
Assessment of global annual atmospheric energy balance  1 

from satellite observations 2 

 3 

Bing Lin
*1

, Paul Stackhouse
1
, Patrick Minnis

1
, Bruce A. Wielicki

1
, 4 

Yongxiang Hu
1
, Wenbo Sun

2
, 5 

Tai-Fang (Alice) Fan
3
, and Laura Hinkelman

4
 6 

 7 

1
Sciences Directorate, NASA Langley Research Center, Hampton, VA 23681 8 

2
Center for Atmospheric Sciences, Hampton University, Hampton, VA 23668 9 

3
SSAI, One Enterprise Parkway, Hampton, VA 23666 10 

4
Dept. of Atmospheric Sciences, University of Washington, Seattle, WA 98195 11 

 12 

 13 

Submitted to Journal of Geophysical Research 14 

January 2008 15 

                                                           
*Corresponding author’s address: Dr. Bing Lin, MS 420, NASA Langley Research Center, 

Hampton, VA 23681-2199; email: bing.lin@nasa.gov; phone: 757-864-9823; fax: 757-864-7996. 



Abstract 16 

Global atmospheric energy balance is one of the fundamental processes for the earth’s 17 

climate system.  This study uses currently available satellite data sets of radiative energy at the 18 

top of atmosphere (TOA) and surface and latent and sensible heat over oceans for the year 2000 19 

to assess the global annual energy budget.  Over land, surface radiation data are used to constrain 20 

assimilated results and to force the radiation, turbulent heat, and heat storage into balance due to 21 

a lack of observation-based turbulent heat flux estimations.   22 

Global annual means of the TOA net radiation obtained from both direct measurements 23 

and calculations are close to zero.  The net radiative energy fluxes into the surface and the 24 

surface latent heat transported into the atmosphere are about 113 and 86 W/m
2
, respectively.  25 

The estimated atmospheric and surface heat imbalances are about  8 ~ 9 W/m
2
, values that are 26 

within the uncertainties of surface radiation and sea surface turbulent flux estimates and likely 27 

systematic biases in the analyzed observations.  The potential significant additional absorption of 28 

solar radiation within the atmosphere suggested by previous studies does not appear to be 29 

required to balance the energy budget the spurious heat imbalances in the current data are much 30 

smaller (about half) than those obtained previously and debated at about a decade ago.  Progress 31 

in surface radiation and oceanic turbulent heat flux estimations from satellite measurements 32 

significantly reduces the bias errors in the observed global energy budgets of the climate system. 33 

 34 
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1.  Introduction 35 

Global atmospheric energy and heat balance is one of the fundamental physical processes 36 

of the earth’s climate system.  Current constructions of the global energy balance are based on 37 

the analysis of assimilated data, satellite estimates of global radiant energy and turbulent heat 38 

over oceans, and/or the hybrid approach of in-situ and satellite measurements [Da Silva et al., 39 

1994; Trenberth and Solomon, 1994; Rossow and Zhang, 1995; Yu et al., 1999; Trenberth and 40 

Stepaniak, 2004; Fasullo and Trenberth, 2007; Zhang et al., 2007; and references therein].  With 41 

these constructed atmospheric heat fluxes, atmospheric and oceanic poleward heat transports are 42 

estimated [e.g., Zhang and Rossow, 1997; Fasullo and Trenberth, 2007; Zhang et al., 2007].  43 

Model assimilations can also provide global estimates of all atmospheric major energy and heat 44 

components.  But significant errors associated with these estimates exist and can be as large as 45 

about 30 W/m
2
 over large (1000 km) scales [Trenberth and Solomon, 1994].  Some analysis 46 

techniques, especially the method of constraining the model analysis results with satellite top-of-47 

atmosphere (TOA) radiation measurements and mass corrections within the assimilation models, 48 

are generally critical for reducing the uncertainties in global heat budgets [Trenberth et al., 49 

2002].   50 

Satellite-estimated heat components of the global energy balance are mainly focused on 51 

the fluxes of TOA and surface radiative energy and air-sea turbulent heat [e.g., Wielicki et al., 52 

1996; Zhang and Rossow, 1997; Chou et al., 1997; Schulz et al., 1997].  Analysis of satellite data 53 

indicates that the mean differences among radiative flux data sets may be large enough that 54 

direct measurements of annual planetary energy imbalances are still unreliable. However, 55 

comparison of the interannual anomalies of the ocean heat content with satellite-derived 56 

planetary energy variations converted to accumulated ocean heat content (or equivalently 57 
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comparison of the anomalies of ocean heat storage converted from ocean heat content with the 58 

planetary energy imbalances) show excellent quantitative agreement [Wong et al., 2006; Zhang 59 

et al., 2007].  Since both anomalies in and absolute values of the global energy budget are 60 

important for climate studies, quantitative knowledge about the global energy budget from more 61 

recent observationally-based data sets is needed.  An earlier consistency study of blended 62 

satellite, in-situ and assimilation data for global annual mean atmospheric energy budget [Yu et 63 

al., 1999] found that the data sets available at that time resulted in an unbalanced atmospheric 64 

heat budget of 20 W/m
2
, and the sign and magnitude of the systematic errors were consistent 65 

with the insufficient absorption of solar radiation within atmosphere debated at that time [e.g., 66 

Cess et al., 1995].  Although the systematic biases were generally much larger than TOA 67 

radiation uncertainties, these errors might be attributed to large spurious errors in the estimates of 68 

sea surface turbulent fluxes and to the combined effects of uncertainties in the radiation and 69 

turbulent flux calculations used in the study. 70 

Since there are significant improvements in both surface radiation and air-sea interaction 71 

flux estimates from satellite observations in last 5-10 years, this paper revisits the consistency 72 

issue of global annual atmospheric energy budget.  The overarching goal is to evaluate the 73 

magnitude of the systematic biases within current satellite-based datasets and determine if the 74 

spurious errors are within the accuracies of current satellite retrievals of radiative and sea surface 75 

turbulent fluxes.  The datasets are discussed in Section 2, and the results are shown in Section 3.  76 

Major conclusions are summarized in Section 4. 77 

 78 

2. Data sets and analysis methodology 79 
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In this study, satellite observations are employed to estimate TOA radiative fluxes.  For 80 

surface fluxes, satellite retrievals are used over oceans, and the combined results from satellite 81 

estimates of radiant energy and assimilation analyses of surface heat storage and the partition of 82 

latent and sensible heat (or the Bowen ratio) are used over land.  Three global radiation datasets 83 

are used here: measurements from the Clouds and the Earth’s Radiant Energy System (CERES) 84 

mission [Wielicki et al., 1996], the International Satellite Cloud Climatology Project Flux Data 85 

[ISCCP-FD, see Zhang et al., 2004], and the Global Energy and Water Cycle Experiment 86 

(GEWEX) Surface Radiation Budget (SRB) data [Stackhouse et al., 2001].  CERES directly 87 

measures TOA outgoing and incoming broadband longwave (LW) and shortwave (SW) radiation 88 

for the climate system.  The other two radiation projects (ISCCP and SRB) calculate the TOA 89 

and surface radiation energy based on satellite observations of atmospheric temperature and 90 

humidity profiles, cloud optical properties and their spatial distributions, and the surface 91 

radiation properties such as skin temperature, emissivity and bidirectional reflection distribution 92 

functions.  The random errors in the TOA monthly mean data at regional scales (~250 km) 93 

associated with these radiation data are reasonably small (~5 W/m
2
; see the references listed 94 

above).  The global monthly mean random errors are even smaller.  The systematic errors in 95 

estimating the global annual mean energy budget can be as large as about 5 W/m
2
 for the direct 96 

radiation measurements and within about 2 W/m
2
 for ISCC-FD and SRB products.  At the 97 

surface, the instantaneous errors in the radiative fluxes for the current ISCCP-FD and SRB 98 

products are as large as about 30 W/m
2
.  The regional monthly mean bias errors are significantly 99 

smaller, around 10 W/m
2
 [Zhang et al., 2004].  The system errors for global annual means could 100 

be even smaller due to potential cancellations of the bias errors for different climatological 101 

regimes.   102 
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The global turbulent heat fluxes from oceans to the atmosphere are based on the version 2 103 

and 3 products of the Goddard Satellite-based Surface Turbulent Fluxes (GSSTF) and Hamburg 104 

Ocean Atmosphere Parameters and fluxes from Satellite (HOAPS), respectively, and are 105 

estimated from satellite microwave sensors [Chou et al., 1997; Schulz et al., 1997].  The random 106 

error for instantaneous flux estimates is approximately 30 W/m
2
, and that for monthly regional 107 

averages decreases to ~15 W/m
2
.  The systematic errors are much smaller and within about 7 108 

W/m
2
.  Since there are no global land surface turbulent flux observations, the latent and sensible 109 

heat fluxes are calculated from a combination of the results from the Global Land Data 110 

Assimilation System (GLDAS) [Rodell et al., 2004] and the SRB radiation data.  Because the 111 

temperature of regional land surfaces may vary from one month to another, there are small heat 112 

storage changes in the monthly time scale for a particular region.  At the global annual mean 113 

scale, the land heat storage change [Huang, 2006] is much smaller than the systematic errors in 114 

the current datasets and the potential satellite-observed climate system energy imbalance.  Our 115 

analysis confirms that the GLDAS yields negligible changes in the global annual mean heat 116 

storage.  Also, the regional horizontal heat transport within land surfaces is much smaller than 117 

the storage change and can be ignored.  Thus, this study uses surface SRB radiation and regional 118 

monthly heat storage from GLDAS as heat constraints for latent and sensible heat fluxes in each 119 

regional grid box (1.25º1º).  Furthermore, the monthly Bowen ratios in each grid box from 120 

GLDAS are used to partition the latent and sensible heat fluxes based on the heat constraints of 121 

SRB radiation and GLDAS storage fluxes.  In this way, we have forced the land surface energy 122 

budget into balance at the global annual mean scales and essentially eliminate the spurious net 123 

flux errors over land. 124 
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Poleward of about 75ºS, the surface is primarily covered by oceanic and continental ice 125 

sheets.  There are few surface latent and sensible heat estimations from both satellites and 126 

GLDAS.  Our satellite based estimates of global annual energy budget mainly cover the regions 127 

north of 75ºS latitude.  Because the turbulent fluxes are generally small south of 75ºS, the 128 

sensible heat fluxes are assumed to be zero during cold seasons and the precipitation data from 129 

the Global Precipitation Climatology Project [GPCP; Adler et al., 2003] are used to fill the 130 

turbulent energy gap for these latitudes.  Since the surfaces are very cold and there is only a 131 

small amount of moisture transported into the high latitudes, the latent heat estimated from 132 

precipitation and the assumed zero sensible heat fluxes from surface to atmosphere could 133 

overestimate the turbulent fluxes.  On the other hand, due to GPCP underestimates of snowfall 134 

and drizzle, the overall errors in the estimates of the turbulent energy in the region may be 135 

reduced.  Finally, all analyzed data are collected for the year 2000.  There were no special 136 

climate events, such as significant El Nino, La Nina, or volcanic activities during this year.  An 137 

analysis of that year’s satellite products represents the current status of satellite estimations of the 138 

global energy budget under normal climate conditions.  Also, 2000 is the only year that satellite 139 

sea surface turbulent flux data from the GSSTF overlap with CERES radiation measurements.   140 

 141 

3.  Results 142 

 Comparisons of the CERES, SRB and ISCCP TOA radiative fluxes reveal that the basic 143 

global patterns of annual mean TOA SW and LW fluxes, especially those for zonal averages, 144 

from all three data sets are very similar.  The major differences are systematic biases among 145 

them, especially between CERES and the other two satellite calculations.  As mentioned in the 146 

previous section, direct TOA radiation measurements yield a net radiation imbalnce of ~5.5 147 
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W/m
2
 for the global annual mean, while SRB data result in a systematic imbalance of about 1.5 148 

W/m
2
.  Because this 5 W/m

2
 imbalance has existed in the direct TOA radiation measurements for 149 

about 2 decades, it can be easily removed from interannual variation analysis, resulting in a 150 

much smaller (~0.5 W/m
2
) residual systematic imbalance.  In order to obtain a conservative 151 

annual energy budget and more realistic current satellite-based energy imbalance estimate, a 152 

somewhat larger bias in the SRB fluxes is considered here.  Figure 1 shows zonal annual means 153 

of TOA (solid curve), surface (dotted curve), and atmosphere (dashed curve) net radiation 154 

estimates (note: hereafter all numbers in figures represent global mean values.)  Integration of 155 

the TOA radiative fluxes from the poles to the equator represents the net meridional heat 156 

transports of the general circulation of the climate system.  It can be seen from the TOA radiation 157 

plot that the climate system gains net energy only within ~ ±35º latitudes, and the middle 158 

latitudes have the maximum climate heat transports.  The variation of zonal surface radiation 159 

basically follows the latitudinal pattern of TOA radiation except that the surface radiation is 160 

about 110 W/m
2
 higher due to small differences in surface upwelling and downwelling LW 161 

radiation and to the dominant influence of solar radiation.  The atmospheric net radiation, i.e., the 162 

difference between TOA and surface radiative fluxes is rather uniform, around 110W/m
2
 for 163 

most of latitudes.  Within the atmosphere, SW absorption is minimal compared to LW emission 164 

and the LW radiation cooling into space dominates the atmospheric radiation budget. 165 

The annual zonal means of latent and sensible heat fluxes from the surface to the 166 

atmosphere estimated from GSSTF are shown in Figure 2.  HOAPS produced results similar to 167 

those from GSSTF.  Latent heat (solid curve) gradually decreases from more than 100 W/m
2
 at 168 

low latitudes to nearly zero at poles.  A clear relative minimum near the equator is caused by the 169 

weak winds of the intertropical convergence zone (ITCZ).  Sensible heat fluxes (dashed curve) 170 
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are generally small compared to latent heat fluxes and range from about 0 to 25 W/m
2
.  The 171 

global annual averaged latent heat and sensible heat fluxes are 86 and 18 W/m
2
, respectively.  172 

These latent heat fluxes are significantly greater (~ 11 W/m
2
) than GPCP measured rainfall latent 173 

heat releases (dotted curve).  Because there are basically no snowfall and drizzle estimates in the 174 

GPCP data set and significant uncertainties in both the rainfall and surface latent heat 175 

estimations, the two different estimates in the atmospheric latent heat are reasonably consistent.  176 

With full precipitation and surface latent flux retrievals, zonal moisture transports that currently 177 

have not been understood could be estimated. 178 

The annual zonal mean distribution of atmospheric total heat fluxes (Figure 3), the 179 

combined heating fluxes to the atmosphere from TOA and surface net radiation and surface 180 

latent and sensible heat, basically follows the latitudinal pattern of net radiation at TOA and 181 

surface except that a minimum exists at equator caused by the low surface turbulent heat fluxes 182 

at this region.  Combining the strong atmospheric radiative cooling (112 W/m
2
) with the slightly 183 

weaker turbulent heat flux from surface to the atmosphere (104 W/m
2
), this analysis results in an 184 

estimated annual mean global atmospheric heat imbalance of about 8 W/m
2
.  Since the 185 

averaged atmospheric heat storage change in annual and global scales is negligible (considerably 186 

smaller than 1 W/m
2
), this global atmospheric heat imbalance is clearly a spurious error of the 187 

atmospheric heat budget.  Similar to this atmospheric heat imbalance, the estimated global 188 

annual mean surface total heat imbalance is about 9.4 W/m
2
.  Although there has been some 189 

slight heating of the oceans and the earth’s climate system in recent years [Wong et al., 2006], 190 

the relatively high value of 9.4 W/m
2
 in surface heating is largely the result of the various errors 191 

in the input data that caused a complementary bias in the atmospheric heat budget.  When the 192 

systematic errors in turbulent (~7 W/m
2
) and radiative (~10 W/m

2
) heat fluxes are considered, 193 
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the systematic error (8~9 W/m
2
) in global total energy budget is not a surprise.  Actually, this 194 

systematic error is less than half of what was estimated from the blended data of satellite, in-situ 195 

and assimilation in Yu et al. [1999].  Also, this spurious error is within the current understanding 196 

of the uncertainties in global radiation and turbulent flux estimates.  Thus, there is no need to 197 

invoke the need for significantly more atmospheric absorption of solar radiation as mentioned by 198 

Yu et al. [1999] and as debated at about a decade ago.   199 

Global distributions of the oceanic annual mean surface heat budget are shown in Figure 200 

4.  Positive values in the figure indicate that oceans gain heat from the atmosphere.  Over land 201 

and at the annual time scale, there is almost no net heating due to the negligible heat storage and 202 

the forced balance among the radiative and latent and sensible heat fluxes, and the heat storage in 203 

this study, as mentioned before.  Over oceans, regional net heating from the atmosphere is 204 

mostly used for horizontal heat transports with a relatively small part for vertical heat mixing.  205 

Since a portion of our estimates of the regional annual surface heat budgets, especially of those 206 

with small absolute numbers, is from bias errors in the regional estimations of radiative and 207 

turbulent heat fluxes, the estimated annual budgets with an absolute value exceeding ~10 W/m
2
 208 

could be significant for this analysis.  For areas such as the ITCZ and those having strong ocean 209 

currents, heat horizontal transports dominate the estimated budgets.  The equatorial area, 210 

particularly in the eastern parts of the ocean basins, is the major heat source of the oceans. It has 211 

a large net radiant energy gain, loses a comparatively small amount of turbulent heat, and has a 212 

surface heat budget as large as about 100 W/m
2
.  The heat in the eastern ocean basins is 213 

generally moved to western basins by easterlies, then, transported to higher latitudes.  Some of 214 

the surface heat to the ocean in these regions is also used for heating the upwelling cold water 215 

caused by the Ekman pumping.  Both the Gulf Stream and Kuroshio Current play critical roles in 216 
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latitudinal heat transports.  They bring warm water from low latitudes to middle and high 217 

latitudes and release considerable latent heat into atmosphere.  Combining turbulent cooling with 218 

radiative heating, we still find heat losses of more than 60 W/m
2
 in these oceanic current regions.  219 

Large areas of the West Australia Current have cooling features similar to those of the Gulf 220 

Stream and Kuroshio Current except that the Australian current is much weaker.  Oceans 221 

generally gain energy from the atmosphere over the annual time scale in tropical regions.  222 

Subtropical subsidence areas may have small annual heating budgets due to a combination of 223 

climate conditions of dry windy weather (i.e., large latent heat loss) and significant solar 224 

radiation.  With rapidly decreasing in solar radiation with increasing latitude accompanied by 225 

smaller reductions in turbulent fluxes, the sea surface at higher latitudes releases heat into the 226 

atmosphere.  It is because of the oceanic horizontal heat transport along with some vertical heat 227 

mixing, that the basic heat balance over sea surfaces is reached.  The heat budget distribution in 228 

Figure 4 clearly shows major features of oceanic dynamics and the dominant mechanism of 229 

horizontal heat transports within oceans. 230 

 231 

4.  Summary 232 

This study uses the measurements taken in the year 2000 from multiple satellites to 233 

estimate global annual mean atmospheric heat budget.  At the top-of-atmosphere, net radiative 234 

fluxes into the atmosphere obtained from both direct radiant energy measurements and radiation 235 

calculations using satellite-observed atmospheric profiles are close to zero.  The global means of 236 

net radiative energy flux into the surface and surface latent heat flux into the atmosphere are 237 

about 113 and 86 W/m
2
, respectively.  The atmospheric and surface net heat budgets are about 238 

8 ~ 9 W/m
2
.  These annual mean global heat imbalances in the atmosphere and at surface are in 239 
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the same order of magnitude as the uncertainties in the radiation and sea surface turbulent flux 240 

estimations and the likely systematic errors in the analyzed data.  Although these spurious errors 241 

are significant for studies of annual mean global heat budget, they are clearly much smaller (less 242 

than half) than those estimated from blended data about decade ago [Yu et al., 1999].  243 

Furthermore, the potentially strong additional absorption of solar radiation within the atmosphere 244 

as suggested by Yu et al. is not be required in the current analysis of the global energy budget 245 

due to much smaller spurious heat imbalances in the data compared to those used by Yu et al..  246 

Progress in satellite surface radiation and oceanic turbulent heat flux estimations significantly 247 

reduces the bias errors in the observed global energy budgets of the climate system.  248 

Future work will be targeted on shrinking systematic errors in satellite estimates of 249 

surface radiative and turbulent heat fluxes.  Removal of systematic heat budget errors would 250 

provide a great opportunity to use zonal annual means (such as those plotted in Figures 1  3) to 251 

estimate meridional heat transports of the earth’s climate system and separate the heat transports 252 

into atmospheric and oceanic components.  Combining advanced precipitation measurements 253 

with surface latent heat estimations would also enable the estimation of atmospheric meridional 254 

moisture transports at an accuracy beyond that can be determined from the current, very limited 255 

measurements and observationally-based knowledge.  256 

 257 

258 



 11 

 

 259 

Acknowledgement.  The authors would like to express their appreciation to M. Rodell, G. 260 

Gibson, C.A. Schlosser, P. Houser, D. Young, and T. Wong for their valuable comments.  This 261 

research was supported by the NASA Energy and Water cycle Studies (NEWS) program and 262 

CERES mission.  SRB products and sea surface data were obtained from the NASA Langley 263 

Atmospheric Sciences Data Center in Hampton, Virginia and Goddard Distributed Active 264 

Archive Center in Greenbelt, Maryland, respectively.  265 

266 



 12 

 

References 267 

 268 

Adler, R., G.J. Huffman, A. Chang, et al., The Version-2 Global Precipitation Climatology 269 

Project (GPCP) monthly precipitation analysis (1979-present), J. Hydrometeor., 4, 1147-1167, 270 

2003. 271 

Cess, R. D., M. H. Zhang, P. Minnis, L. Corsetti, E. F. Dutton, B. W. Forgan, D. P. Garber, W. 272 

L. Gates, J. J. Hack, E. F. Harrison, X. Jing, J. T. Kiehl, C. N. Long, J.-J. Morcrette, G. L. 273 

Potter, V. Ramanathan, B. Subasilar, C. H. Whitlock, D. F. Young, and Y. Zhou, Absorption 274 

of solar radiation by clouds: observations versus models. Science, 267, 496-499, 1995. 275 

Chou, S.-H., C. Shie, R. Atlas, and J. Ardizzone, Air-sea fluxes retrieved from SSM/I data, J. 276 

Geophys. Res., 102, 12,705-12,726, 1997. 277 

Da Silva, A. M., C. C. Young, and S. Levitus, Atlas of Surface Marine Data 1994, vol. 1, 278 

Algorithms and Procedures, NOAA Atlas NESDIS 6, U.S. Dep. of Commer., Natl. Oceanic 279 

and Atmos. Admin./Natl. Environ. Satellite Data Inf. Serv., Silver Spring, Md., 1994. 280 

Fasullo, J., and K.E. Trenberth, The annual cycle of the energy budget: Meridional structures and 281 

poleward transports, submitted to J. Clim., 2007. 282 

Huang, S., 1851-2004 annual heat budget of the continental landmasses, Geophys. Res. Lett., 33, 283 

L04707, doi:10.1029/2005GL025300, 2006. 284 

Rodell, M., P. R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.-J. Meng, K. Arsenault, B. 285 

Cosgrove, J. Radakovich, M. Bosilovich, J. K. Entin, J. P. Walker, D. Lohmann, and D. Toll, 286 

The Global Land Data Assimilation System, Bull. Amer. Meteor. Soc., 85, 381394, 2004. 287 



 13 

 

Rossow, W. and Y. Zhang, Calculation of surface and top of atmosphere radiative fluxes from 288 

physical quantities based on ISCCP data set 2: Validation and first results, J. Geophys. Res., 289 

100, 1167-1197, 1995. 290 

Schulz, J., J. Meywerk, S. Ewald, and P. Schlussel, Evaluation of satellite-derived latent heat 291 

fluxes, J. Climate, 10, 2782-2795, 1997. 292 

Stackhouse Jr., P.W., S. J. Cox, S.K. Gupta, M. Chiacchio, and J.C., Mikovitz, The 293 

WCRP/GEWEX surface radiation budget project release 2: An assessment of surface fluxes at 294 

1 degree resolution. International Radiation Sysposium, St.-Petersburg, Russia, July 24-29, 295 

2000. IRS 2000: Current Problems in Atmospheric Radiation, W.L. Smith and Y. Timofeyev 296 

(eds.), A. Deepak Publishing, 147, 2001. 297 

Trenberth, K.E., and A. Solomon, The global heat balance: heat transports in the atmosphere and 298 

ocean, Climate Dynamics, 10, 107-134, 1994. 299 

Trenberth, K. E., D. P. Stepaniak, and J. M. Caron, Accuracy of atmospheric energy budgets 300 

from analyses. J. Clim., 15, 3343-3360, 2002. 301 

Trenberth, K. E., and D. P. Stepaniak, The flow of energy through the Earth’s climate system. 302 

Quart. J. Roy. Meteor. Soc., 130, 2677.2701, 2004. 303 

Wielicki, B.A., B. Barkstrom, E.F. Harrison, R. Lee, G. Smith, and J. Cooper, Clouds and the 304 

Earth’s Radiant Energy System (CERES): An Earth observing system experiment, Bull. Am. 305 

Meteorol. Soc., 77, 853-868, 1996. 306 

Wong, T, B.A. Wielicki and R.B. Lee III, Reexamination of the observed decadal variability of 307 

earth radiation budget using altitude-corrected ERBE/ERBS nonscanner WFOV data, J. 308 

Clim., 19, 4028-4040, 2006. 309 



 14 

 

Yu, R., M. Zhang, and R.D. Cess, Analysis of the atmospheric energy budget: A consistency study 310 

of available data sets, J. Geophys. Res., 108, 9655-9661, 1999. 311 

Zhang, Y., and W. Rossow, Estimating meridional energy transports by the atmospheric and 312 

oceanic general circulations using boundary fluxes, J. Clim., 10, 2358-2373, 1997. 313 

Zhang, Y-C., W.B. Rossow, A.A. Lacis, V. Oinas and M.I. Mishchenko, Calculation of radiative 314 

fluxes from the surface to top-of-atmosphere based on ISCCP and other global datasets: 315 

Refinements of the radiative transfer model and the input data, J. Geophys. Res., 109, 316 

D19105, doi:10.1029/2003JD004457, 2004. 317 

Zhang, Y.-C., W.B. Rossow, P. Stackhouse Jr., A. Romanou, B.A. Wielicki, Decadal variations 318 

of global energy and ocean heat budget, and meridional energy transports inferred from recent 319 

global datasets, submitted to J. Geophys. Res, 2007. 320 

 321 

322 



 15 

 

Figure captions 323 

Fig. 1. Annual zonal mean net radiation at TOA (solid), over surface (sfc; dotted) and within the 324 

atmosphere (dashed).  Hereafter, the numbers for individual curves shown in the figure are 325 

their corresponding global annual means. 326 

Fig. 2. Annual zonal means of surface latent (solid) and sensible (dashed) heat fluxes.  Also 327 

plotted is the latent heat (dotted) estimated from precipitation measurements. 328 

Fig. 3. Annual zonal means of atmospheric (solid) and surface (dashed) heat budgets.   329 

Fig. 4. Annual mean sea surface heat budget in W/m
2
.  Positive values indicate that oceans gain 330 

heat from the atmosphere. 331 

 332 

 333 

334 
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Figures 335 

 336 

Fig. 1  Annual zonal mean net radiation at TOA (solid), over surface (sfc; dotted) and within the 337 

atmosphere (dashed).  Hereafter, the numbers for individual curves shown in the figure are 338 

their corresponding global annual means. 339 

 340 

 341 

 342 

Fig. 2  Annual zonal means of surface latent (solid) and sensible (dashed) heat fluxes.  Also 343 

plotted is the latent heat (dotted) estimated from precipitation measurements.  344 

 345 

346 
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Fig. 3  Annual zonal means of atmospheric (solid) and surface (dashed) heat budgets.   347 

 348 

 349 

 350 

Fig. 4  Annual mean sea surface heat budget in W/m
2
.  Positive values indicate that oceans gain 351 

heat from the atmosphere. 352 
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