering
 - Mary Freire de Carvalho, PhD
 - Eric Kerstman, MD
 - Doug Butler
 - Lynn Saile, RN
 - Vilma Lopez
 - M. Sriram Iyengar
 - Marlei Walton, PhD
- NASA, Johnson Space Center
 - Kathy Johnson-Throop, PhD
 - David Baumann
 - Jerry Myers, PhD
 - Mary Fitts