A STATISTICAL PROJECT CONTROL TOOL FOR ENGINEERING MANAGERS

 2nd International Workshop on Engineering Management for Applied Technology
 Joe C. Thompson Conference Center Austin, TX

GARLAND T. BAUCH, PH. D. INDUSTRIAL ENGINEERING (SYSTEMS ENGINEERING/ENGINEERING MANAGEMENT) NASA – JOHNSON SPACE CENTER SPACE SHUTTLE DIVISION SR&QA OFFICE AUGUST 16, 2001

08/01/2001 2:23:28 PM

AGENDA

- Introduction
- Literature Review
- Problem Statement
- Research Methodology
- Research Results and Discussion
- Limitations of Study
- Contribution to the Body of Knowledge
- Future Research
- Conclusions

INTRODUCTION

• Use of Projects Increasing Meredith (1988), Badiru, (1991), Kharbanda & Pinto (1996), Pinto & Kharbanda (1996), and Shenhar, Levy, & Dvir (1996).

• Project Failures Increasing Globally

Badiru (1995), Balachandra (1989), Gioia (1996), Morris (1988), Morris and Hough (1987), and Tishler, Dvir, Shenhar, and Lipovetsky (1996)

• Application to Project Management

LITERATURE REVIEW

- Project Success Definition
- Project Success Factors
- Project Control Tools (networking)
- Performance Measurement
- Statistical Process Control
- Continuous Assessment of Performance
- Statistical Project Control
- General Results

LITERATURE REVIEW PROJECT SUCCESS DEFINITION

A Project Is Successful When the Cost, Schedule, Technical Performance, and Quality Satisfy the Customer.

LITERATURE REVIEW PROJECT SUCCESS FACTORS

- Project Goals, Definition, & Mission
- Cost, Finance, & Schedule
- Technical Uncertainty & Performance
- Customer Satisfaction & Acceptance
- Environmental, Social, & Political Pressure
- Managerial & Organizational Factors
- Communications

[Morris (1988), Slevin & Pinto (1986), Tishler et. al (1996), Baker et. al. (1986), & Woodard (1988)]

LITERATURE REVIEW TRADITIONAL PROJECT CONTROL TOOLS

• Gantt Charts

Gantt (1911)

• WBS

Kelley and Walker (1959)

• CPM

Du Pont (1950s)

• PERT

Navy Polaris (1958)

LITERATURE REVIEW PERFORMANCE MEASUREMENT

- Actual Cost vs. Earned Value
- Planned (Budget) vs. Earned Value
- Technical Performance
- Required for > \$25 Million

[Project Management Guide, JSC 61100, NASA-JSC]

LITERATURE REVIEW STATISTICAL PROCESS CONTROL

• Shewhart Control Charts 1924

[Emerson & Naehring (1985)], [Montgomery (1985)], [Johnson's Miller & Freund (1994)]

• SQC Training/Deming, Et. Al.

[Emerson & Naehring (1985)]

- Manufacturing Processes
- Tool Wear Model [Banks (1989), Grant (1952), McClave and Benson (1994)]

LITERATURE REVIEW CONTINUOUS ASSESSMENT OF PROJECT PERFORMANCE (CAPP)

- Predictive Tools Task Force (1992)
- Quantitative Real-time Data Collected
- Questionnaire Used

LITERATURE REVIEW STATISTICAL PROJECT CONTROL

• No Literature Found

LITERATURE REVIEW GENERAL RESULTS

- Existing Tools Mostly Empirical & Subjective Slevin & Pinto (1986)
- Need for Better Dynamic Tools Balachandra & Raelin (1984), Christian (1993), Goldin (1998), Meredith (1988), Morris (1988), & Tadisina (1986)
- Consider Environmental Impact Might & Fisher (1985)
- Consider Customer Needs Lipovetsky, Tishler, Dvir, & Shenhar (1997)

PROBLEM STATEMENT

- Resources Becoming More Limited
- Projects Are Increasing in Numbers [Meredith (1988)]
- Project Failure Is Increasing [Morris (1989)]
- Systematic Methods Needed

[Pinto & Slevin (1988)]

• Existing Methods Limited

OBJECTIVE

Provide a New Statistical Project Control Tool For Project Managers

RESEARCH METHODOLOGY

- Data Search/Collection
- Research Population
- Data Transformation
- Validation Steps
- Comparison of SPC and SPCT Charts

RESEARCH METHODOLOGY DATA SEARCH/COLLECTION

- NASA
- Military
- Consultants
- Professional
- Commercial
- Institutes

RESEARCH METHODOLOGY RESEARCH POPULATION

- Construction Industry Projects
- 17 Companies
- 54 Projects
- 76 Variables

RESEARCH METHODOLOGY DATA TRANSFORMATION

- Traditional Control Chart Features
- Compute Normalized Time and Variables
- Pattern Analysis Rules
- Validation Steps
- Comparison of SPC and SPCT Charts

RESEARCH METHODOLOGY Traditional Control Chart Features

[McClave & Benson (1994)]

RESEARCH METHODOLOGY DATA TRANSFORMATION COMPUTE NORMALIZED TIME

Normalized

Original

RESEARCH METHODOLOGY DATA TRANSFORMATION COMPUTE NORMALIZED VARIABLE

- Ratio
- Moving Average
- Exponential Smoothing
- % Cumulative (Cum)
- Cum % Cum
- Average Cum % Cum

RESEARCH METHODOLOGY DATA TRANSFORMATION SPCT CHART

Rule 1: 1 point beyond Zone ARule 2: 9 points in a row in Zone C or beyondRule 3: 6 pts. in a row steadily incr. or decreasingRule 4: 14 points in a row alternating up and downRule 5: 2 out of 3 pts. in a row in Zone A or beyondRule 6: 4 out of 5 pts. in a row in Zone B or beyond

[McClave & Benson (1994)]

- Rule 1m: 1 pt. beyond Zone A Except for a slight exceeding in cost or design early in the project life cycle
- Rationale
 - -Initial start-up costs large sometimes
 - -Zero or low variable values
 - -Low values cause narrow control limits
 - -Insufficient trending data

- Rule 2m: 9 pts. in a row in Zone C or beyond Except below the CL early in the project life cycle for expenditures or construction and late in the life cycle for design.
- Rationale
 - -Expenditures and construction are historically low early in the project life cycle
 - -Design is historically low late in the life cycle

- Rule 3m₁: 6 pts. in a row dec. rel. to the CL Except for design during the latter part of the project life cycle.
- Rationale

Design historically decreases late in the project life cycle

- Rule 3m₂: 6 pts. in a row inc. rel. to the CL Except for design during the early part of the project life cycle.
- Rationale

Design historically increases early in the project life cycle

RESEARCH METHODOLOGY Comparison of SPC and SPCT

FEATURETRADITIONALPROJECTHISTORICAL-TARGET LINE-SAMPLE SIZE-VALUE-CENT. LINE-UCL, LCL

RESEARCH RESULTS Chart Types

- Actual Owner Expenditure
- Actual % Design Complete
- Actual % Construction Complete
- Actual Cost of Change Orders

RESEARCH METHODOLOGY QUANTITATIVE VALIDATION STEP

- Plot 3 Different Successful Projects
 Does Not Violate Pattern Analysis Rules
- Plot 3 Different Failed
 Violates Pattern Analysis Rules
- Success/Failure Defined By Owner

RESEARCH RESULTS SPCT Validation Using Successful Project

• Process industry

• In-control per Rules 1m & 2m

• Pattern validates control chart

TP	LCL	\underline{CL}	UCL	<u>23-3S</u>
0	-2798	271	3340	4550
5	-31912	15862	63636	743
10	-21891	27427	76744	21432
15	-14300	29648	73597	30533
20	-43350	21872	87094	18079

RESEARCH RESULTS SPCT Validation Using Failed Project

RESEARCH RESULTS SPCT Validation Using Successful Project

- Process industry
- Pattern in-control per Rule 3m
- Pattern validates control Chart

TP	LCL	\underline{CL}	UCL	<u>23-38</u>
0	-3.63	0.80	5.24	3.00
5	-2.99	6.17	15.33	2.25
10	0.12	7.27	14.41	8.00
15	-2.83	4.37	11.56	6.00
20	-0.65	1.25	3.16	0.75

RESEARCH RESULTS SPCT Validation Using Failed Project

RESEARCH RESULTS SPCT Validation Using Successful Project

• Process industry

• Pattern in-control per Rule 2m

• Pattern validates control chart

TP	LCL	<u>CL</u>	UCL	23 <u>-3S</u>
0	0.00	0.00	0.00	0.00
5	-3.61	1.02	5.65	0.00
10	-6.23	7.22	20.67	4.19
15	.41	10.16	19.90	14.20
20	-4.01	3.82	11.65	3.02

RESEARCH RESULTS SPCT Validation Using Failed Project

RESEARCH RESULTS SPCT Validation Using Successful Project

• Pattern validates control chart

TP	LCL	<u>CL</u>	UCL	23 <u>-1S</u>
0	0	0	0	0
5	-45536	7549	60635	2621
10	-46625	16620	79865	25403
15	-50258	15945	82149	11909
20	-51058	11182	73423	-725

RESEARCH RESULTS SPCT Validation Using Failed Project

DISCUSSION

- Check for Normality Assumptions
- Comparison of Project Characteristics
- Control Chart Validation
- Problems Encountered
- Why Control Chart Works

DISCUSSION Causes for "Out of Control" Patterns

- Rule 1: One Point Beyond Zone A
 - -Change in Corp. policy
 - -Design Change
 - -Design Step Omitted
- Rule 2: 9 Pts. in a Row in Zone C or Beyond
 - -New Manager
 - -New Metrics System Manager
 - -New Business Rules Instituted

DISCUSSION Causes for "Out of Control" Patterns

- Rule 3₁: 6 Pts. in a Row Steadily Increasing
 –Poor Team Morale
 - -Requirements not being met
 - -Manager or Team Fatigue
 - -Changes in External Environment
 - -Emergency or expedition declared
- Rule 3_2 : 6 Pts. in a Row Steadily Decreasing —Opposite causes as in Rule 3_1

LIMITATIONS OF STUDY

- Construction Industry Only
- Limited Amount of Data
- Variables Selected
- Effect of Project Characteristics
- Variable 4 Lack of Normality

CONTRIBUTION TO THE BODY OF KNOWLEDGE

- Quantitative Benchmarking Tool
- Dynamic Decision-Making (predictive)
- Industrial Engineering Method
- Environmental Factors
- Quality and Safety

CONCLUSIONS

- No Tool Like SPCT Presently Available
- Ratio Method Best
- Cumulative Plot Interpolation
- SPCT Chart Methodology Is Valid
- Can Indicate Health of Project
- May be applied to other industries

FUTURE RESEARCH

- Product vs. Process Success
- Study Lower Level Elements
- Study Other Industry Types
- Study Other Project Types

QUESTIONS