Comparison of Space Radiation Calculations from Deterministic and Monte Carlo Transport Codes

> J.H. Adams, Jr. NASA MSFC-Marshall Space Flight Center

with

Z.W. Lin (East Carolina University)

A.F. Nasser (NASA MSFC)

S. Randeniya (Rice University)

R.K. Tripathi (NASA Langley Research Center)

J.W. Watts (NASA MSFC)

P. Yepes (Rice University)

COSPAR Scientific Assembly, Session F22

Bremen, Germany

Outline

Motivation

Radiation transport codes being considered

Space radiation cases being considered

Results for slab geometry

Results for spherical geometry

Summary

COSPAR Scientific Assembly, Session F22

Bremen, Germany

Motivation

There are many transport codes for space radiation calculations of heavy ion transport:

Deterministic transport (1-dimensional): HZETRN (from NASA Langley Research Center) UPROP (from Naval Research Lab)

Fast

Monte Carlo transport (3-dimensional): HETC, HETC-HEDS (from LANL/NASA/ORNL/UTK) FLUKA (from high energy physics) GEANT4 (from high energy physics) MCNP and MCNPX (from LANL) PHITS (from Japan/Sweden)

slower, but better treats 3-d particle transport

 \rightarrow Are these models very different in typical space radiation calculations?

How different are 1-d deterministic results from 3-d Monte Carlo (MC) results?

COSPAR Scientific Assembly, Session F22

. . .

Bremen, Germany

Main physics in radiation transport codes

Let us look at a radiation transport equation in 1-dimension:

$$\frac{\partial J_{k}(E,x)}{\partial x} = -\frac{J_{k}(E,x)}{\Lambda_{k}(E)} + \sum_{j} \frac{J_{j}(E,x)}{\Lambda_{kj}(E)} + \frac{\partial [W_{k}(E)J_{k}(E,x)]}{\partial E}$$

Flux of particle type k

Loss of k due to its fragmentation: $\Lambda_k(E)=1/(n^*\sigma_k(E))$ total inelastic cross section of nuclear fragmentation of k Gain of k because a heavier particle j can produce k: $\Lambda_{kj}(E) = 1/(n^*\sigma_{kj}(E))$ Partial fragmentation cross section (j \rightarrow k)

Fragmentation cross sections & energy loss are the key physics in radiation transport codes

COSPAR Scientific Assembly, Session F22

Bremen, Germany

Ionization energy loss

 $w_{k}(E) = -dE/dx(E)$

Radiation transport codes being considered

To compare the key physics in radiation transport codes, we consider the same radiation environment input, geometry & material, then compare dose-depth curves & particle spectra.

COSPAR Scientific Assembly, Session F22

Bremen, Germany

Space radiation cases being considered

3 external environments:

- Oct. 1989 Solar Particle Event (SPE),
- Jan. 2005 SPE,
- 1977 solar minimum Galactic Cosmic Rays (GCR)

2 materials: Aluminum or CH ₂	
2 geometries: 1) Slab geometry: a slab material under uni-directional irradiation	
2) Spherical geometry: a spherical shell under isotropic shell thickness 10g/cm ²	irradiation, $r=150cm$

COSPAR Scientific Assembly, Session F22

Bremen, Germany

COSPAR Scientific Assembly, Session F22

Results for SPE: new(2005) & old(1995) versions of HZETRN

HZETRN 2005 reference: Heinbockel et al., NASA-TP-2009-215560

COSPAR Scientific Assembly, Session F22

Bremen, Germany

Results for slab geometry: GCR

1977 GCR on Aluminum Slab

Geant4 & HZETRN are consistent in dose; UPROP dose is lower behind shielding

> HZETRN & Monte Carlo show rough agreement in proton spectra, difference in neutrons, especially at low energies; UPROP proton spectrum is much lower

1977 GCR after 10g/cm² Aluminum

COSPAR Scientific Assembly, Session F22

Bremen, Germany

Results for slab geometry: GCR

HZETRN, UPROP & Geant4

show reasonable agreements in Oxygen & Iron spectra, → fragmentation cross sections are similar in these models (for O & Fe at least)

COSPAR Scientific Assembly, Session F22

Bremen, Germany

Results for spherical geometry

Good agreement for the SPE environment

Agrees with earlier findings based 1-dimensional transport:

Lin, Baalla & Townsend, Radiation Measurements 44 (2009)

"Variation of space radiation exposure inside spherical and hemispherical geometries"

- lowest radiation exposure is at the inside wall,
- highest exposure is at the center of the spherical shell;
- exposure decreases by a large factor in SPE environments

COSPAR Scientific Assembly, Session F22

Bremen, Germany

Summary

We have compared typical space radiation calculations from two 1-dimensional deterministic codes (**HZETRN, UROP**) & two 3-dimensional Monte Carlo codes (**FLUKA, Geant4**)

Monte Carlo codes (FLUKA and Geant4) results are mostly consistent, HZETRN results are close to Monte Carlo results, except for neutrons

UPROP results are often quite different from the other 3 codes, suggesting the need of improvements (e.g. by treating neutrons)

Radiation exposure at different locations inside a spherical shell: 4 models give consistent results, earlier result of Lin, Baalla & Townsend is confirmed

To identify the exact physics causing the differences in the model results is very useful but will require more efforts

COSPAR Scientific Assembly, Session F22

Bremen, Germany