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Abstract
It is well known that the costs to fix errors increase as the project matures, but how fast do

those costs build? A study was performed to determine the relative cost of fixing errors
discovered during various phases of a project life cycle. This study used three approaches to
determine the relative costs: the bottom-up cost method, the total cost breakdown method, and
the top-down hypothetical project method. The approaches and results described in this paper
presume development of a hardware/software system having project characteristics similar to
those used in the development of a large, complex spacecraft, a military aircraft, or a small
communications satellite.

The results show the degree to which costs escalate, as errors are discovered and fixed at
later and later phases in the project life cycle. If the cost of fixing a requirements error
discovered during the requirements phase is defined to be 1 unit, the cost to fix that error if found
during the design phase increases to 3 — 8 units; at the manufacturing/build phase, the cost to fix
the error is 7 — 16 units; at the integration and test phase, the cost to fix the error becomes 21 —
78 units; and at the operations phase, the cost to fix the requirements error ranged from 29 units
to more than 1500 units.

Introduction
We know that the cost to fix errors increases as a project matures — that it will cost more to

fix a requirements error after the product is built than it would if the requirements error was
discovered during the requirements phase of a project. So how important is it to the bottom-line
to find errors as early as possible — putting increased emphasis on systems engineering tasks in
the early stages of the project life cycle? Especially when schedule urgencies push the project to
rush through definition and start cutting metal? Increased emphasis on finding errors early in the
project life cycle means spending more time and a larger percentage of project costs in the
definition phases of a project — more than is usually allocated to the early phases.

Background
Many published papers, articles, and books (cited in the following sub-sections) provide

information regarding the "value" of systems engineering and quantitative software cost factors,
but few sources in the published literature define system cost factors. When relative cost-to-fix
numbers are published, it is difficult to discern the methods used to produce the results.

Cost Factors. In this paper, we will often refer to the term "cost factors." It is a term used in
many of the previous studies discussing the costs of errors in software systems, and is central to
the methodologies we used to analyze generic systems error costs. Cost factors represent
normalized costs to fix an error. These factors may be used as a "yardstick" to measure or
predict the cost to fix errors in different projects.

Software Cost Factors. Barry Boehm performed some of the first cost studies to determine — by
software life cycle phase — the cost factors associated with fixing errors. Finding and fixing a



software problem after delivery can be upwards of 100 times more expensive than finding it and
fixing it during the requirements and early design phases. Late corrections involve a much more
formal change approval and control process, and a much more extensive activity to revalidate the
correction. The relative cost to fix a software error is shown below in Figure 1 [Boehm, 1981].

Figure 1. Relative Cost to Fix Software Errors per Life Cycle Phase

Many studies have been performed to determine the software error costs factors [Rothman,
2002], [Pavlina, 2003], [McGibbon, 2003], [Cigital, 2003]. Error cost escalation is often used to
justify expenditures for software engineering process improvements and software quality
assurance activities [Schneider, Martin, & Tsai, 1992], [Mortice Kern Systems Inc., 2001]. The
cost data has been normalized to determine the software error cost factors for each study, along
with the overall mean and median values for each life cycle phase, as shown in Table 1.

Source Phase Requirements Issue Found

Requirements Design Code Test

J Boehm, 19811 1 5 10 50

11 loffman, 2001 1 3 5 37

[Cigital, 2003] 1 3 7 51

1 Rothman, 20001 5 33 75

1 Rothman, 20001 Case B 10 40

1 Rothman, 20001 Case C 10 40

Rothman, 2002] 1 20 45 250

IPavlina, 20031 1 10 100 1000

[McGibbon, 2003] 5 50

Mean 1 7.3 2 5. 6 177

Median 1 5 10 50.5

Table 1: Normalized Cost-to-Fix Estimates



System Cost Factors. The only known published information on systems cost factors was found
in a book on designing cost-effective space missions [Cloud, Giffen, Larson, and Swan, 1999].
These systems cost factors, shown in Table 2, represent the costs of fixing errors in electronics
hardware. The costs are referenced without any description of the approach or method used to
generate the comparative cost numbers, therefore it is difficult to discuss similarities and
differences between the costs in Table 2 and the results of this paper.

Phase that Change Occurs Resulting Cost
Product Design $1,000
Product Testin g $10,000
Process Design $100,000
Low-Rate Initial Production $1,000,000
Final Production/Distribution $10,000,000

Table 2: Systems Cost Factors

Life Cycle Phases
Figure 2 maps the five life cycle phases, used in this paper, to the NASA project life cycle flow,
and to the NASA and Department of Defense (DoD) acquisition phases. Major control gates, i.e.
technical maturity milestones, are also shown in Figure 2. The NASA Systems Engineering Life
Cycle [NASA SE Handbook, 1995] was used to categorize, by phase, the error discovery point.
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DOD Concept Exploration Demonstration Engineering & Manulacturing Production & Deployment Operations &

Phases & Definition & Validation Development Support

Project Requirements Design

I
Manufacturing/ Integration/Test Operations

Phases	 I Build

Figure 2. Project Phases in Relation to NASA and DoD Phases

Method 1 — Bottom-Up Cost
Description. The bottom-up method of determining the cost to fix errors found in different
phases of the life cycle is derived from the most detailed form of cost estimation. The costs are
gathered from every major discipline including all engineering groups, quality, contracts,
vendors, logistics, program office, test, and many more. These costs and the schedule to
complete the tasks are then rolled up into a total cost to fix the error and a total project schedule.
Given the rolled up costs for several spacecraft modifications that were required to fix errors, the
overall error cost rates were estimated for each individual life cycle phase based on the bottom-
up costs.



Methodology. This approach used the cost data from several spacecraft modifications. The cost
data came in the form of total costs per modification per fiscal year and included a schedule for
the effort to complete the modifications. The activities throughout the entire project schedule
were consolidated into the five life cycle phases. The tasks were mapped to the suitable life
cycle phase, using the NASA Systems Engineering (SE) Handbook as a guide. For example,
when a structures engineer included hours and schedule to recalculate the loads for a particular
fix that added weight, these costs were included in the design life cycle phase. When the test
engineer stated additional tests would have to be performed, that task was included within the
test phase. Every task included within the bottom-up approach was analyzed and checked
against the NASA SE Handbook and placed within the appropriate life cycle phase.

Assumptions. For each modification, the tasks required to fix the error were assigned to the
appropriate life cycle phase. For the modification cost data, a percentage of individual fiscal
year labor and material costs was assigned based on the extent that each life cycle phase
overlapped that particular fiscal year. For example, if 80% of a project's fiscal schedule was
requirements tasks and the other 20% was design tasks, the fiscal year costs were separated
accordingly. Once this was accomplished for all fiscal years, the life cycle phases were summed
by adding their assigned percentage costs across the entire project.

Analysis. Costs per fiscal year for each of the five projects were known and spread among the
active life cycle phases within that fiscal year based on the percentage of work for each phase in
that year. Costs were summed across the years for each life cycle phase to determine the total
cost percentage for each life cycle phase, as shown in Table 3. The cost percentage to fix the
error for each phase is averaged across the different errors. Cost factors are then calculated by
dividing the average cost to fix the error in each phase by the cost to fix the error in the
requirements phase, which results in cumulative costs per life cycle phase for each project. The
average/ relative cost factors per life cycle phase for each project are also shown in Table 3.

% Total Cost Per Phase
Requirements Design Manufacturing Test Production

Project 1 0.01 0.21 0.33 0.31 0.14
Project 2 0.02 0.36 0.22 0.16 0.24
Project 3 0.07 0.34 0.13 0.08 0.38
Project 4 0.06 0.17 0.33 0.14 0.30
Project 5 0.01 0.19 0.24 0.13 0.43

% Cumulative Cost Per Phase
Requirements Design Manufacturing Test Production

Project 1 0.01 0.22 0.55 0.86 1.00
Project 2 0.02 0.38 0.60 0.76 1.00
Project 3 0.07 0.41 0.54 0.62 1.00
Project 4 0.06 0.23 0.56 0.70 1.00
Project 5 0.01 0.20 1	 0.44 0.57 1.00
Average 0.03 0.29 0.54 0.70 1.00
Relative 1 8 16 21 29

Table 3: Method 1 Percentage / Cumulative Cost Per Phase and Relative Cost
Factors per Phase

Results. The comparison of Method 1 cost factors to the software cost factors is shown in Table
4.



Method 1 Cost Factors Software Cost Factors
Requirements 1 X 1 X

Design 8X 5X — 7X
Build 16X I OX — 26X
Test 21X 50X — 177X

O erations 29X I OOX — I OOOX

Table 4: Comparison of Method 1 and Software Cost Factors

The correlation between the cost factors generated by Method 1 for a large spacecraft project
and the software cost factors suggests that life cycle changes have similar cost effects on
hardware/software systems and software-only systems. Based on the results from this method, it
can be concluded that hardware fixes are more forgiving in terms of costs when compared to
software fixes. The cost factors are understandingly slightly higher in the earlier design phase
possibly because hardware design is more costly than software design. In contrast, the later
phases of build, test and operations show surprisingly lower relative cost factors than those
generated from software studies.

Method 2 — Total Costs Breakdown
Description. With first hand knowledge of the phase in which an error occurred and averaging
multiple changes for each phase, a cost factor escalation can be calculated between phases. The
data used for this method came from a major aircraft design, build, flight test and operations
program valued in the billions of dollars. The total number of changes utilized was greater than
3300. These changes encompassed two decades of the aircraft project life cycle and included
pre-design, design, build, flight test, and operation changes.

Methodology. A data reduction exercise was conducted to reduce the 3300 original changes into
the 231 changes that were used in the calculations. The 3300 errors were first reduced to 1427
hardware-impacted changes by deleting changes that had the following characteristics: Software
only; Study only; Support Equipment Only, Ground, Test, or Foreign Object Damage; Total
unknown changes; or Changes to facilities. The 1427 hardware-impacted changes were further
reduced to 231 true hardware errors by deleting the changes that had the following
characteristics: Pure Upgrades or improvements (not fixes); Documentation Only (Parts plan,
Test Plan, etc.); Subcontractor Labor only (Level of Effort); or Changes that only impacted
individual aircraft.

These 231 remaining errors were then broken down into their respective SE life cycle phase.
Their average costs were tabulated and a one and two standard deviation was performed. Using
the average and expanding that value out to include two deviations, a range was found that was
surprisingly similar to the costs to fix software errors. The list of 231 hardware errors was
reviewed and evaluated to identify which life cycle phase the error was discovered. This
categorization was performed using the author's personal knowledge of these errors, the error
description and/or title, and through interviews with the engineers involved.

Once the errors were categorized into one of the five SE life cycle phases, most of the errors
in a particular phase could be placed into categories. These categories are shown below with
their respective life cycle phase. Requirement errors were mostly: Part Number errors;
Reference designator errors; or Label/marking errors. Design errors dealt with: Cable Routing;



Material changes for corrosion; Deletion of misc. hardware, un-needed seals, etc.; or Smoothness
issues prior to manufacturing. Manufacturing errors were mainly: Changes to hardware in order
to eliminate obstructions; Interference issues; Shimming requirements; or Hardware
replacements. Testing errors included: Performance issues; Qualification test failures; or Re-
qualification changes. Operations errors were found to be: Large errors found after delivery to
the field or Crew requested fixes.

Assumption. The Total Cost Breakdown method relied on facts and data obtained from personal
knowledge of the major aircraft program, which was the subject of Method 2. Knowing when
the aircraft entered flight test and was delivered to operations helped place errors within a certain
life cycle phase. For example, if the aircraft had not been delivered yet and an error was
discovered during flight, the error most likely occurred during the test phase. The earlier errors
that occurred prior to the start of design were assumed to be errors that could be placed in the
requirements phase. If manufacturing had not begun, it was assumed that the error belonged to
one of the first two phases. Once the flight test milestone was passed, all errors were placed into
the operations phase.

Analysis. The remaining 231 changes were assigned to the appropriate life cycle phase
(requirements, design, build, test, or operations). Table 5 shows the distribution of the 231
changes per life cycle phase. In the tables 6 & 7 below, the errors contained in the 1 and 2
deviations columns are those errors that are contained within 1 and 2 standard deviations from
the mean.

All Errors 1 Deviation 2 Deviations
Requirements 66 57 61

Design 61 49 55
Build 41 35 35
Test 21 19 20

Operations 42 36 39
TOTAL 231 196 210

Table 5: Numbers of Errors per Life Cycle Phase

All Errors 1 Deviation 2 Deviations
Requirements $667 - $209,504 $667 - $40,038 $667 - $59,022

Design $1,880 - $306,036 $1,880 - $131,104 $1,880 - $192,382
Build $54,830 - $1,511,365 $54,830 - $483,694 $54,830 - $483,694
Test $50,046 - $12,383,000 $50,046 - $1,941,787 $50,046 - $2,926,000

O erations $480,214 - $36,739,000 $480,214 - $4,553,577 $480,214 - $9 ,401,506

Table 6: Cost Ranges of Errors per Life Cycle Phase

Average Cost Standard Deviation 1 Deviation 2 Deviation
Requirements $22,632 $31,510 $54,142 $85,652

Design $87,832 $70,191 $158,023 $228,214
Build $354,808 $381,953 $736,761 $1,118,714
Test $1,370,888 $2,638,785 $4,009,673 $6,648,458

Operations $3,558,215 $6,207,912 $9,766,127 $15,974,039

Table 7: Average Cost and Standard Deviations per Life Cycle Phase

Results. The data in Table 8 was then normalized into cost factors to compare it to the software

1



cost factors and the other method's cost factors in this paper.

Average to 2 Deviation Cost
Factors

Requirements 1X
Design 3X-4X

Build 13X — 16X

Test 61 X — 78X

Operations 157X — 186X

Table 8: Method 2 Cost Factors per Life Cycle Phase

Method 3 — Top-Down Hypothetical Project
Description. The top-down hypothetical project method models the escalation of error costs
using the architecture of a hypothetical aerospace project and hypothetical errors. The errors are
modeled such that they are discovered in each phase of the project and affect each of the major
satellite systems. Using these errors, a set of representative values for the cost to fix errors
discovered at different phases in the project life cycle was calculated. The hypothetical project
used in this analysis is a small communications satellite. The systems modeled were selected to
be representative of the kinds of systems present in similar satellites.

Methodology. The methodology consists of two parts. First, the hypothetical system was
modeled such that the cost to complete the work in each life cycle phase and for each subsystem
in the satellite was known. Next, errors were formulated along with the cost to fix the error
expressed as a percentage of the work already performed on the affected subsystem.

Assumptions. This method assumes that the satellite architecture is a reasonable representation
of this type of space project. Second, this method assumes that the Cost Estimating Relationship
used is valid for this type of satellite architecture. Third, this method assumes that the cost
spreader function beta curve and the constants selected are applicable to this type of satellite.
Fourth, this method assumes that the projects used to derive the life cycle phases are
representative of the development of this type of satellite system. Finally, the estimation of the
costs to fix each error is based heavily on the author's experience.

Satellite Cost Model. Satellite costs were modeled using estimates of the costs for each satellite
subsystem and life cycle phase. Subsystem costs were determined using the Cost Estimating
Relationships (CER) developed by Larson and Wertz. The specific CER used is for unmanned
spacecraft, and has ranges that apply to the example satellite chosen. [Larson and Wertz, 1993].
Costs per life cycle phase were modeled using the cost spreader function beta curve developed
by NASA to spread costs over time. The combined subsystem and life cycle costs were derived
by multiplying the percentage cost for each subsystem by the percentage cost for each phase. The
subsystem and lifecycle costs are shown in the table 9 below.



Subs stem Cost

Antenna 2.57%
Communications Electronics 13.99%
Structures/Thermal 10.50%
Command and Data Handling 6.97%
Attitude Determ. 19.24%
Attitude Control 5.86%
Electrical Power 13.46%
Apogee  Kick Motor 0.95%
Program Management 5.29%
Systems Engineering 10.59%
Product Assurance 5.29%
Test and Evaluation 5.29%

Life Cycle Cost
Requirements 1.48%
Design 4.01%
Manufacture 3.85%
Test 17.77%
Operations 72.88%

Table 9: Subsystem and Life Cycle Costs

Error Analysis. Each error is modeled to occur in the requirements phase and directly affects
only one subsystem and which involves a failure to correctly develop the project requirements
for one of the subsystems. In addition, if the error is not detected prior to the Operations phase, it
will result in a loss of the mission. Although each error is hypothetical, the effects of each error
were estimated using the guidelines developed by Larson and Wertz and the NASA Systems
Engineering Handbook. The effort required to fix the errors was estimated in two ways. Some of
the effort is based on detailed breakdowns of the tasks required to task fix the error. Other errors
assume a fixed percentage of the effort is repeated, incremented from 10% to 30% to 50%. The
effort to fix the error is estimated as a percentage of work already performed for that subsystem
(percent that must be repeated), based on the phase at which the error is discovered. Error
descriptions are shown below in table 10.

Error number Error Description
1-6 Detailed Error Task Breakdown

7-12 30% Repeat with no Interface Effects
13-18 10% Repeat with no Interface Effects
19-24 50% Repeat with no Interface Effects

Table 10: Error Descriptions

Error Relative Cost. Using the MATLAB model, costs to fix each error were calculated. The
costs for each life cycle phase were then averaged. The relative cost to fix errors per phase is
calculated by dividing the cost to fix the error in each phase by the cost to fix the error in the
requirements phase

Results. This model provides insight into the reasons for error cost escalation. It can be seen that
as the project proceeds, the amount of work performed — and hence the cost — increases. Another
important point is the effect of an error on interfaces with other subsystems. Errors can
dramatically increase in cost if the errors affect other subsystems. This method has numbers for
the operations phase that are significantly greater than those in the other methods. This
difference is due primarily to the fact that the satellite cannot be serviced or repaired once it
enters the operations phase. Table 11 compares the top-down hypothetical project life cycle cost
factors to the software cost factors.
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Hypo Pi2 Cost Factors Sof fare Cost Factors
Requirements IX IX
Design 4X 5X-7X
Build 7X 1 OX — 26X
Test 28X 50X — 177X
Requirements I X I X

Table 11: Cost Factors

Overall Results and Interpretations

Table 12 compares the cost factors determined by each of the three methods. While the
results are similar in many respects, there are also differences between the results. This section
will discuss some of those similarities and potential reason for the dissimilarities.

Method 1
Cost Factors

Method 2
Cost Factors

Method 3
Cost Factors

Requirements 1X lX 1X
Design 8X 3X-4X 4X
Build 16X 13X — 16X 7X
Test 21X 61X-78X 28X
Operations I	 29X I	 157X — 186X 1615X

Table 12: Comparison of Methods 1, 2, & 3 Cost Factors

First we will examine the similarities in the results. If the operations phase was to be
disregarded, the results would be as shown in Figure 3. There is a high degree in similarity
between the results when viewed from this perspective. It shows that escalation in the cost to fix
errors is a real phenomenon, and that it can affect both large and small projects. The data also
shows that the escalation in cost is an exponential function.

Comparison of System Cost Factors Excluding Operations

Renu-menta	 Design	 Build	 Test
Ltfe-Cycle Phase

Figure 3. Comparison of Methods 1, 2, & 3 Cost Factors Without Operations Phase
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The results are also dissimilar in many ways. For example, methods two and three clearly do
not give the same factors for the last three phases. Part of this can be explained by the nature of
the errors used in method three. All of those errors were of such magnitude that if they were not
discovered prior to the Operations phase, they would result in a loss of the entire system. Table
13 compares the cost factors for software projects with those for systems projects; the systems
cost factors shown are a composite of the results of the three methods used in this study. The
comparison is shown graphically in Figure 4.

Software
Cost Factors

Systems
Cost Factors

Requirements 1 X 1 X
Design 5-7X 3X-8X
Build IOX-26X 7X-16X
Test 50X-177X 21 X-78X
Operations 100X-1000X 29X-1615X

Table 13: Comparison of Software & Systems Cost Factors

Comparison of Software and System Cost Factors

Requirements	 Design	 Build	 Test	 Operations
Life-Cycle Phase

Figure 4. Comparison of Software and Systems Cost Factors

Again, there are both similarities and differences to be seen in this cost data. The software
costs follow the same exponential trend as the systems costs. This is not surprising as in many
respects software and systems are developed similarly. In addition, the upper bound of the
software operations phase cost factor is of the same order as the upper bound of the systems
operations phase cost factor. This would seem to indicate that software systems are just as
vulnerable to so called "killer errors", as are physical systems.



Recommendations

There are areas that could be improved upon in follow-on studies. First, with respect to
methods one and two, a greater sample size would clearly improve the accuracy of the results.
The data used in this study was somewhat limited in quantity and with respect to the details of
the errors involved. A future study could benefit from a larger sample size, and a greater depth of
knowledge concerning the errors to be analyzed. Another improvement that could be made is
with respect to the types of projects from which the data is collected. The real-world data used in
this study came from two large aerospace projects.

Future studies could examine data from both smaller aerospace projects and projects from
other sources such as the telecommunications, construction, and petrochemical industries. This
would give the resultant cost factors a much broader applicability. With respect to method three,
future studies could also make improvements. First, the model should be validated by
comparison with actual errors. The model source data — including the cost estimating
relationships — could be improved through this validation process.

Summary

This paper presents the results of a study on the escalation of the cost to fix errors as a project
moves through its life cycle. The team used three methods to calculate the escalation in costs: the
bottom-up cost method, the total cost breakdown method, and the top-down hypothetical project
method. In each of the methods, the costs were normalized to obtain cost factors. The study
revealed that costs escalate in an exponential fashion. This paper demonstrates that early
detection of errors is highly important to the success of any project.
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