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ABSTRACT 

Displacement equations are developed for a cantilever tubular wing spar under bending, torsion, and 
combined bending and torsion loading. The displacement equations are expressed in terms of strains 
measured at multiple sensing stations equally spaced on the surface of the wing spar. The bending and 
distortion strain data can then be input to the displacement equations to calculate slopes, deflections, and 
cross-sectional twist angles of the wing spar at the strain-sensing stations for generating the deformed 
shapes of flexible aircraft wing spars. The displacement equations have been successfully validated for 
accuracy by finite-element analysis. The strain-displacement theory that has been developed could also be 
applied to calculate the deformed shape of simple and tapered beams, plates, and tapered cantilever wing 
boxes. The displacement equations and associated strain-sensing system (such as fiber optic sensors) form 
a powerful tool for in-flight deformation monitoring of flexible wings and tails, such as those often 
employed on unmanned aerial vehicles. Ultimately, the calculated displacement data can be visually 
displayed in real time to the ground-based pilot for monitoring the deformed shape of unmanned aerial 
vehicles during flight.  

NOMENCLATURE 

A  cross-sectional area of uniform cantilever beam, in2 
a  mean radius of four-ply composite tube wall and aluminum tube wall, or mean radius of Helios 

31-ply reinforced spar cap wall, in. 
c  depth factor of beam (distance between neutral axis to bottom surface of beam), in.  
deg  degree 
E  Young’s modulus, lb/in2 
EL        Young’s modulus of lamina in fiber direction, lb/in2 

ET  Young’s modulus of lamina in direction transverse to fiber direction, lb/in2 
e  finite-element span-wise length, in. 
G  shear modulus, lb/in2 
GLT    shear modulus of lamina, lb/in2 
I  moment of inertia of tube cross section, in4 
i  identification number for strain-sensing station (= 0, 1, 2, 3,…, n) 
J  polar moment of inertia, in4   
j  index 
l  length of cantilever tube, in. 
M  moment, in-lb 
Mi  moment at strain-sensing station, xi , in-lb 

n  identification number for the last strain-sensing station, xn (= l)   
P  applied load, lb 
SPAR  Structural Performance And Resizing 
Ti  twisting moment at distortion-sensing station, xi , in-lb 
t  thickness of four-ply composite (or aluminum) wall, in. 

  thickness of 31-ply composite reinforced wall region, in. 
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UAV  unmanned aerial vehicle 
x, y  Cartesian coordinates, in. 

xi  i -th strain-sensing station, or its axial coordinate, x = xi , in.  
y  deflection in y-direction at any point, x, between two adjacent strain-sensing    
 stations, xi-1 ≤ x ≤ xi , in.  

yi  deflection in y-direction at strain-sensing station, xi , in.  

γ i  surface distortion angle (shear strain) at distortion-sensing station, xi , rad   

Δl  = l n , distance between two adjacent strain-sensing stations (equally spaced), in. 

δ1 ,δ2  displacement at two ends of finite element, in. 
ε  bending strain at any point, in/in. 
εi  bending strain at strain-sensing station, xi , due to bending only, in/in. 

εi  true bending strain at strain-sensing station, xi , due to bending and torsion, in/in. 

εi
p   principal tensile strain at distortion-sensing station, xi , in the 45-deg helical direction, in/in. 

  beam slope at any point, x, between two adjacent strain-sensing stations, xi-1 ≤ x ≤ xi , rad or deg 

θi  beam slope at strain-sensing station, xi , rad or deg  
ν  Poisson’s ratio   
νLT  Poisson’s ratio of lamina 
σ  bending stress of outermost fiber, lb/in2 

σ i
p  principal tensile stress at twist-sensing station, xi , in the 45-deg helical direction, in/in. 

(τmax )i maximum shear stress at distortion-sensing station, i, lb/in2 

φi  cross-sectional twist angle at strain-sensing station, xi , rad or deg 

( )i+ outboard side of strain-sensing station, xi  

( )i-   inboard side of strain-sensing station, xi  

INTRODUCTION 

Many unmanned aerial vehicles (UAVs) currently in service today must be ultralightweight and 
designed with highly flexible structural control surfaces.   One such vehicle, the Helios flying wing, has a 
wingspan of 247 ft. The wingspan of the Helios is longer than the wingspans of the U.S. Air Force C-5 
military transport (Lockheed Martin Aeronautics Company, Marietta, Georgia), which is 222 ft, and the 
Boeing 747 commercial jetliner (Boeing Company, Seattle, Washington), which ranges from 195 to 215 
ft, depending on the model.  Because of an extremely long wingspan, the wings of vehicles such as the 
Helios will undergo extra-large deformations into high dihedrals during flight, with wingtip deflections 
reaching as high as 40 ft. This type of deformed shape is similar to a 72-deg circular arc with a 197-ft 
radius. 

 
Recently the Helios wing broke up in midair while flying at an altitude of approximately 3000 ft. The 

primary cause of the mishap is believed to have resulted from undamped pitch oscillations of the highly 
deformed wing, resulting in the breakup of the wing.  To avoid future mishaps, a method must be 
developed in which the wing deformation can be visually monitored during flight. This way, if the 
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wingtip deflections approach the design limit, the ground-based pilot could execute timely emergency 
maneuvers to avoid further deformations.  

 
The major load-carrying main spar of the Helios wing is a carbon fiber composite tube (4-in. radius), 

which is thicker on the top and bottom (spar caps) to improve bending stiffness. The spar also is wrapped 
with Nomex® and Kevlar® (both registered trademarks of E.I. duPont de Nemours and Company, 
Wilmington, Delaware) for additional strength. If multiple strain sensors, such as lightweight fiber optic 
strain-sensing systems, are installed at discrete sensing stations on a beam-like structure (such as the long-
span highly flexible Helios flying wing), the strain sensor data can be used to calculate the deflections and 
cross-sectional twist angles of the beam-like structure and thereby predict its deformed shape during 
flight. 

 
This report discusses the development of theoretical displacement equations for uniform cantilever 

beams subjected to bending, torsion, and combined bending and torsion. The displacement equations are 
expressed in terms of strains, the output of multiple strain sensors embedded on the wing spar surface, for 
predicting wing deflections and cross-sectional twist angles during flight. The displacement equations and 
onboard strain-sensing system could form a powerful tool for in-flight wing deformations monitoring by 
the ground-based pilot for maintaining safe flights of highly flexible flying wings. 

HELIOS UNMANNED AERIAL VEHICLE (UAV)  
FLEXIBLE STRUCTURE 

The Helios prototype (fig. 1) is an ultralightweight, unmanned, solar-powered flying wing aircraft 
(1,600-lb weight) designed to fly at altitudes up to 100,000 ft. Fourteen electric motors (2 hp each) are 
required to drive 79-in. diameter composite propellers and other systems. The power required for these 
motors is generated by high-efficiency solar cells spread over the upper surface of the wing. The cruising 
speed of the Helios is in the range of 19 to 27 mi/h.  

 
The Helios wing has an 8-ft chord length uniform over the 247-ft wingspan. As discussed previously, 

the wingspan of the Helios is longer than the wingspans of the U.S. Air Force C-5 military transport (222 
ft) and the Boeing 747 commercial jetliner (195–215 ft, depending on the model). The maximum wing 
loading on the Helios 1,976-ft2 wing is 0.81 lb/ft2.  

IN–FLIGHT WING SHAPE MONITORING 

In-flight wing deformation monitoring of ultralightweight flying wing aircraft such as the Helios is 
particularly difficult because of weight restrictions and highly flexible nature of the extremely long-span 
structure. Several methods for in-flight monitoring of wing deflections exist for use on conventional 
aircraft.  

 
One method is the electro-optical flight deflection measurement system, which is composed of 

onboard optical receivers and several wing-mounted light-emitting targets (ref. 1). This system provides 
wing displacement information during flight but is too heavy for lightweight flying wing applications.  

  
Another in-flight deflection measurement method is the use of conventional strain gages to collect 

local strains for wing deflection information. Numerous strain-sensing stations are required to capture the 
higher displacement modes of the flexible wings. When multiple strain-sensing stations are used, the 
weight of the strain gage lead wires alone is too heavy and impractical for most weight-conscious 
lightweight flying wing aircraft.  
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Fiber optic sensors offer the most attractive alternative to conventional strain gages. They are 
lightweight, fine, and flexible filaments (approximately the size of human hairs), and they can be highly 
multiplexed at desired sensing intervals. 

THEORETICAL APPROACH 

If multiple strain sensors are installed at discrete sensing stations on a cantilever wing spar, sensor 
data can be used to calculate the deflections and twists of the wing spar during flight. Classical beam 
theory can be used to develop theoretical slope, deflection, and cross-sectional twist angle equations for 
the uniform cantilever beam. These displacement equations are written in terms of the strains for 
calculating the deformed shape of the beam. In the present report, the input strains are calculated from the 
displacement output of finite-element stress analysis. The accuracy of the newly developed displacement 
equations (for bending and torsion) for the uniform cantilever beam is then verified by the finite-element 
displacement output. With slight modifications, the displacement equations developed for the uniform 
cantilever beam could be applied to predict the deformed shape of simple beams (two-point supported), 
tapered beams, plates, and tapered cantilever wing boxes. 

UNIFORM CANTILEVER BEAMS 

In this section, basic displacement equations are developed for a uniform cantilever beam (for 
example, the tubular spar of the Helios wing) subjected to bending, torsion, and combined bending and 
torsion. Although the highly flexible wing of the Helios is capable of undergoing extraordinarily large 
deformations (wingtip deflections up to 40 ft), the local strains on the wing spar surface remain small. 
Therefore, the classical small strain theory can be used to derive the slope and displacement equations for 
the uniform cantilever beam. 

Bending 

In this section, displacement equations for bending only are developed. These equations are used to 
describe the local slopes and deflections at points along the strain-sensing line on the bottom surface of a 
uniform cantilever beam of arbitrary cross-sectional shape (for example, circular tubes of the Helios spar). 

 
Moment-Strain Relationship 

The classical bending equation for the uniform beam is given by (refs. 2, 3)  
 

 d2y
dx2

=
M(x)
EI

 (1) 

 
in which y is the vertical displacement, x is the span-wise coordinate, M(x) is the bending moment, E is 
the Young’s modulus, and I is the moment of inertia. 
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The bending moment, M(x) , in equation (1) may be related to the associated bending strain, ε(x) , at 
the bottom or top fiber (for example, generatrix of the Helios spar tube) through the outermost fiber 
bending stress equation, σ (x) = M(x)c[ ] I  (refs. 2, 3): 

 

 ε(x) = σ (x)
E

=
M (x)c

EI
    ;      σ (x) = M (x)c

I
  (2) 

 
In equation (2), c is the depth factor of the beam (distance between the neutral axis and the bottom 

surface of the beam). In light of equation (2), the beam bending equation (1) can be written in term of 
ε(x)  as 

 
 

 
(3) 

 
Note that under the strain formulation, beam bending equation (3) contains only the beam geometrical 
parameter, depth factor, c, and that the flexural rigidity term, EI, is eliminated.  

 
Consider the case of a highly flexible, extremely long tubular spar of the Helios wing that carries 

concentrated weight (solar-powered motors, pods, hydrogen storage tanks, and so forth) at different wing 
stations. Because the wing is subjected to aerodynamic lift forces during flight, the wing spar tube 
bending moment, M (x) , could be a complicated nonlinear function of the span-wise coordinate, x.  

 
Strain-Sensing Stations 

Figure 2 shows the uniform cantilever tubular spar with a length of l and an outer radius of c. The 
beam is installed with n + 1 equally spaced bending strain sensors at the sensing station, xi  (i = 0, 1, 2, 3, 
…, n), along the bottom or top generatrix, which is a straight line on the tubular surface parallel to the 
axis, x, of the tubular spar. The first and final strain-sensing stations { x0(x=0) , xn (x=l)} are located at 
the built-in end and the beam tip, respectively. The beam is now discretized into n sections with equal 
length, Δl = l/n .  Although the bending strain is zero at the spar tip, the nth bending strain sensor is 
installed there because of mathematical convenience in the derivation of the displacement equations.   
 

The bending moment, M (x) , can be assumed to be a piecewise-linear function along the axial 
coordinate, x. Namely, in the region, xi−1 < x < xi , between any two adjacent strain-sensing stations, 
{ xi−1 , xi }, M (x) is considered as a linear function of (x − xi−1)  as 

 

 M (x) = Mi−1 − (Mi−1 − Mi )
x − xi−1

Δl
     ;      xi−1 ≤ x ≤ xi  (4) 

 
in which {Mi−1,Mi}  are the bending moments at the two adjacent strain-sensing stations, {xi−1, xi} ,  
respectively, and Δl (= xi − xi−1 = l n ) is the axial distance between the two adjacent strain-sensing 
stations, {xi−1, xi} . 
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In light of equation (2), local moment equation (4) can be written in terms of the local bending strain, 
ε(x) , for the region, xi−1 < x < xi , as 

 

 ε(x) = εi−1 − (εi−1 − εi )
x − xi−1

Δl
     ;      xi−1 < x < xi      ;      Δl = l

n
 (5) 

 
in which { εi−1 , εi } are the bending strains measured at the two adjacent sensing stations, { xi−1 , xi }, 
respectively. 
Slope Equations  

The slope, tanθ(x) , of the uniform beam in the region, xi−1 ≤ x ≤ xi , between the two adjacent 
strain-sensing stations, { xi−1, xi }, can be obtained by integrating equation (3), with the constant of 
integration determined by enforcing the continuity of the slope at the adjacent inboard strain-sensing 
station, xi−1 , as 

 
 

 

tanθ(x) = d2y
dx2 dx

xi−1

x
∫

Slope increment   
  

+ tanθi−1
Slope at  xi−1
  =

ε(x)
c

dx
xi−1

x
∫ + tanθi−1     ;     xi−1 ≤ x ≤ xi   

(6) 

 
in which tanθi−1  (constant of integration) is the slope at the adjacent inboard strain-sensing station, 
xi−1 . Substituting strain equation (5) into slope equation (6), and carrying out the integration, one obtains 
the slope, tanθi ≡ [tanθ(xi )] , at the strain-sensing station, xi , as (ref. 4) 
 
 

tanθi =
Δl
2c
(εi−1 + εi )+ tanθi−1     ;      (i =  1,  2,  3,  …,  n)  (7) 

 
Equation (7) is a recursion formula showing that the slope, tanθi , at the strain-sensing station, xi , is 

related to the slope, tanθi−1 , at the adjacent inboard strain-sensing station, xi−1 . Applying the 
descending indices relationship causes slope equation (7) to become  

 

 tanθi =
Δl
2c

ε0 + 2 ε j
j=1

i−1
∑ + εi

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

     ;      (i =  1,  2,  3,  …,  n)  (8) 

 
Note that the slope, tanθi , is determined from the geometrical and strain data evaluated at all the 

inboard and current strain-sensing stations, ( x0,, x1, x2, ..., xi ). The first objective is to calculate tanθi  (i 
= 1, 2, 3, ..., n) for all strain-sensing stations. If the last strain-sensing station, xn , is located at the 
wingtip, then the slope, tanθn , becomes the wingtip slope.  

 
Deflection Equations 

The deflection, y(x) , of the uniform beam in the region, xi−1 ≤ x ≤ xi , between the two adjacent 
strain-sensing stations, { xi−1, xi }, can be obtained by integrating slope equation (6) with the constant of 
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integration determined by enforcing the continuity of deflection at the adjacent inboard strain-sensing 
station, xi−1 , as 

 

 

(9) 

 
in which yi−1  (integration constant) is the deflection at the adjacent inboard strain-sensing station, xi−1 . 
Carrying out the integration of equation (9) in light of strain equation (5), one obtains the deflection, 
yi ≡ [y(xi )] , at the strain-sensing station, xi , as (ref. 4) 
 

 yi =
(Δl)2

6c
2εi−1 + εi( ) + yi−1 + Δl tanθi−1     ;      (i =  1,  2,  3,...,  n)  (10) 

 
Deflection equation (10) is also a recursion formula showing that the deflection, yi , at the strain-

sensing station, xi , is expressed in terms of the deflection, yi−1 , and the slope, tanθi−1 , at the adjacent 
inboard strain-sensing station, xi−1 . Applying the descending recursion relationship for yi−1  in light of 
equation (10), and applying expression (8) for tanθi−1 , one could express deflection equation (10) for yi  
as a summation of all the inboard strains including the strain at the current sensing station, xi : 

 

 yi =
(Δl)2

6c
(3i −1)ε0 + 6 (i − j)ε j + εi

j=1

i−1
∑

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

     ;      (i =  1,  2,  3,...,  n)  (11) 

 
By plotting the deflections, yi  (i = 1, 2, 3,..., n), at the strain-sensing stations, xi , one can construct the 
deformed shape of the tubular wing spar, which could be displayed on the screen so that the ground-based 
pilot can view the real-time wing deformation status. 

 
The contribution of deflection caused by shear effect usually is very small for a long cantilever beam. 

If shear effect is desired, however, an additional shear effect term must be added to equation (11) (see 
Appendix B of reference 5). 

Torsion 

In this section, displacement equations are developed for a tubular cantilever spar under torsion. 
Consider a cantilever tubular spar of length l, with n number of equally spaced distortion-sensing stations 
(fig. 2), subjected to span-wise varying twisting moments. 

 
 

 

 

y(x) = tanθ(x)dx
xi−1

x
∫
Integration of  slope
  

+ yi−1
Deflection
at  xi−1

 =
ε(x)

c
dx dx

xi−1

x
∫xi−1

x
∫
Deflection increment
  

+ tanθi−1xi−1

x
∫ dx

Deflection at  x
due to tanθi−1

  
+ yi−1
Deflection
at  xi−1



 xi−1 ≤ x ≤ xi
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Torque-Twist Relationship 

Let Ti  be the twisting moment at the distortion-sensing station, xi , and let γ i  be the associated 
surface distortion angle (shear strain) at the distortion-sensing station, xi  (fig. 3). The classical torque-
distortion  
relationship can then be written as (refs.1, 2)  

 
 

γ i =
Tic
GJ

 (12)  

 
in which G is the shear modulus, J is the polar moment of inertia, and c is the outer radius of the wing 
spar. The surface distortion angle, γ i  (shear strain), in equation (12) is obtained from the distortion 
sensor output using  
 
 

γ i =
(τmax )i
G

=
σ i
p

G
=
E
G
εi
p = 2(1+ν )εi

p  (13) 

 
in which (τmax )i  is the maximum shear stress at the distortion-sensing station, i,  and σ i

p  [= (τmax )i ] 

and  εi
P  are the principal tensile stress and strain, respectively, in the 45-deg helical direction at the 

distortion-sensing station, i  (fig. 3). 
 

Cross-Sectional Twists 

The total cross-sectional twist angle, φi , at the strain-sensing station, xi , can be obtained by 
summing up all surface distortion angles, γ j , at all the inboard strain-sensing stations, j (= 1, 2, 3,…, i – 
1), as (fig. 3)   

 
 

 
(14)  

 
Notice that when equation (14) is written for the beam tip (i = n), the resulting expression of the beam 

tip cross-sectional twist angle, φn , does not contain the tip distortion term, γ n . Therefore, installation of 
the tip distortion sensor for measuring γ n  is not required (fig. 2). 

Combined Bending and Torsion 

In this section, displacement equations are developed for a cantilever tubular spar under combined 
bending and torsion. The calculations of true bending strains are presented, from which modified slope 
and deflection equations are established.  

 
True Bending Strain 

As shown in figure 3, if the tubular spar is subjected to torsion in addition to bending, the bending 
strain-sensing station, xi  (for measuring bending strain, εi ), will move tangentially by a cross-sectional 
twist angle, φi , and the bending strain-sensing axis will be tilted by a local surface distortion angle, γ i .  
Thus, the strain output, εi , obtained at the sensing station, xi , no longer gives the true bending strain. To 
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obtain the true bending strain, εi , the value of the measured strain, εi , must be corrected by using the 
bending strain correction equation, 

 
 

εi =
εi

cosφi cosγ i
 (15) 

 
in which the surface distortion angle, γ i , and the cross-sectional twist angle, φi , are calculated  from 
equations (13) and (14), respectively.  

 
 

Modified Slope and Deflection Equations 

With the effect of torsion, slope equation (8) and deflection equation (11) for the bending case must 
be modified by replacing εi  with εi : 

 
 

tanθi =
Δl
2c

ε0 + 2 ε j
j=1

i−1
∑ + εi

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 (16) 

   
 

yi =
(Δl)2

6c
(3i−1)ε0 + 6 i − j( )ε j + εi

j=1

i−1
∑

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 (17) 

 
When the true bending strain data, {ε0,ε1,ε2,ε3,...,εi} , are substituted, the slopes and deflections of the 
tubular spar at the strain-sensing stations can be calculated from equations (16) and equations (17), 
respectively, for the combined bending and torsion loading case. 

FINITE–ELEMENT ANALYSIS 

To test the prediction accuracy of deflection equation (11), strain sensor data and measured deflection 
data are needed. Before the experimental data are available, an alternative approach is to use finite-
element analysis to generate the desired bending strain and deflection data. The Structural Performance 
And Resizing (SPAR) finite-element computer program (ref. 6) was used for this purpose. The following 
section describes the method for generating the bending strains, εi , from the SPAR output. 

Generation of Bending Strains 

From the SPAR nodal displacement output, the axial displacements, {δ1, δ2} , at the two ends of the 
element lying in the lower outermost surface can be used to calculate the bending strain for that particular  
 
 
 



 

 10 

element. If the strain-sensing station, xi , is located in the middle of the element, the displacement 
differential, (δ2 −δ1) , can be divided by the element axial length, e, to generate the desired bending 
strain, εi , at the sensing cross section, xi . Namely, 

 
 

εi =
δ2 −δ1

e
⎛
⎝⎜

⎞
⎠⎟ i

 (18) 

 
If the sensing station, xi , is located at the juncture of two adjacent elements, then the following 

average strain value is used for the strain, εi , at the sensing station, xi :  
 

 
εi =

1
2

δ2 −δ1
e

⎛
⎝⎜

⎞
⎠⎟ i+

+
δ2 −δ1

e
⎛
⎝⎜

⎞
⎠⎟ i−

⎡

⎣
⎢

⎤

⎦
⎥  (19) 

 
In equation (19),  { ( )i+ , ( )i− } denote the elements on the outboard and inboard sides, respectively, of 
the strain-sensing cross section, xi .   

 
The SPAR bending strains calculated from equations (18) and (19) can be input to deflection equation 

(11) to calculate the beam deflections. These calculated deflections can then be compared with the 
deflections obtained from the SPAR displacement output to check the prediction accuracy of deflection 
equation (11).  

Cantilever Tube Models 

Figure 4 shows a typical finite-element model for a cantilever tube with a length of l =100.5 in. The 
model consists of 100 four-node shell elements in the axial direction and 36 in the circumferential 
direction. The end disk was added so that the tip load can be applied at the disk center. The cantilever 
tube is fixed in space at the left end and is subjected to an upward vertical load of P = 100 lb at the tip. 
The following three types of tubes, fabricated with different materials, were considered: 

 
1. Aluminum tube  
2. Four-ply composite tube: carbon fiber composite wall 
3. Helios composite tube: carbon fiber composite wall with additional carbon fiber composite 
reinforcements on the top and bottom of the spar caps.  
 

Table 1 lists the dimensions and table 2 lists the material properties of these three types of tubes. 

Table 1. Dimensions of three types of tubular spars.  

Tube type l, in. a, in. c, in.  t, in.  
Aluminum 100.5 4.0 4.01148 0.02296 
Four-ply composite 100.5 4.0 4.01148 0.02296 
Helios composite 100.5 4.0* (4.07749)** 4.16646** 0.02296* (0.17794)** 

* Four-ply regions    ** Reinforced regions 
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Table 2. Material properties of carbon fiber composite and aluminum tubes.  

Carbon fiber composite Aluminum 

EL = 16.3×106 lb/in2  E = 10.5 ×106 lb/in2  

ET = 0.98 ×106 lb/in2  NA 

GLT = 0.71 lb/in2  G = 4.0 ×106 lb/in2  
vLT = 0.34  v = 0.33  

NUMERICAL EXAMPLES – CANTILEVER TUBES 

The SPAR displacement output and strain equations (18) and (19) were used to calculate the bending 
strain, εi , for the sensing stations in all cases. These strain values were then input to the appropriate 
deflection equations to calculate the deflections at all the strain-sensing stations of all the beam cases. 
This section presents examples of three types of cantilever tubes (aluminum, four-ply composite, and 
Helios composite). The deflections calculated from the Ko displacement theories are compared with those 
calculated from the SPAR finite-element analysis. 

Aluminum Cantilever Tube  

Figure 5 shows the bending strains, εi , at the sensing stations on the aluminum tube, calculated from 
the SPAR nodal displacement output. The strain data from figure 5 were used to calculate the deflections, 
yi , from deflection equation (11). Table 3 compares the deflections, yi , calculated from deflection 
equation (11) with those obtained from the SPAR displacement output for the case of n = 8 (n+1= 9 
strain-sensing stations). Note that the difference between the deflection values calculated from the SPAR 
program and those calculated from equation (11) is minimal for the present uniform cantilever aluminum 
tube. 

Table 3. Comparison of deflections calculated from SPAR with those calculated from deflection 
equation (11); aluminum cantilever tube; n = 8. 

Deflection ( yi ), in. 

 y0  y1  y2  y3  y4  y5  y6  y7  y8  

SPAR 0.0000 0.0179 0.0636 0.1341 0.2253 0.3330 0.4530 0.5814 0.7138 

Deflection 
equation (11) 0.0000 0.0157 0.0605 0.1302 0.2205 0.3273 0.4465 0.5738 0.7051 

Difference, 
percent 0.0000 12.2142 4.9356 2.9223 2.1262 1.7208 1.4524 1.3072 1.2230 

 
The data in table 3 are plotted in figure 6. The two sets of deflection curves are quite close, indicating 

the accuracy of deflection equation (11). The deflection curves calculated from equation (11) lie slightly 
below those obtained from the SPAR output.  
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Four-Ply Composite Cantilever Tube   

Figure 7 shows the bending strain curve, εi , calculated from the SPAR output, for the strain-sensing 
stations on the four-ply composite tube. In this case the SPAR strain curve is practically linear. The strain 
data from figure 7 were used to calculate the deflections, yi , from deflection equation (11) for the case of 
n = 8.  Table 4 compares the deflections, yi , calculated from deflection equation (11) with those obtained 
from the SPAR displacement output. Again, the difference between the values calculated from the SPAR 
program and those calculated from equation (11) is minimal.  

 

Table 4. Comparison of deflections calculated from SPAR with those calculated from deflection 
equation (11); four-ply composite cantilever tube; n = 8. 

Deflection ( yi ), in. 

 y0  y1  y2  y3  y4  y5  y6  y7  y8  

SPAR 0.0000 0.0749 0.2577 0.5421 0.9110 1.3475 1.8347 2.3558 2.8946 

Deflection 
equation (11) 0.0000 0.0658 0.2519 0.5413 0.9167 1.3610 1.8570 2.3877 2.9356 

Difference, 
percent 0.0000 12.2264 2.2545 0.1531 0.6301 1.0000 1.2176 1.3526 1.4154 

 
The data from table 4 are plotted in figure 8 for visual comparison. The two deflection curves are 

quite close, indicating the accuracy of deflection equation (11). The deflection curves calculated from 
deflection equation (11) for the four-ply composite tube lie slightly above those obtained from the SPAR 
output.  

Helios Composite Cantilever Tube 

Figure 9 shows the bending strain curve, εi , calculated from the SPAR output, for the strain-sensing 
stations on the Helios composite tube. In this case, the SPAR strain curve is nearly linear. The strain data 
from figure 9 were used to calculate the deflections, yi , from deflection equation (11) for the case of n = 
8. Table 5 compares the deflections, yi , calculated from deflection equation (11) with those obtained 
from the SPAR displacement output. Again, the difference between the beam-tip displacement values 
calculated from the SPAR program and those calculated from deflection equation (11) is minimal.  
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Table 5. Comparison of deflections calculated from SPAR with those calculated from deflection 
equation (11); Helios composite cantilever tube; n = 8.   

Deflection ( yi ), in. 

 y0  y1  y2  y3  y4  y5  y6  y7  y8  

SPAR 0.0000 0.0240 0.0673 0.1324 0.2167 0.3166 0.4284 0.5479 0.6721 

Deflection 
equation (11) 0.0000 0.0152 0.0577 0.1235 0.2089 0.3099 0.4227 0.5432 0.6676 

Difference, 
percent 0.0000 36.7126 14.2263 6.6853 3.5818 2.1381 1.3307 0.8669 0.6725 

 
The data from table 5 are plotted in figure 10 for visual comparison. The two deflection curves are 

quite close, indicating the accuracy of deflection equation (11). The deflection curves calculated from 
deflection equation (11) for the Helios composite tube lie slightly below those obtained from the SPAR 
output. 

DISCUSSION 

In-flight predictions of the deformed shape of the ultralightweight flying wing require the installation 
of multiple bending and distortion strain sensors, equally spaced on the surface of the tubular wing spar, 
for measuring the bending and distortion strains of the wings. The strain sensor data can then be input to 
theoretical displacement equations for calculating slopes, deflections, and twist angles of the wing spar at 
all strain-sensing stations, including the sensing station on the spar tip.  

 
Because the accuracy of the displacement (bending and torsion) equations has been validated by 

finite-element analysis, the equations are ready for application. To solidify confidence, however, the 
accuracy of the equations must be checked extensively by testing several types of continuous and 
composite cantilever tubular beams under bending, torsion, and combined bending and torsion. The 
validation experiments are currently under way.  

 
When strain sensors are installed on the wing spar (or wing box), the displacement equations together 

with strain sensor data can be used to construct the in-flight deformed shape of an aircraft such as the 
Helios flying wing. Because they are lightweight, fiber optic sensors may be the optimal choice for the 
embedded strain sensors on the wing spar surface. The use of a conventional strain gage sensing system is 
impractical, because it has numerous lead wires that add weight, thus it is too heavy for the lightweight 
flying wing to carry. 

 
The displacement theory that has been developed can also be applied to calculate the deformed shape 

of simple beams and plates (ref. 5). The displacement theories can be extended to cases of nonuniform 
beams, such as tapered cantilever wing boxes and aircraft fuselages (varying cross sections) under 
combined bending and torsion (ref. 5). 

CONCLUDING REMARKS 

Displacement equations were developed for a cantilever tubular wing spar under bending, torsion, and 
combined bending and torsion loading. These displacement equations were expressed in terms of strains 
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measured at multiple sensing stations equally spaced on the surface of the wing spar. The principal results 
are as follows: 

 
1. The displacement equations developed for the uniform cantilever beam were successfully validated  
for accuracy by classical beam theory and finite-element analysis.  
 
2. The deflections predicted from the deflection equations for the three types of cantilever tubular 
spars  
agreed quite well with the deflections calculated from the finite-element analysis. 
 
3. The deflection equations and associated strain-sensing system (such as fiber optic sensors) form a 
powerful tool for in-flight calculations of slopes, deflections, and cross-sectional twist angles of the 
wing spar at any strain-sensing station. These calculated displacements can be used to construct the 
deformed shape of the long-span flying wing. Ultimately, the calculated deformation data can be 
visually displayed in real time for the ground-based pilot to monitor the in-flight deformed shape of 
unmanned aerial vehicles.  



 

 15 

FIGURES 

 
ED01-0209-2 

Figure 1. Solar powered Helios prototype flying wing during a test flight over the Pacific Ocean.  

 

 

Figure 2. Cantilever tubular spar with equally spaced bending and torsion strain sensors.  
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Figure 3. Instrumented cantilever tubular spar under combined bending and torsion.  

 

 

 

Figure 4. Helios tubular spar finite-element model subjected to a vertical tip load of P = 100 lb.  
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Figure 5. Bending strains, εi, at different sensing stations, xi, calculated from the SPAR program; 
aluminum cantilever tube; n = 8; P = 100 lb.  

 

 

Figure 6. Comparison of deflections calculated from SPAR with those calculated from deflection 
equation (11); aluminum cantilever tube; n = 8; P = 100 lb.  



 

 18 

 

 

 

Figure 7.  Bending strains, εi, at different sensing stations, xi, calculated from the SPAR program; four-ply 
composite cantilever tube; n = 8; P = 100 lb.  

 

Figure 8. Comparison of deflections calculated from SPAR with those calculated from deflection 
equation (11); four-ply composite cantilever tube; n = 8; P = 100 lb.  
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Figure 9. Bending strains, εi, at different sensing stations, xi, calculated from the SPAR program; Helios 
composite cantilever tube; n = 8; P = 100 lb.  

 

 

Figure 10. Comparison of deflections calculated from SPAR with those calculated from deflection 
equation (11); Helios composite cantilever tube; n = 8; P = 100 lb.  
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