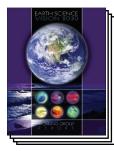


MAPIR: An Airborne Polarimetric Imaging Radiometer in Support of Hydrologic Satellite Observations


C. Laymon¹, M. Al-Hamdan², W. Crosson², A. Limaye², J. McCracken¹, P. Meyer¹, J. Richeson³, W. Sims¹, K. Srinivasan², K. Varnevas¹

¹George C. Marshall Space Flight Center, NASA, Huntsville, Alabama ²Universities Space Research Association, Huntsville, Alabama ³Integrated Concepts & Research Corporation, Huntsville, Alabama

SMAP

Earth Science Vision 2030 March 2004

NASA Science Plan 2007

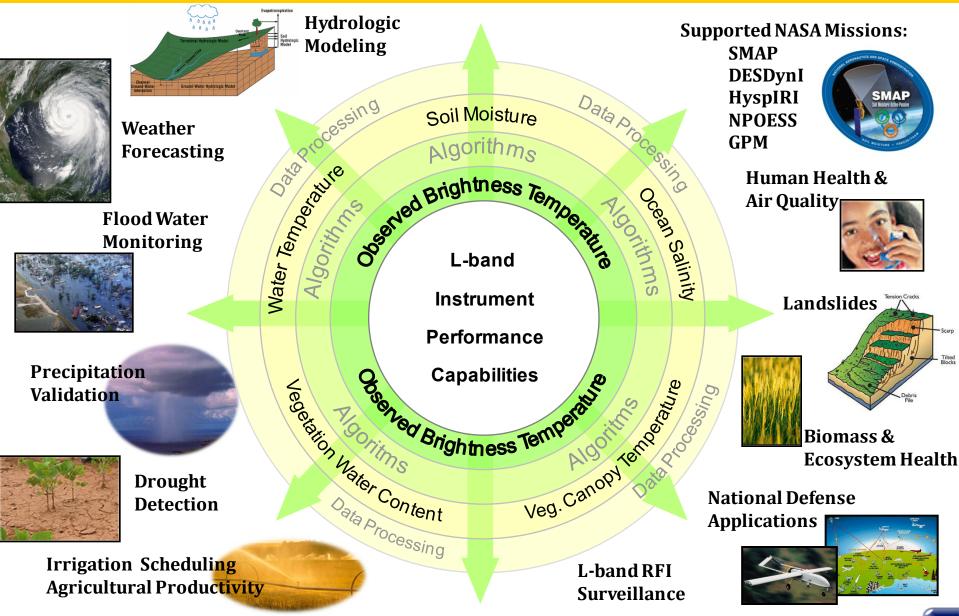
National Research Council Earth Science and Applications from Space January 2007

Reports contain common theme of need for measurements of precipitation, soil moisture, and sea ice and provide measurement goals.

Shortage of available airborne simulators and instruments to produce data for algorithm development, validation, and for applied science activities.

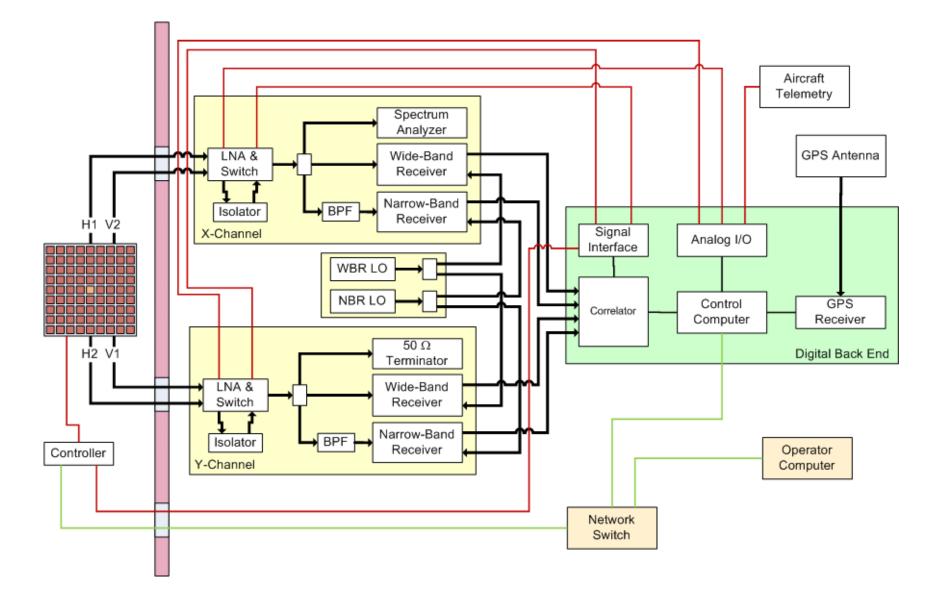
NASA Earth Science Technology Office Soil Moisture Active Passive 2014-ICESat-2 2015-**DESDynl** Deformation, Ecosystem Structure, Dynamics of Ice 2017-SWOT Surface Water **Ocean Topography** 2020-

Global Precipitation Mission

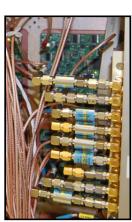

GPM

2013-

Science Applications

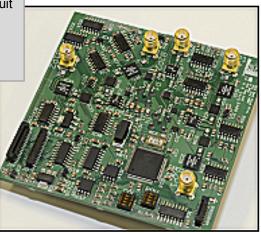

MSFC SCIENCE & MISSION SYSTEMS





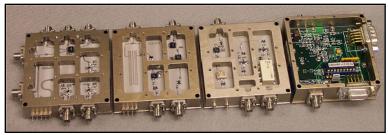
Frequency	L- band (2 passbands)
Antenna Type	Real aperture planar phased array
Array	81 element (9x9) electronic beam steering
Dimensions	102 x 102 x 18 cm
Weight	57 kg
Beamwidth	15 deg (3dB at nadir)
Polarizations	Horizontal, Vertical
Beams	2 simultaneous acquisition
Scan Type	Push-broom, Conical, Staring at any angle
Control	In-flight reprogrammable scan mode
Electronics	Programmable Integrated circuit (PIC)
Calibration	Emitted Gaussian noise source, 50 ohm termination

Behind the antenna elements are the electronic control components.

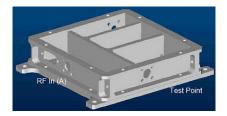


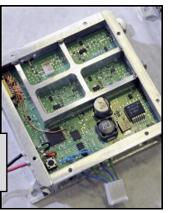
The front side comprises passive antenna elements.

Each antenna element has a circuit board that steers the beam and switches RF polarization.


Туре	Hach
No. Channels	4
Array	81 element (9x9) electronic beam steering

	Narrow	Wide
No. Receivers	2	2
Antenna Inputs	2 ea.	2 ea.
Passbands	1401-1425 MHz	1350-1450 MHz
Integration Time	10 ms (min.)	10 ms (min.)
Dimensions	7.6 x 7.6 x 7.6 cm	8.9 x 8.9 x 5 cm
Internal Cal. Loads	Warm: 300 K Cold: 210 K	Warm: 300 K Cold: 210 K
Down Convert Freq.	8-32 MHz	10-110 MHz


Four receivers acquire data at two narrow bands and two wide bands simultaneously.



PROSENSING

The wide band receivers developed inhouse observe a wider spectrum for possible RFI that may effect observations.

IEEE Geoscience and Remote Sensing Symposium, July 26-30, 2010, Honolulu, Hawaii

All four receivers are integrated into a common enclosure with required splitters, filters and amplifiers.

Theses radiometers are a byproduct of a Phase I and Phase II SBIR

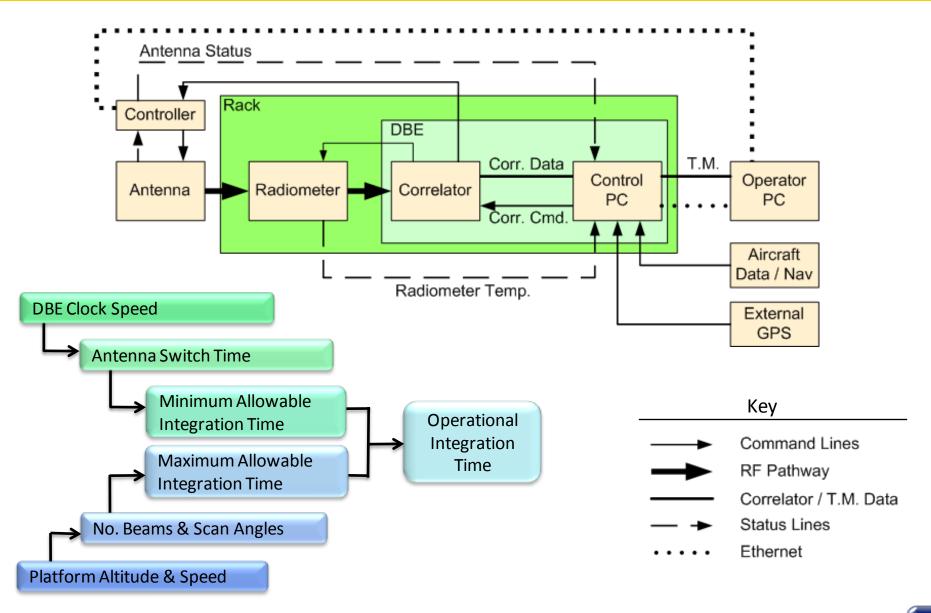
Dimensions	48 cm x 69 cm x 22 cm
Filters	16 subbands for each channel
Subchannel Bandwidth	1.625 MHz (narrowband receiver) 7.8125 MHz (wideband receiver)
Clock	125 MHz oscillator
Digitizer	12 bit ADC; internal processing to 7 bit
Correlator	Nallatech BenADC-V4 with Xilinx FPGA
RFI Processing	ADD method: Computes I & Q moments
Control	RTD PC/104-Plus stack
Storage	11 Mb packets

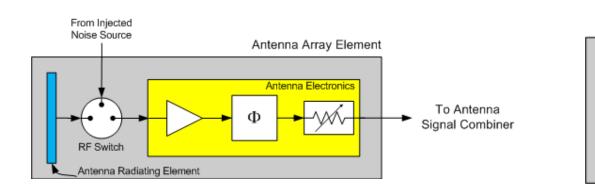
Subband	Center Fr	eq. (MHz)
Number	Narrow	Wide
1	1401.7	1338.9
2	1403.2	1346.7
3	1404.7	1354.5
4	1406.3	1362.3
5	1407.8	1370.2
6	1409.4	1378.0
7	1411.0	1385.8
8	1412.5	1393.6
9	1414.1	1401.4
10	1415.7	1409.2
11	1417.2	1417.0
12	1418.8	1424.8
13	1420.3	1432.7
14	1421.9	1440.5
15	1423.5	1448.3
16	1424.6	1456.1

IEEE Geoscience and Remote Sensing Symposium, July 26-30, 2010, Honolulu, Hawaii

Control Computer: RTD PC/104-*Plus* Stack

Correlator Module: Nallatech BenADC-V4 firmware with Xilinx Spartan FPGA


Developed by Univ. of Michigan, Space Physics Research Lab


Motivation: In-flight real-time continuous calibration

Features:

- Two diode calibration
- End-to-end calibration for a phased array system
- Calibrate every scan angle in real time
- Utilize mutual coupling between antenna elements as a calibration source

Implementation:

- Radiate a noise source from the center element of the array
- Radiated diode (ENR = 40 dB) and an injected noise source (~300 K)

Antenna Radiating Element

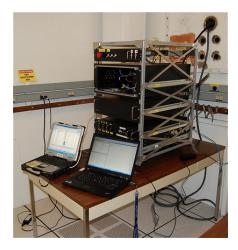
Radiating Noise Source

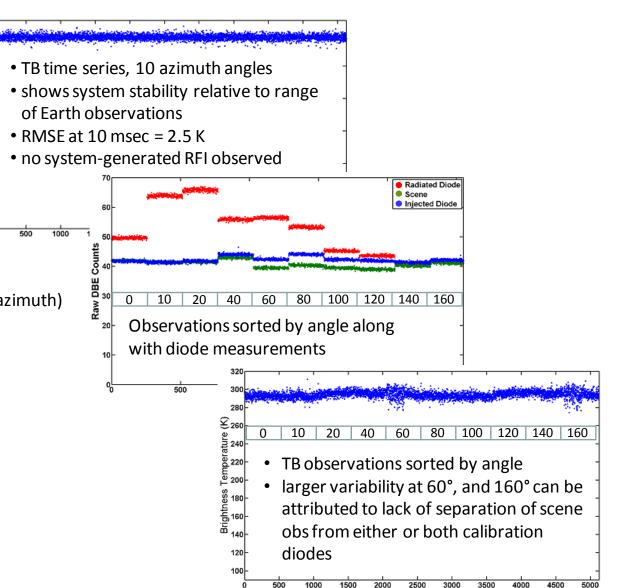
Gaussian Noise Source

Receiver Noise Temperature	400 K
Pre-detection Bandwidth	24 MHz
Antenna Noise Temperature	300 K
Total Dwell Time	1 sec
Radiometer Warm Load ⁽¹⁾	300К
Radiometer Cold Load ⁽¹⁾	210K
Antenna Injected Load ⁽²⁾	300K
Antenna Radiated Diode ⁽²⁾	300К

Two Radiometer Loads Proposed Antenna Calibration 4.5 3.5 Antenna Gain = 3 (K) 2.5 2.5 3 1.5 0.5 0 50 100 150 200 250 300 350 400 Antenna Brightness (K) -**→**-G_a = ′ 4.5 3.5 (K) NEDT (K) 2 1.5 0.5 50 200 250 Antenna Brightness (K) 100 150 300 350 400

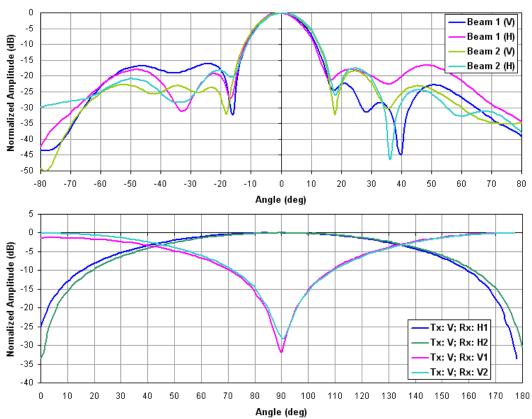
⁽¹⁾ Two radiometer loads – Goodberlet et al, 2006 ⁽²⁾ Two Diode method

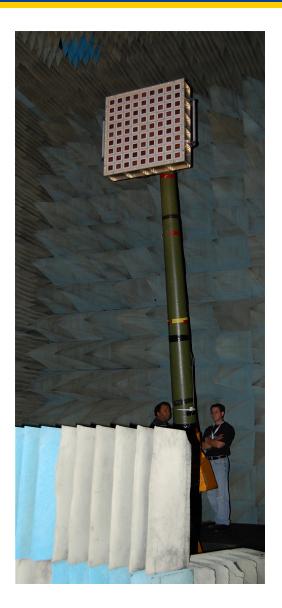

MSFC SCIENCE & MISSION SYSTEMS



Experimental Set-up

- NASA EMI chamber
- Antenna on table looking at ceiling
- Scanning forward half only (0-160° azimuth) in 20° increments at 40° look angle
- Control system in adjoining room


Samples


Performance Evaluation

MSFC SCIENCE & MISSION SYSTEMS

Evaluation:	Results:
Beam patterns	Symmetric
3 dB nadir beamwidth	15 degrees
Side lobe characterization	1 st side lobe: -20 dB
Functionality of scan modes	Functionality of all modes confirmed
Cross polarization isolation	30 dB

UTSI Piper Navajo, PA-31

MSFC SCIENCE & MISSION SYSTEMS

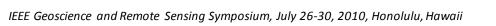
NASA P3-B Orion

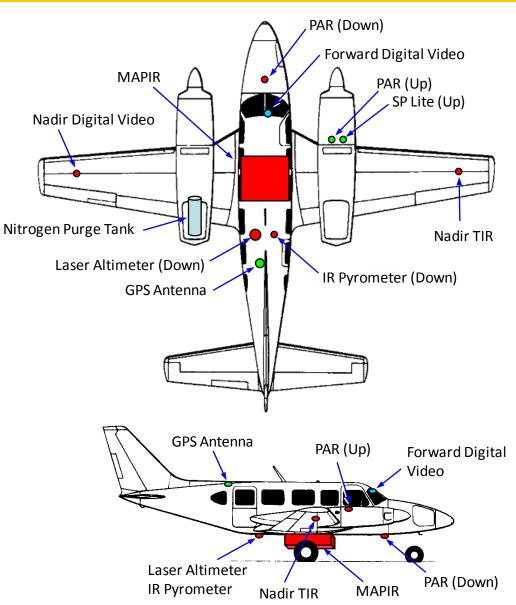
Airborne Platform Configuration

MSFC SCIENCE & MISSION SYSTEMS

Piper Navajo PA-31 (N11UT)

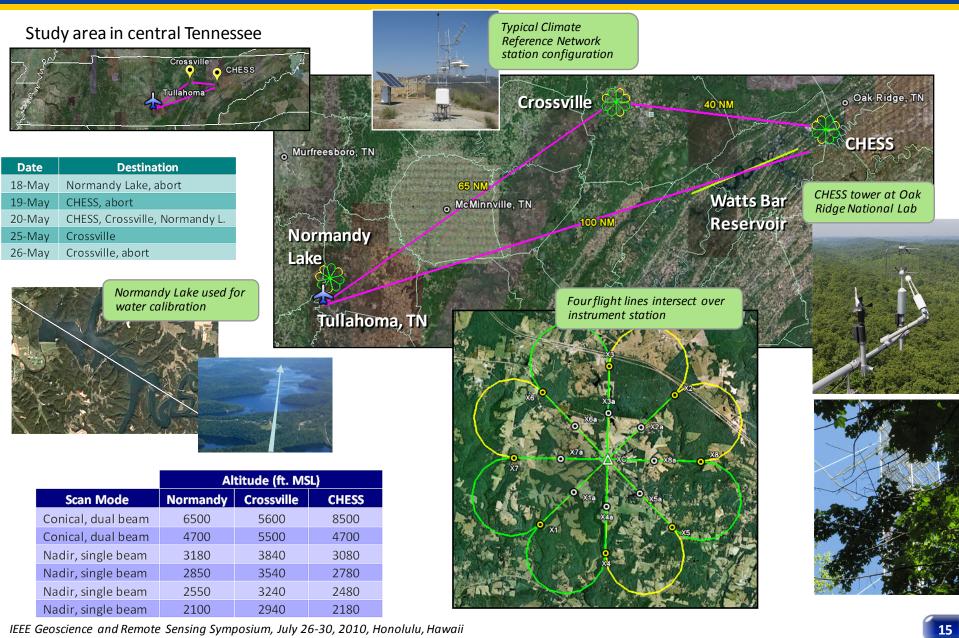
Instrumentation

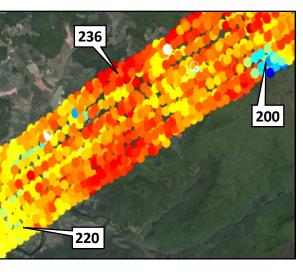

• MAPIR

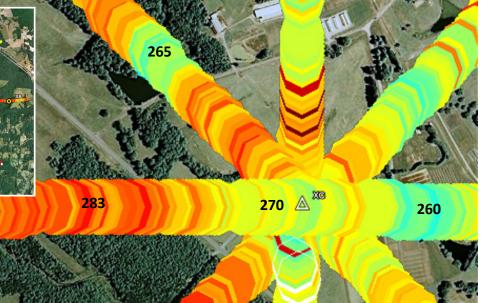

L-band brightness temperature

- Infrared Pyrometer Surface temperature
- Laser Altimeter
 Precise platform altitude Vegetation canopy height
- PAR (Up, Down) Photosynthetically active radiation
- Total Solar Radiation Pyrometer Downwelling solar radiation

Supporting Equipment

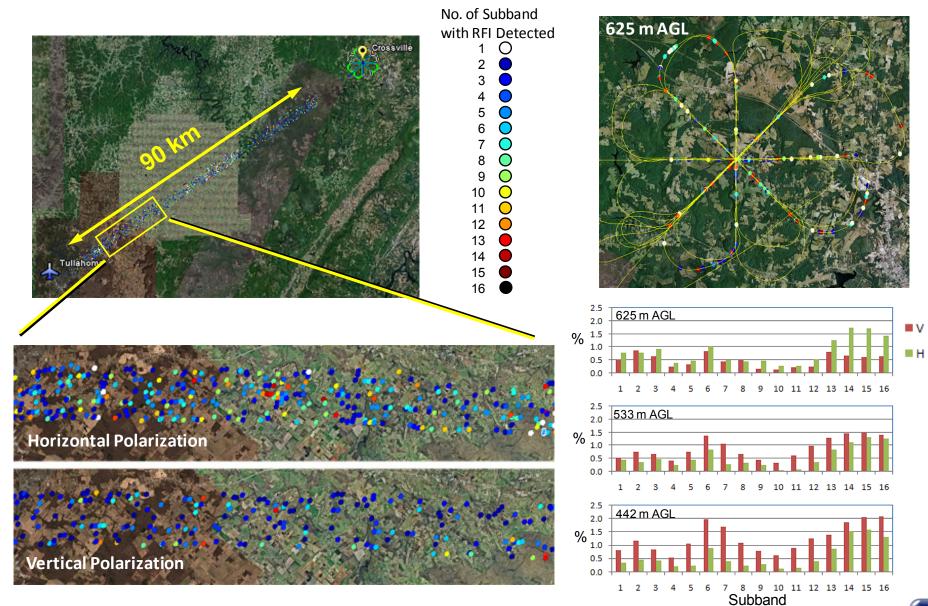

- GPS Antenna
 Platform position and attitude
- Nitrogen Source Tank with Electronic Controller Humidity control inside MAPIR antenna enclosure
- Forward and Nadir Digital Video
- Data Acquisition System





Vertical polarization; single beam conical scan at 40° look angle; 4600 ft.AGL; raw observed TB data, not gridded

Vertical polarization; Nadir at 3540 ft. msl



IEEE Geoscience and Remote Sensing Symposium, July 26-30, 2010, Honolulu, Hawaii

Watts Bar Reservoir

Conclusions & Future Work

Conclusions

- Results indicate successful performance of beam forming radiometer
- Successful implementation of real-time calibration with emitted and injected Gaussian noise
- Opportunities for improvement

Future Work

- Improve calibration method
- Implement angle (phase) specific calibration
- Refine gridded product production
- Conduct additional performance tests
 - In situ observations
 - Mapping
 - Instrument intercomparisons
- Conduct more RFI analysis

