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This paper presents a method for estimating time delay margin for model-reference adaptive control of
systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to
represent the conventional model-reference adaptive law by a locally bounded linear approximation within a
small time window using the comparison lemma. The locally bounded linear approximation of the combined
adaptive system is cast in a form of an input-time-delay differential equation over a small time window. The
time delay margin of this system represents a local stability measure and is computed analytically by a matrix
measure method, which provides a simple analytical technique for estimating an upper bound of time delay
margin. Based on simulation results for a scalar model-reference adaptive control system, both the bounded
linear stability method and the matrix measure method are seen to provide a reasonably accurate and yet not
too conservative time delay margin estimation.

I. Introduction

Adaptive control is a potentially promising technology that can improve performance and stability of a conven-
tional fixed-gain controller. The ability to accommodate system uncertainties and to improve fault tolerance of a
control system is a major selling point of adaptive control since traditional gain-scheduling or fixed-gain control meth-
ods are viewed as being less capable of handling off-nominaloperating conditions. Nonetheless, these traditional
control methods tend to be robust to disturbances and unmodeled dynamics when operated as intended.

In spite of the advances made in the field of adaptive control,there are several challenges related to the imple-
mentation of adaptive control technology in safety-critical systems. The absence of the verification and validation
methods of adaptive control systems remain a major hurdle tothe implementation of adaptive control in safety-critical
systems.1,2 This hurdle can be traced to the lack of performance and stability metrics for adaptive control which poses
a major challenge that prevents adaptive control from beingimplemented in safety critical systems. The development
of verifiable metrics for adaptive control will be importantin order to mature adaptive control technology for use
in operational safety-critical systems. Of these, stability metrics of adaptive control are an important consideration
for assessing system robustness to unmodeled dynamics and exogenous disturbances. In one aspect of verification
and validation, a control system is usually certified by demonstrating that it meets an acceptable set of requirements or
specifications for stability margins, among other things. Herein lies a major challenge for verification and validationas
there is no existing standard tool for stability margin analysis of nonlinear adaptive control. The lack of stability met-
rics for adaptive control is viewed as a technology barrier to developing certifiable adaptive control for safety-critical
systems.1,2
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Classical LTI control systems are certified by demonstrating that they meet specifications for stability margins
among other things. Typically, certification requirementsfor flight control systems, such as MIL-F-9490D, are often
addressed in terms of phase and gain margins. These margins are used for LTI control laws to provide robustness
or safety margins in a control system design as a safeguard against unmodeded effects and unstructured uncertainty.
While the gain margin concept has been extended to adaptive control,3 the phase margin concept does not easily lend
itself to adaptive systems due to the inherent nonlinearityin adaptive control. Strictly speaking, phase margin for
adaptive control in a global context as in the LTI framework is not possible. However, in a local context, it may be
possible to consider phase margin in an approximate local sense, keeping in mind that even a standard gain-scheduling
control system design may also contain nonlinear effects due to gain scheduling.

Phase and gain margins can be used as stability metrics in adaptive systems under some circumstances. One
possible use would be when an adaptive control process is terminated by switching off the adaptation, essentially
freezing the adaptive parameters, or when the adaptive signal converges to a steady state value. Some methods of
approximate phase and gain margin analysis for adaptive control have been proposed that could be used without
turning off the adaptation. One method for analyzing stability margins is based on a LMI approach by transforming
the nonlinear adaptive control into a linear parameter varying form.4 In another approach, it is proposed to define a
LTI system that bounds the closed-loop adaptive system and then evaluate the phase and gain margins for the bounded
LTI system in a local time window.5,6 A potential benefit of this approach is that the adaptation can be “driven” or
adjusted on-line to meet an approximate phase margin specification to improve the time delay margin of the closed-
loop system.7 Both approaches in4 and5,6 use similar system error dynamics.

Time delay margin has been viewed as a more readily accepted metric for relative stability of nonlinear control.
While time delay margin is a suitable stability metric for adaptive control, a current challenge is that there is no well-
established analytical tool for computing the time delay margin. Other methods for estimating the time delay margin
have been proposed. One such method applies a Pade approximation to approximate a time-delay system.8 The Pade
approximation transforms the original time-delay system into a higher order system without the time delay that can be
analyzed by the Lyapunov method to estimate the time delay margin. However, the Lyapunov method with the Pade
approximation yields highly conservative estimates of time delay margin even for a simple scalar adaptive control
system. The discrepancy between the time delay margin estimated by this method and the numerical evidence from
simulations is at least three orders of magnitude.8

Despite the fact that new theoretical methods are being developed for computing time delay margin, they are still
not ready to be used in a unified framework like the classical phase and gain margins. The most direct way to compute
time delay margin is by simulations. The time delay margin isestimated by introducing a time delay at the input of an
adaptive control system and then adjusting it until the closed-loop system is on the verge of instability. However, for
adaptive control to be accepted in the future, simulation-based time delay margin computation is not considered to be
sufficient as long as there is a lack of analytical tools for the same.

This paper presents a new method for estimating time delay margin for model-reference adaptive control of systems
with almost linear structured uncertainty. Bounded linearstability analysis method has recently been introduced to
represent the conventional model-reference adaptive law by a locally bounded linear approximation within a small
time window using the comparison lemma. The locally boundedlinear approximation of the combined adaptive
system is cast in a form of an input-time-delay system over a small time window. The time delay margin of this
system represents a local stability measure and is computedanalytically by a matrix measure method, which provides
a simple analytical technique for estimating an upper boundof time delay margin. Based on simulation results for
a scalar model-reference adaptive control system, both thebounded linear stability method and the matrix measure
method are seen to provide a reasonably accurate and yet not too conservative time delay margin estimation.

II. Introduction

III. Time Delay Margin for Linear Time Invariant Control

A. Time Delay Margin for a Simple Scalar System

Consider a scalar time-delay system
ẋ(t) = ax(t)+ bu(t) (1)

wherex(t) : [0,∞) → R, u(t) : [0,∞) → R, andb > 0.
The system has a feedback control

u(t) = −kx(t) (2)
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with a closed-loop poles = a−bk < 0.
The closed-loop system is designed to be robust to a time delay at the input such that

ẋ (t) = ax(t)+ bu(t − td) (3)

wheretd is defined as a time delay margin for the original system in Eq.(1).
The Laplace transform of the closed-loop time-delay systemis expressed as

(

s−a + bke−tds)x(s) = x(0) (4)

To calculate the time delay margintd , a number of approximate methods can be used. Consider the following

1. Taylor’s Series Approximation:

The terme−td s can be expanded using the Taylor’s series as

e−tds = 1− tds+
1
2

t2
d s2− . . . (5)

Expressing in time domain, one gets

u(t − td) = u(t)− td u̇(t)+
1
2

t2
d ü(t)− . . . (6)

The first-order Taylor’s series approximation in effect is afinite-difference approximation of a time derivative
since

u̇(t) ≈ u(t)−u(t − td)
td

(7)

Then, the time-delay system can be approximated as

ẋ(t) = ax(t)+ bu(t)−btd u̇(t)+
bt2

d

2
ü(t)− . . . (8)

So, the effect of time delay shows up as time derivatives of the controller. This linear equivalent system is
now conditionally stable. To see this, consider only the first-order approximation of the closed-loop time-delay
system as

ẋ(t) = (a−bk)x(t)+ bktd ẋ(t) (9)

which can also be written as

ẋ(t) =
a−bk

1−bktd
x(t) (10)

One can see that the system can be not guaranteed to be stable even if a− bk < 0 since there is an additional
requirement

1−bktd > 0 (11)

that must be fulfilled.

Thus the time delay margin estimate of the system is given by

t∗d =
1
bk

(12)

This indicates that the time delay must be kept low if the feedback gain is large for the closed-loop system to be
stable. The result is independent of the parametera. The Taylor’s series approximation of the time delay term
does not yield a proper transfer function since the number ofzeros is greater than the number of poles.

2. Pade Approximation:

Pade approximation is frequently used to approximate time delay effects by a rational polynomial function of
the form

P(s) =
Q(s)
R(s)

(13)
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where the degree of the polynomialQ(s) is less than or equal to that ofR(s) for a proper transfer function
representation of the time delay.

Consider the following first-order Pade approximation

e−td s =
2− tds
2+ tds

(14)

The system characteristic equation is

tds2 +(2−atd −bktd)s+2bk−2a = 0 (15)

which results in a time delay margin estimate of

t∗d =
2

a + bk
(16)

The result now is dependent on all system parameters. The accuracy of the estimation increases with increasing
the order of the Pade approximation.

3. Lyapunov-Krasovskii Method:

Stability of time-delay systems can be analyzed using the Lyapunov-Krasovskii method.9,10 Consider the fol-
lowing Lyapunov-Krasovskii functional

V (x(t)) = x2 (t)+
1
td

ˆ t

t−td

x2 (τ)dτ > 0 (17)

The time derivative ofV (x(t)) along the solution trajectory is evaluated as

V̇ (x(t)) = 2ax2(t)−2bkx(t)x(t − td)+
1
td

x2 (t)− 1
td

x2 (t − td) (18)

By completing the squares, one obtains

V̇ (x(t)) =

(

2a + bk +
1
td

)

x2 (t)+

(

bk− 1
td

)

x2 (t − td)−bk [x(t)+ x(t − td)]
2 (19)

Sincebk > 0, the time-delay system is uniformly stable if the following inequalities are satisfied

2a + bk +
1
td

< 0 (20)

bk− 1
td

< 0 (21)

The solution of the inequalities is feasible ifa < 0 andbk < −a. This yields

− 1
2a + bk

< td <
1
bk

(22)

The result of the time delay margin estimate based on the Lyapunov-Krasovskii method is generally non-unique
and is dependent upon the selection of the Lyapunov-Krasovskii functional. For example, suppose the following
Lyapunov-Krasovskii functional is selected

V (x(t)) = px2 (t)+
1
td

ˆ t

t−td

px2(τ)dτ > 0 (23)

wherep > 0, then

V̇ (x(t)) = 2pax2(t)−2pbkx2(t)+2pbkx2(t)−2pbkx(t)x(t − td)+
p
td

x2 (t)− p
td

x2 (t − td) (24)
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which becomes

V̇ (x(t)) =

(

2pa + p2b2k2 +
p
td

)

x2 (t)+

(

1− p
td

)

x2 (t − td)− [pbkx(t)+ x(t − td)]
2 (25)

The solution of the inequalities

2pa + p2b2k2 +
p
td

< 0 (26)

1− p
td

< 0 (27)

yields

td < p <
−a

b2k2

(

1+

√

1− b2k2

a2

)

(28)

for a < 0 andbk < −a.

4. Lyapunov-Razumikhin Method:

The Lyapunov-Razumikhin method can be considered as a subset of the more general Lyapunov-Krasovskii
functional approach.10 However, a nice aspect of the approach is that it utilizes functions as opposed to func-
tionals as the main ingredient. The Lyapunov-Razumikhin theorem states that the system is asymptotically
stable if there existsη > 1 andP = P> > 0 such that

V̇ (x(t)) ≤−ε ‖x(t)‖2 (29)

whereε > 0, whenever
V (x(t + θ )) < ηV (x(t)) (30)

for all θ ∈ [−td,0).

Consider the following Lyapunov candidate function

V (x(t)) = x2 (t) (31)

DifferentiatingV (x(t)) along the solution trajectory ofx(t) yields

V̇ (x(t)) = 2ax2(t)−2bkx(t)x(t − td) (32)

Recall from fundamental theorem of calculus that

x(t − td) = x(t)−
ˆ t

t−td

ẋ(τ)dτ (33)

Then

V̇ (t) = 2ax2 (t)−2bkx2(t)−2bkx(t)
ˆ t

t−td

[ax(τ)−bkx(τ − td)]dτ

≤ 2(a−bk)x2 (t)+2bk |x(t)|
∣

∣

∣

∣

ˆ t

t−td

[ax(τ)−bkx(τ − td)]dτ
∣

∣

∣

∣

≤ 2(a−bk)x2 (t)+2|a|bk |x(t)|
ˆ t

t−td

|x(τ)|dτ +2b2k2 |x(t)|
ˆ t

t−td

|x(τ − td)|dτ (34)

Sincet − td ≤ τ ≤ t, then the Lyapunov-Razumikhin theorem gives

|x(τ − td)| ≤ |x(τ)| ≤ |x(t)| (35)

Thus

V̇ (x(t)) ≤ 2(a−bk)x2 (t)+2|a|bk |x(t)|
ˆ t

t−td

|x(t)|dτ +2b2k2 |x(t)|
ˆ t

t−td

|x(t)|dτ

= 2(a−bk)x2 (t)+2td |a|bkx2 (t)+2tdb2k2x2 (t)

= 2
[

a−bk + td
(

|a|bk + b2k2)]x2 (t) (36)
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So the time-delay system is asymptotically stable if

a−bk + td
(

|a|bk + b2k2)< 0 (37)

Hence, the time delay margin can be found as

td <
bk−a

bk (bk + |a|) (38)

�

It is noted that the time delay margin of the time-delay system of Eq. (3) can actually be found exactly by
computing the system poles = σ + jω as follows:

σ + jω −a + bke−tdσ e− jωtd = 0 (39)

The system is neutrally stable forσ = 0 so that the following equations result

−a + bk cosωt∗d = 0 (40)

ω −bk sinωt∗d = 0 (41)

The solutions of these equations yield thejω-axis cross-over frequency and the time delay margin as

ω =
√

b2k2−a2 (42)

t∗d =
1√

b2k2−a2
cos−1 a

bk
(43)

The solution actually tends to the Taylor’s series approximation for bk � a. Also, there exists a relationship
betweena andbk such that the system is stable, independent of time delay. This occurs whena < 0 andbk < −a.

Example:Givena = 1 andbk = 2, the Taylor’s series approximation yieldst∗d = 0.5 sec, whereas the Pade approx-
imation yieldst∗d = 0.667 sec. The exact value ist∗d = 0.604 sec. Thus, the Pade approximation gives a better estimate
than the Taylor’s series approximation, but also over-estimates the time delay margin. The Lyapunov-Krasovskii
method has no solution sincea > 0. The Lyapunov-Razumikhin method givest∗d = 0.167 sec.

Given a = −1 andbk = 2, the exact value is nowt∗d = 1.209 sec. The Pade approximation over-estimates the
time delay margin witht∗d = 2 sec. The Taylor’s series approximation yields the same estimate oft∗d = 0.5 sec which
is independent ofa. The Lyapunov-Krasovskii method also provides no solutionsincebk > −a. The Lyapunov-
Razumikhin method givest∗d = 0.5 sec, which is the same as the Taylor’s series approximation. In fact, fora < 0, both
the Taylor’s series approximation and the Lyapunov-Razumikhin method produce the same result.

Givena =−1 andbk = 1
2, the system is stable, independent of time delay. The Taylor’s series approximation yields

t∗d = 2 sec and the Pade approximation yieldst∗d = −4 sec. The time delay margin corresponding to the Lyapunov-
Krasovskii functional (17) istd = 2 sec and that for the Lyapunov-Krasovskii functional (23) is td = 7.464 sec. The
Lyapunov-Razumikhin method givest∗d = 2 sec, which again is the same as the Taylor’s series approximation.

In these examples, both the Lyapunov-Krasovskii and Lyapunov-Razumikhin methods are quite conservative even
for a simple linear time invariant scalar system. Relaxation of the conservatism in the Lyapunov-Karsovskii and
Lyapunov-Razumikhin is possible and usually requires parameter and functional optimization.

B. Time-Delay Margin by Matrix Measure Method

For a vector time-delay system
ẋ (t) = Ax(t)−BKx(t − td) (44)

wherex(t) : [0,∞) → Rn andλ (A−BK) ∈ C−, i.e.,A−BK is Hurwitz, the time delay margin can be found from the
following characteristic equation

det
(

jωI −A + BKe− jωtd
)

= 0 (45)

The bounds onω andtd can be estimated by a matrix measure method.9 Definingµ as an eigenvalue of a symmetric
part of a complex matrix such that

µi (C) = λi

(

C +C∗

2

)

(46)
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where C∈ C is a complex matrix andC∗ is its complex conjugate transpose, thenµ has the following properties

µi (C) ∈ R (47)

µ (C) = max
1≤i≤n

λi

(

C +C∗

2

)

= lim
ε→0

‖I + εC‖−1
ε

(48)

µ (C) = min
1≤i≤n

λi

(

C +C∗

2

)

= lim
ε→0

1−‖I − εC‖
ε

(49)

µ (C) = −µ (−C) (50)

µ ( jC) = −µ ( jC) (51)

µ (C) ≤ Reλi (C) ≤ µ (C) (52)

Imλ (C) ≤ µ (− jC) (53)

µ (C) ≤ ‖C‖ (54)

µ (C + D) ≤ µ (C)+ µ (D) (55)

µ (C + D) ≥ µ (C)+ µ (D) (56)

µ (C−D) ≥ µ (C)− µ (D) (57)

µ (C−D) ≤ µ (C)− µ (D) (58)

The matrix measureµ affords a simple way to estimate the bounds on the system poles for a MIMO system.
Lemma 1:The time-delay system (44) is asymptotically stable if the following inequalities hold

td <
1
ω

cos−1 µ (A)+ µ ( jBK)

‖BK‖ (59)

ω < µ (− jA)+‖BK‖ (60)

where‖.‖ = ‖.‖2 is theL2-norm.
Proof:The real parts of the system poles are bounded from above by

σ = Reλi
(

A−BKe− jωtd
)

≤ µ (A)+ µ
(

−BKe− jωtd
)

≤ µ (A)+ µ (−BK) |cosωtd |+ µ ( jBK) |sinωtd | (61)

Let 0≤ ωtd ≤ π
2 , then the time-delay system is stable ifσ < 0 which implies

µ (A) < −µ (−BK)cosωtd − µ ( jBK)sinωtd = µ (BK)cosωtd − µ ( jBK)sinωtd

< µ (BK)cosωtd − µ ( jBK)sinωtd (62)

Upon some algebra, this can be expressed as
[

µ2 (BK)+ µ2 ( jBK)
]

cos2 ωtd −2µ (A)µ (BK)cosωtd + µ2 (A)− µ2 ( jBK) > 0 (63)

The solution yields a bound on time delay margintd as

td <
1
ω

cos−1
µ (A)µ (BK)+ µ ( jBK)

√

µ2 (BK)+ µ2 ( jBK)− µ2 (A)

µ2 (BK)+ µ2 ( jBK)
(64)

But
µ2 (BK) ≤ µ2 (BK)+ µ2 ( jBK) ≤ ‖BK‖2 (65)

So

td <
1
ω

cos−1
µ (A)‖BK‖+ µ ( jBK)

√

‖BK‖2− µ2 (A)

‖BK‖2 <
1
ω

cos−1 µ (A)+ µ ( jBK)

‖BK‖ (66)
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The imaginary parts of the system poles are bounded from above by

ω = Imλi
(

− jA + jBKe− jωtd
)

≤ µ (− jA)+ µ
(

jBKe− jωtd
)

≤ µ (− jA)+ µ ( jBK) |cosωtd |+ µ (BK) |sinωtd | (67)

which can be expressed as

ω ≤ µ (− jA)+

√

µ2 (BK)+ µ2 ( jBK) < µ (− jA)+‖BK‖ (68)

where for added conservatism the less than or equal sign is replaced by the less than sign.
Corollary:The time-delay system (44) is asymptotically stable independent of time delay if

µ (A) < ‖BK‖ < −µ (A) (69)

Proof:The time-delay system is stable, independent of time delay,if

µ (A)+ µ (−BK)cosωtd + µ ( jBK)sinωtd < µ (A)− µ (BK)cosωtd + µ ( jBK)sinωtd

< µ (A)+
√

µ2 (BK)+ µ2 ( jBK) = µ (A)+

√

µ2 (BK)+ µ2 ( jBK) < µ (A)+‖BK‖ < 0 (70)

This implies
µ (A) < −‖BK‖ (71)

Note that this condition is in addition to the requirement that A−BK is Hurwitz, which can easily be shown by a
similar argument that

µ (A) < ‖BK‖ (72)

Therefore
µ (A) < ‖BK‖ < −µ (A) (73)

�

Example:Given

A =

[

0 1

−1 1

]

, BK =

[

0 0

0 2

]

The bounds onω andt∗d are computed as follows:

µ (A) = 1

µ ( jBK) = 0

‖BK‖ = 2

ω < µ (− jA)+‖BK‖ = 3 rad/sec

td <
1
ω

cos−1 µ (A)

‖BK‖ =
π
9

= 0.349 sec

The exact results can be determined from
∣

∣

∣

∣

∣

jω −1

1 jω −1+2
(

cosωt∗d − jsinωt∗d
)

∣

∣

∣

∣

∣

= −ω2 +2ω sinωt∗d +1− jω (1−2cosωt∗d) = 0

ω =

√
3+

√
7

2
= 2.189 rad/sec

t∗d =
2π

3
(√

3+
√

7
) = 0.478 sec

Thus, the time delay margin estimated by the matrix measure method is reasonably conservative but not overly
conservative that renders it impractical for design and analysis purposes.
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Example:Given

A =

[

0 1

− 3
2 − 3

2

]

, BK =

[

0 0

1 1

]

This time-delay system is stable, independent of time delay, since

µ (A) = 0.041

µ (A) = −1.541

‖BK‖ = 1.414

µ (A) < ‖BK‖ < −µ (A)

C. Time-Delay Margin by Lyapunov-Karsovskii Method

Stability of time-delay differential equations based on the Lyapunov-Karsovskii method have been studied exhaus-
tively by many authors.9,10 As shown above, different Lyapunov-Karsovskii functionals lead to different results.
Invariably, the negative-definiteness of the time derivative of a Lyapunov-Karsovskii functional results in a linear ma-
trix inequality that can be solved for a time delay margin. While this study does not focus on the Lyapunov-Karsovskii
method, it is instructive to illustrate this technique for estimating time delay margin.

For the same time-delay system (44) with an assumptionλ (A) ∈ C−, then consider the following Lyapunov-
Karsovskii functional

V (t) = x> (t)Px(t)+
1
td

ˆ t

t−td

x> (τ)Px(τ)dτ > 0 (74)

whereP = P> > 0.
EvaluatingV̇ (t) yields

V̇ (t) = ẋ> (t)Px(t)+ x> (t)Pẋ(t)+
1
td

x> (t)Px(t)− 1
td

x> (t − td)Px(t − td)

= x> (t)A>Px(t)− x> (t − td)K>B>Px(t)+ x> (t)PAx(t)− x> (t)PBKx(t − td)

+
1
td

x> (t)Px(t)− 1
td

x> (t − td)Px(t − td) (75)

For stability,V̇ (t) < 0 is satisfied by the following LMI
[

A>P+ PA + 1
td

P −PBK

−K>B>P − 1
td

P

]

< 0 (76)

IV. Time Delay Margin for Adaptive Control

A. Model Reference Adaptive Control

Given a nonlinear plant
ẋ (t) = Ax(t)+ B [u(t)+ f (x(t))+ ∆(x(t) ,u(t) ,z(t) ,t)] (77)

ż (t) = g(z(t) ,x(t) ,u(t) ,t) (78)

wherex(t) : [0,∞) → Rn is a measurable or observable state vector,z(t) : [0,∞) → Rq is an unobservable state vector,
u(t) : [0,∞) → Rp is a control vector,A ∈ Rn×n andB ∈ Rn×p are known such that the pair(A,B) is controllable,
f (x(t)) : R

n → R
p is a matched structured uncertainty,∆(x(t) ,u(t) ,z(t) ,t) is a matched unstructured uncertainty or

unmodeled dynamics, andg(z(t) ,x(t) ,u(t) ,t) : [0,∞)×Rn ×Rp ×Rq → Rq represents the unmodeled dynamics.
The unstructured uncertainty∆(x(t) ,u(t) ,z(t) ,t) can be due to numerous unmodeled effects and are generally

cannot be captured in the control model due to modeling difficulty. In flight vehicles, these effects can represent various
complex modes of interactions including aeroservoelasticmodes, pilot interactions, nonlinear unsteady aerodynamics
near stall and post-stall, atmospheric disturbances such as sharp-edged wind gusts and wake vortices; just to name
a few. The tendency for the unstructured uncertainty∆(x(t) ,u(t) ,z(t) ,t) is to destabilize a control system since it
cannot be accounted for in a control design. In a typical control design framework, stability margins are built into a
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control system to accommodate for the unstructured uncertainty ∆(x(t) ,u(t) ,z(t) ,t) while the structured uncertainty
f (x(t)) is kept as small as possible by increasing the accuracy of thecontrol model. The certification for stability of a
control system is based on meeting well-accepted specifications for stability margins, such as MIL-F-9040D standards
used for certifying flight control systems.

The matched structured uncertaintyf (x) has a form of

f (x) = Θ∗>Φ(x) (79)

whereΘ∗ ∈Rm×p is an unknown constant weight matrix that represents a parametric uncertainty, andΦ(x) : Rn →Rm

is a vector of known functions
The objective is to design a controller that enables the plant to follow a reference model

ẋm (t) = Amxm (t)+ Bmr (t) (80)

whereAm ∈ Rn×n is Hurwitz and known,Bm ∈ Rn×p is also known, andr (t) : [0,∞)→ Rp ∈L∞ is a command vector
with ṙ ∈ L∞.

Defining the tracking error ase(t) = xm (t)− x(t), then the controlleru(t) is specified by

u(t) = Kxx(t)+ Krr (t)−uad (x(t)) (81)

whereKx ∈ Rp×n andKr ∈ Rp×p are known nominal gain matrices, anduad (x(t)) :→ Rp is a direct adaptive signal.
Then, the tracking error equation becomes

ė(t) = ẋm (t)− ẋ(t) = Ame(t)+ (Am −A−BKx)x(t)+ (Bm −BKr) r (t)+ B
[

uad (x(t))−Θ∗>Φ(x(t))
]

(82)

We choose the gain matricesKx andKr to satisfy the model matching conditionsA + BKx = Am andBKr = Bm.
The adaptive signaluad is an estimator of the parametric uncertainty in the plant such that

uad (x) = Θ>Φ(x) (83)

whereΘ ∈ Rm×p is an estimate of the parametric uncertaintyΘ∗.
Let Θ̃ = Θ−Θ∗ be an estimation error of the parametric uncertainty. Then the tracking error equation can be

expressed as
ė(t) = Ame(t)+ BΘ̃> (t)Φ(x(t)) (84)

The system can be designed to follow the reference model witha direct model reference adaptive control update
law

Θ̇(t) = −ΓΦ(x(t))e> (t)PB (85)

whereP = P> > 0 solves the Lyapunov equation

PAm + A>
mP = −Q (86)

whereQ = Q> > 0.
If ∆(x(t) ,u(t) ,z(t) ,t) = 0, then the adaptive law (85) can be shown to be stable and results in e(t) → 0 ast → ∞.

As the adaptive gainΓ increases, the tracking error further decreases. The upperlimit of the adaptive gain is set by
the sampling frequency of the discrete-time implementation of the adaptive law. Concomitant with the increase in the
adaptive law is an increase in the high frequency content in the adaptive signal. The estimateΘ(t) is essentially a
nonlinear integral gain sinceΘ(t) can be expressed as

Θ(t) = −
ˆ t

0
ΓΦ(x(t))e> (t)PBdτ (87)

For a LTI system, as an integral gain increases, the closed-loop poles move away from the real axis along the
imaginary axis. Hence, the frequency of the closed-loop system increases. The phase margin for an LTI system
generally decreases with increasing the integral gain. Even thoughΘ(t) is a nonlinear integral gain, the behavior is
similar to that of an LTI system.
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In real systems, because the unstructured uncertainty∆(x,u,z,t) is not always zero, the adaptive law (85) is not
robust and cannot guarantee boundedness of tracking error.Many robust modification schemes can be incorporated
into the adaptive law (85) to improve its robustness to unmodeled dynamics such asσ -modification11

Θ̇(t) = −Γ
[

Φ(x(t))e> (t)PB + σΘ(t)
]

(88)

e-modification12

Θ̇(t) = −Γ
[

Φ(x(t))e> (t)PB + µ
∥

∥

∥
e> (t)PB

∥

∥

∥
Θ(t)

]

(89)

or optimal control modification which has recently been introduced13

Θ̇(t) = −Γ
[

Φ(x(t))e> (t)PB−νΦ(x(t))Φ> (x(t))Θ(t)B>PA−1
m B

]

(90)

whereσ ,µ ,ν > 0 are tuning parameters in the modification schemes.
All these modifications invariably introduce new parameters to adjust the adaptive law, for example,σ is such a

parameter in the above adaptive law. The modification parameters effectively add a damping mechanism to the adaptive
law to ensure that the adaptive signal is bounded. However, in general there exists a trade-off between performance
and robustness. In the adaptive law above, increasing the adaptive gainΓ results in a better tracking performance
but poorer robustness, while increasing the parameterσ improves robustness but results in a poorer tracking ability.
Thus, a current challenge in adaptive control design is to beable to select appropriately the tuning parameters that
can achieve stability and performance specifications. Currently, there is no well-accepted stability and performance
metrics for adaptive control design and analysis.

B. Bounded Linear Stability Method

Global stability is the ultimate requirement for any control system including linear time invariant and nonlinear adap-
tive control. Global stability is difficult to prove even by the Lyapunov method since it requires a complete detail
information of a system. Because of uncertainty, it is more tractable to design a control system to satisfy specified sta-
bility margins rather than attempting to prove that the system is globally stable. Linear time-invariant control systems
have been designed with the classical phase and gain marginswhich are well accepted and understood.

In dealing with nonlinear adaptive control, time delay margin has been proposed by numerous authors as a substi-
tution for the classical phase margin to indicate relative stability of a nonlinear adaptive control system. Unfortunately,
there is no existing nonlinear theory for global stability of time-delay nonlinear adaptive control. Attempts to over-
come this theoretical gap including methods that approximate a time-delay system with a Pade approximation and
then invokes the Lyapunov method to obtain an estimate of thetime delay margin. The global stability requirement
based on the Lyapunov method inherently results in highly conservative estimates of a time delay margin. To relax the
global stability, linearization of the nonlinear adaptivecontrol system can provide some local stability estimates using
the classical linear stability margins. To obtain an equivalent LTI system, the adaptive law can be linearized at a certain
point in time when the weights have reached their steady state values, usually long after initial transients have settled
down. However, transient responses during adaptation can be important and can compromise system robustness.

As an alternative to linearization, the bounded linear stability analysis method has recently been introduced to
approximate a nonlinear adaptive law with its bounded linear version over a short analysis time window using a
comparison lemma. The bounded linear approximation of the adaptive law then allows the LTI stability concept to
be analyzed for the adaptive law locally within the analysiswindow. The resulting time delay margin estimated by
the bounded linear stability method using the phase margin and the gain cross-over frequency has been shown to
have a reasonable agreement with simulation results. In this study, the bounded linear stability analysis provides an
approximate locally bounded linear version of a nonlinear adaptive law. Using this locally bounded linear system, a
time delay margin can be estimated using the matrix measure method as derived previously.

The bounded linear stability analysis method is based on a version of the comparison lemma14 stated as follows:
Lemma 2:The equilibrium statey(t) = 0 of the differential equation

ẏ(t) = −Φ> (t)ΓΦ(t)y(t) (91)

wherey(t) : [0,∞) → R, Φ(t) ∈ L2 : [0,∞)→ Rn is a piecewise continuous and bounded function, andΓ > 0∈ Rn×n,
is uniformly asymptotically stable, if there exists a constantγ > 0 such that

1
T0

ˆ t+T0

t
Φ> (τ)ΓΦ(τ)dτ ≥ γ (92)
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which implies thaty(t) is locally bounded by the solution of a linear differential equation

ż(t) = −γz(t) (93)

for t ∈ [ti,ti + T0), whereti = ti−1 + T0 andi = 1,2, . . . ,n → ∞.
Proof:Choose a Lyapunov candidate function and evaluate its time derivative

V (t) =
1
2

y2 (t) (94)

V̇ (t) = −Φ> (t)ΓΦ(t)y2 (t) = −2Φ> (t)ΓΦ(t)V (t) (95)

Then, there existsγ > 0 for whichV is uniformly asymptotically stable since

V (t + To) = V (t)exp

(

−2
ˆ t+T0

t
Φ> (τ)ΓΦ(τ)dτ

)

≤V (t)e−2γT0 (96)

This implies that

exp

(

−2
ˆ t+T0

t
Φ> (τ)ΓΦ(τ)dτ

)

≤ e−2γT0 (97)

Thus, the equilibriumy(t) = 0 is uniformly asymptotically stable if

1
T0

ˆ t+T0

t
Φ> (τ)ΓΦ(τ)dτ ≥ γ (98)

providedΦ(t) ∈ L2 is bounded.
Theny(t) ∈ L2∩L∞ since

V (t → ∞)−V (0) ≤−2γ
ˆ ∞

0
y2 (t)dt ⇒ 2γ

ˆ ∞

0
y2 (t)dt ≤V (0)−V (t → ∞) < ∞ (99)

It follows that
V̇ (t) ≤−2γV (t) ⇒ y(t) ẏ(t) ≤−γy2 (t) (100)

which implies that the solution of Eq. (91) is bounded from above if y(t) ≥ 0 and from below ify(t) ≤ 0 by the local
solution of

ż(t) = −γz(t) (101)

for t ∈ [ti,ti + T0), wheret0 = 0, ti = ti−1 + T0, andi = 1,2, . . . ,n → ∞.
Equation (101) also applies forΦ = Φ(y(t)) since the conditionΦ(y(t)) ∈ L2 is identically satisfied given that

y(t) ∈ L2∩L∞. This is shown by evaluatinġV (t) as

V̇ (t) = ẏ(t)
dV
dy

= −Φ> (y(t))ΓΦ(y(t))y(t)
dV
dy

= −2Φ> (y(t))ΓΦ(y(t))V (t) (102)

Thus
dV

V (t)
= 2

dy
y(t)

(103)

Suppose there existsγ such that
dy

y(t)
≤−γdt (104)

Then multiplying both sides of Eq.(104) by y2 (t) and dividing bydt result in the same equation as Eq. (100).
Thus,V (t) is uniformly asymptotically stable andy(t) is bounded by the same equation as Eq. (101). Therefore,γ
given by Eq. (92) satisfies Eq. (104).

In this study, the comparison lemma allows the stability of nonlinear adaptive control to be analyzed in a local
sense using its bounded linear approximation.

�

The adaptive law (85) thus now can be expressed by its boundedlinear version as

Θ̇> (t)Φ(x(t)) = −B>Pe(t)Φ> (x(t))ΓΦ(x(t)) ≤−γB>Pe(t) (105)

whereγ = inft∈[ti ,ti+T0)

(

1
T0

´ ti+T0
ti

Φ> (x(τ))ΓΦ(x(τ))dτ
)

> 0∈ R for t ∈ [ti,ti + T0), wheret0 = 0, ti = ti−1+T0, and

i = 1,2, . . . ,n → ∞.

12 of 20

American Institute of Aeronautics and Astronautics



C. Time Delay Margin by Matrix Measure Method

In the presence of unstructured uncertainty, sufficient robustness must be built into the design of an adaptive controller.
Time delay margin can be thought of as a measure of stability robustness for adaptive control. If the bound on the
unstructured uncertainty∆(x,u,z,t) could be determined, then a time delay margin can be estimated for an input time-
delay system with an equivalent stability behavior. Thus, instead of studying the stability of the original system (77),
one seeks to investigate stability robustness of the following equivalent input time-delay system

ẋ (t) = Ax(t)+ B
[

u(t − td)+ Θ∗>Φ(x(t))
]

(106)

The following two problem statements are equivalent: 1) fora specified time delay margin, what is the largest
adaptive gainΓ that can be used in the adaptive law(85) for a stable adaptation, and 2) for a given adaptive gainΓ in
the adaptive law(85), what is the estimate of the time delay margin?

Consider a special case when the uncertainty is almost linear in structure; i.e.,

Φ(x) = x + g(x) (107)

whereg(x) is a vector function whose magnitudes of higher order derivatives are much smaller than that of the first-
order derivative.

Then by Taylor’s series expansion

Φ(x) = x + g(x0)+
dg(x)

dx

∣

∣

∣

∣

x=x0

(x− x0)+
1
2!

d2g(x)
dx2

∣

∣

∣

∣

x=x0

(x− x0)
2 + . . .

= x + g(x0)+
dg(x)

dx

∣

∣

∣

∣

x=x0

(x− x0)+O
(

x2) (108)

The error equation corresponding to the time-delay system (106) can be derived by substituting the time-delay
version of the controller from Eq. (81), thus resulting in

ė(t) = Amxm (t)+ Bmr (t)−Ax(t)−B
[

Kxx(t − td)+ Krr (t − td)−Θ> (t − td)Φ(x(t − td))+ Θ∗>Φ(x(t))
]

(109)

which upon simplification can be expressed as

ė(t) = Ae(t)+BKxe(t − td)+Buad (t − td)−BΘ∗>Φ(x(t))+BKx [xm (t)− xm (t − td)]+BKr [r (t)− r (t − td)] (110)

Using the bounded linear approximation of the adaptive law (85), one gets a piecewise locally bounded linear
approximation of the adaptive law (85)

u̇ad (t) = Θ̇> (t)Φ(x(t))+ Θ> (t)Φ̇(x(t)) ≈−γB>Pe(t)+ Θ> (t) Φ̇(x(t)) (111)

for t ∈ [ti,ti + T0), wheret0 = 0, ti = ti−1 + T0, andi = 1,2, . . . ,n → ∞.
The second term in the right hand side can be locally approximated by a first -order Taylor’s series as

Θ> (t)Φ̇(x(t)) = Θ> (ti)Φ̇(x(ti))+ Θ̇> (ti)Φ̇(x(ti))∆t + Θ> (ti)
[

Φ̇(x(t))− Φ̇(x(ti))
]

+ . . .

= Θ>
i Φ̇(x(t))+ Θ̇>

i Φ̇i∆t + . . . (112)

whereΘi = Θ(ti) andΘ̇i = Θ̇(ti).
The piecewise bounded linear local approximation of the adaptive law (85) then becomes

u̇ad (t) ≈−γB>Pe(t)+ Θ>
i Φ̇(x(t))+ Θ̇>

i Φ̇i∆t (113)

Furthermore, the terṁΦ(x(t)) can be approximated by a first -order Taylor’s series as

Φ̇(x(t)) =
∂Φ(x(t))

∂x
ẋ (t) =

∂Φ(x(ti))
∂x

ẋ (ti)+
∂ 2Φ(x(ti))

∂x2 ẋ(ti) [x(t)− x(ti)]+
∂Φ(x(ti))

∂x
[ẋ (t)− ẋ(ti)]+ . . .

= Φ
′
i [ẋm (t)− ė(t)]+ Φ

′′
i ẋi [xm (t)− e(t)− xi]+ . . . (114)
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whereΦ′
i = ∂Φ(x(ti))/∂x andΦ′′

i = ∂ 2Φ(x(ti))/∂x2.
Differentiating the error equation (110) yields

ë(t) = Aė(t)+ BKxė(t − td)− γBB>Pe(t − td)+ BΘ>
i Φ

′
i [ẋm (t − td)− ė(t − td)]

+ BΘ>
i Φ

′′
i ẋi [xm (t − td)− e(t − td)− xi]+ BΘ̇>

i Φ̇i∆t −BΘ∗>Φ
′
i [ẋm (t)− ė(t)]

−BΘ∗>Φ
′′
i ẋi [xm (t)− e(t)− xi]+ BKx [ẋm (t)− ẋm (t − td)]+ BKr [ṙ (t)− ṙ (t − td)] (115)

for t ∈ [ti,ti + T0), wheret0 = 0, ti = ti−1 + T0, andi = 1,2, . . . ,n → ∞.
Thus, the locally bounded linear approximation of the errorequation can be expressed as

[

ë(t)

ė(t)

]

=

[

A + BΘ∗>Φ′
i BΘ∗>Φ′′

i ẋi

I 0

][

ė(t)

e(t)

]

+

[

BKx −BΘ>
i Φ′

i −γBB>P−BΘ>
i Φ′′

i ẋi

0 0

][

ė(t − td)

e(t − td)

]

+

[

d1(t)+ d2(t − td)+ d3

0

]

(116)

where
d1 (t) = −BΘ∗>Φ

′
i ẋm (t)−BΘ∗>Φ

′′
i ẋixm (t)+ BKxẋm (t)+ BKr ṙ (t) (117)

d2 (t − td) = BΘ>
i Φ

′
i ẋm (t − td)+ BΘ>

i Φ
′′
i ẋixm (t − td)−BKxẋm (t − td)−BKr ṙ (t − td) (118)

d3 = −BΘ>
i Φ

′′
i ẋixi + BΘ̇>

i Φ̇i∆t + BΘ∗>Φ
′′
i ẋixi (119)

are treated as time varying disturbances and therefore do not affect the closed-loop adaptive system stability.
Equation (116) shows that the stability of the locally bounded linear approximation depends not only on the

adaptive gainΓ but also on the trajectory of the state vectorx(t) together captured in the parameterγ. Furthermore, it
also depends on the initial values of the state vectorxi and its time derivative ˙xi, the weightΘi, and the derivativesΦ′

i

andΦ′′
i , as well as the unknown parameterΦ∗. Using the matrix measure method as defined previously, the time delay

margin of the adaptive system can be estimated as

ωi < µ (− jCi)+‖Di‖ (120)

tdi <
1
ωi

cos−1 µ (Ci)+ µ ( jDi)

‖Di‖
(121)

where

Ci =

[

A + BΘ∗>Φ′
i BΘ∗>Φ′′

i ẋi

I 0

]

(122)

Di =

[

−BKx + BΘ>
i Φ′

i γBB>P+ BΘ>
i Φ′′

i ẋi

0 0

]

(123)

for t ∈ [ti,ti + T0), wheret0 = 0, ti = ti−1 + T0, andi = 1,2, . . . ,n → ∞.
It is noted that the computation of the local time delay margin is retrospective in that the estimate is computed for

a time window for which most recent data have been collected for analysis.

D. Estimation of Time Delay Margin for Scalar Adaptive Systems

Consider a scalar system with linear structured uncertainty

ẋ(t) = ax(t)+ b [u(t)+ θ ∗x(t)] (124)

The reference model is given by
ẋm (t) = amxm (t)+ bmr (t) (125)

The controller is given by
u(t) = kxx(t)+ krr (t)−θ (t)x(t) (126)

θ̇ (t) = −Γx(t) pbe(t) (127)
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The input time delay version of the system is

ẋ (t) = ax(t)+ b [u(t − td)+ θ ∗x(t)] (128)

From the response of the delay-free scalar system, the parameterγ is evaluated as

γ =
Γ
T0

ˆ ti+T0

ti

x2 (τ)dτ (129)

The matricesCi andDi are

Ci =

[

a + bθ ∗ 0

1 0

]

(130)

Di =

[

−bkx + bθi γb2p

0 0

]

(131)

The following parameters are computed analytically as

µ (Ci) =
a + bθ ∗+

√

(a + bθ ∗)2 +1

2
(132)

µ (− jCi) =
1
2

(133)

µ ( jDi) =
γb2p

2
(134)

‖Di‖ =

√

(bkx −bθi)
2 + γ2b4p2 (135)

The cross-over frequency and time delay margin are then estimated as

ωi < µ (− jCi)+‖Di‖ =
1
2

+

√

(bkx −bθi)
2 + γ2b4p2 (136)

tdi <
1
ωi

cos−1 µ (Ci)+ µ ( jDi)

‖Di‖
=

2

1+2
√

(bkx −bθi)
2 + γ2b4p2

cos−1
a + bθ ∗+

√

(a + bθ ∗)2 +1+ γb2p

2
√

(bkx −bθi)
2 + γ2b4p2

(137)

The “exact” values of the cross-over frequency and time delay margin for the locally bounded linear approximation
of the error equation can be determined as follows:

det
(

jωi −Ci + Die
− jωitdi

)

= 0 (138)

This results in two equations

−ω2
i − (bkx −bθi)ωi sinωitdi + γb2pcosωitdi = 0 (139)

−(a + bθ ∗)ωi − (bkx −bθi)ωi cosωitdi − γb2psinωitdi = 0 (140)

The cross-over frequency equation is obtained as

ω4 +
[

(a + bθ ∗)2− (bkx −bθi)
2
]

ω2− γ2b4p2 = 0 (141)

The solution gives

ωi =

√

√

√

√

√

(bkx −bθi)
2− (a + bθ ∗)2 +

√

4γ2b4p2 +
[

(a + bθ ∗)2− (bkx −bθi)
2
]2

2
(142)
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t∗di
=

1
ωi

cos−1 γb2pω2
i − (a + bθ ∗)(bkx −bθi)ω2

i

γ2b4p2 +(bkx −bθi)
2 ω2

i

(143)

The adaptive gain for which the adaptive system is stable, independent of time delay, can be estimated as

‖Di‖ =

√

(−bkx + bθi)
2 + γ2b4p2 < −µ (Ci) =

−a−bθ ∗+

√

(−a−bθ ∗)2 +1

2
(144)

Γ ≤
T0

√

1
2 +(a + bθ ∗)2

[

1+

√

1+(a + bθ ∗)−2
]

− (bkx −bθi)
2

b2p
´ ti+T

ti
x2 (τ)dτ

(145)

providedx(t) 6= 0 for all t ∈ [ti,ti + T0).
Metrics-driven adaptive control is a concept whereby the adaptive gainΓ can be adjusted for each time window

in order to achieve a desired or specified time delay margin. This type of adaptation can allow a trade-off between
transient performance and stability robustness. Letτd be a desired time delay margin, then the metrics-driven adaptive
gain can be computed from

τd =
1

ωi−1 (γi)
cos−1 µ (Ci−1)+ µ ( jDi−1 (γi))

‖Di−1 (γi)‖
= f

(

Γi

T0

ˆ ti−1+T

ti−1

x2 (τ)dτ

)

(146)

This is a nonlinear equation which can be solved for the metrics-driven adaptive gainΓi for a current time window
t ∈ [ti,ti + T0) using the information from a previous time windowt ∈ [ti−1,ti−1 + T0). It is noted that the adaptive gain
Γ is inversely proportional to the mean-square value of the system state1

T0

´ ti−1+T
ti−1

x2 (τ)dτ, which has a notion of the
system state “energy”. Thus, stability of the adaptive system is dependent on the product of the adaptive gain and
the system state mean-square value. For metrics-driven adaptive control to achieve a desired time delay margin, this
product needs to be kept at a desired value. Therefore, if thesystem state mean-square value is high, then the adaptive
gain needs to be reduced, and vice versa.

Example:Givena = 1, b = 1, θ ∗ = 0.1, am = −1, bm = 1, p = 1, θ (0) = 0, r (t) = sin(t). The control gains are
computed to bekx = −2 andkr = 1.

For Γ = 1, the time histories of the statex(t), controlu(t), and the weightθ (t) for the delay-free system are
plotted in Fig. 1. It is noted that the weightθ (t) converges to the correct value after aboutt = 40 sec.
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Fig. 1 - Time Histories of Delay-Free Adaptive Control System
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Select a time windowT0 = 1 sec. For the first window 0≤ t < T0, from the response of the delay-free scalar
system, the parameterγ is evaluated numerically att = T0 as

γ =
1
T0

ˆ T0

0
Γx2 (τ)dτ = 0.0266

and
µ (C1) = 1.293

µ (− jC1) =
1
2

µ ( jD1) = 0.0133

‖D1‖ = 2.000

The bounds on the cross-over frequency and time delay marginare calculated to be

ω1 < 2.500 rad/sec

td1 < 0.344 sec

For comparison, the “exact” values of the cross-over frequency and time delay margin for the locally bounded
linear approximation of the error equation are computed to be

ω1 = 1.670 rad/sec

td1 = 0.591 sec

and for the non-adaptive LTI system for whichθ (t) = 0 for all t are

ω = 1.670 rad/sec

td = 0.592 sec

The “exact” results are almost the same since the estimates using the locally bounded linear approximation of the
error equation are for the first time window for whixhθi = 0.

The numerical evidence of the time delay margin is estimatedto be t∗d ≈ 0.407 sec. Thus, the estimated local
time delay margin for the first time window is in a reasonable agreement with the numerical evidence. On the other
hand, the “exact” value of the time delay margin for the locally bounded linear approximation of the error equation
over-estimates the time delay margin of the adaptive system. The process is then repeated for the next time window
and so on.

Figure 2 is a plot of the variation of the local time delay margin estimates within the time interval for three different
sizes of time window;T0 = 1 sec,T0 = 5 sec, andT0 = 10 sec. It is noted that as the window size increases, the variation
in the local time delay margin estimates decreases. The longer time window allows a more uniform average value of
the parameterγ to be computed, thus reducing the local variation of time delay margin estimate from one time window
to another. It appears that the mean value of the computed time delay margins is relatively insensitive to the window
size. In fact, the mean estimate of the time delay margin for the three time window sizesT0 = 1 sec,T0 = 5 sec, and
T0 = 10 sec are 0.319 sec, 0.319 sec, and 0.318 sec, respectively.

Figure 3 is a plot of the mean value of the time delay margin estimates as a function of the unknown parameter
−1 ≤ θ ∗ ≤ 1 for T0 = 1 sec. Generally,θ ∗ is not known, so in a verification setting, time delay margin should be
computed over all possible parameter variations within their physical bounds. As can be seen in Fig. 3, forθ ∗ < 0,
the time delay margin estimate of the adaptive system is greater than that whenθ ∗ > 0. This is consistent with the
observation that forθ ∗ < 0, the open-loop system is more stable than that whenθ ∗ > 0. Also plotted is the time delay
numerical evidence from simulations. The numerical evidence is larger than the mean value of the time delay margin
estimates as computed from the bounded linear stability analysis method by about 20 to 30 percent. Nonetheless,
the estimation of the time delay margin by the bounded linearstability analysis method is quite reasonable and, more
importantly, is not too overly conservative. This is important from a practical perspective since any analytical tool for
estimating time delay margin for an adaptive system must be realistic with reliability, good accuracy, and sufficient
conservatism.

Figure 4 is a plot of the mean value of the time delay margin estimates as a function of the adaptive gain 1≤
Γ ≤ 100 for T0 = 1 sec. It can be seen that as the adaptive gainΓ increases, the time delay margin of the adaptive
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system decreases. This is a well-known phenomenon in the conventional model reference adaptive control. Thus,
there exists a trade-off between transient performance andstability robustness. Increasing the adaptive gainΓ gives
better transient performance but at the expense of robustness. Metrics-driven adaptive control could provide a way to
maintain consistent time delay margin throughout adaptation in exchange for lower transient performance.
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V. Conclusions

This paper presents a new method for estimating time delay margin for model reference adaptive control. The
bounded linear stability analysis method provides a locally bounded linear approximation of the conventional model
reference adaptive law. In effect, the adaptive law is transformed into a locally bounded linear approximation within
small time windows for which local time delay margins are to be estimated. A matrix measure approach provides
a simple analytical method for computing an upper bound of time delay margin for a linear system is introduced.
This method is shown to provide a good estimate of time delay margin for a linear system without incurring too
much conservatism. To analyze the time delay margin, the adaptive system is formulated as an input-time-delay error
equation. Using this method for the locally bounded linear approximation of the input-time-delay error equation, time
delay margin for a model reference adaptive control can be estimated. A special case for a scalar model reference
adaptive control system is studied. The method was able to provide a reasonable, yet not too conservative estimate
of the time delay margin for the scalar adaptive system. The effect of the time window size was examined. As
the time window size increases, the variation in the estimates of the local time delay margins for each time window
decreases. It is found that the mean value of the local time delay margin estimates over the time interval is quite
insensitive to the time window size. Thus, the mean value of the local time delay margin estimates could be considered
as a representative time delay margin estimate for the entire time interval. The method also correctly predicts a
typical behavior in model reference adaptive control whereby the time delay margin decreases with an increase in the
adaptive gain. Future work will relax the restriction of almost linear uncertainty and also extend this method to robust
modification schemes in adaptive control.
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