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This paper presents a method for estimating time delay margin for model-reference adaptive control of
systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to
represent the conventional model-reference adaptive law by a locally bounded linear approximation within a
small time window using the comparison lemma. The locally bounded linear approximation of the combined
adaptive system is cast in a form of an input-time-delay differential equation over a small time window. The
time delay margin of thissystem representsa local stability measure and is computed analytically by a matrix
measure method, which provides a simple analytical technique for estimating an upper bound of time delay
margin. Based on simulation results for a scalar model-reference adaptive control system, both the bounded
linear stability method and the matrix measure method are seen to provide a reasonably accurate and yet not
too conservative time delay margin estimation.

. Introduction

Adaptive control is a potentially promising technologyttikan improve performance and stability of a conven-
tional fixed-gain controller. The ability to accommodateteyn uncertainties and to improve fault tolerance of a
control system is a major selling point of adaptive contiate traditional gain-scheduling or fixed-gain control hzet
ods are viewed as being less capable of handling off-nonaipetating conditions. Nonetheless, these traditional
control methods tend to be robust to disturbances and unewdgnamics when operated as intended.

In spite of the advances made in the field of adaptive continele are several challenges related to the imple-
mentation of adaptive control technology in safety-catisystems. The absence of the verification and validation
methods of adaptive control systems remain a major hurdteetanplementation of adaptive control in safety-critical
systems- 2 This hurdle can be traced to the lack of performance andlgyamietrics for adaptive control which poses
a major challenge that prevents adaptive control from biemudemented in safety critical systems. The development
of verifiable metrics for adaptive control will be importaintorder to mature adaptive control technology for use
in operational safety-critical systems. Of these, stgbitietrics of adaptive control are an important considerati
for assessing system robustness to unmodeled dynamicsxagdmous disturbances. In one aspect of verification
and validation, a control system is usually certified by desti@ting that it meets an acceptable set of requirements or
specifications for stability margins, among other thingsréin lies a major challenge for verification and validatsn
there is no existing standard tool for stability margin sl of nonlinear adaptive control. The lack of stabilitytme

rics for adaptive control is viewed as a technology bardateveloping certifiable adaptive control for safety-cati
systems.?
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Classical LTI control systems are certified by demonstgatitat they meet specifications for stability margins
among other things. Typically, certification requireméotsflight control systems, such as MIL-F-9490D, are often
addressed in terms of phase and gain margins. These marginsed for LTI control laws to provide robustness
or safety margins in a control system design as a safeguaidsaginmodeded effects and unstructured uncertainty.
While the gain margin concept has been extended to adagtieat? the phase margin concept does not easily lend
itself to adaptive systems due to the inherent nonlineamitgdaptive control. Strictly speaking, phase margin for
adaptive control in a global context as in the LTI framewakot possible. However, in a local context, it may be
possible to consider phase margin in an approximate loogksé&eeping in mind that even a standard gain-scheduling
control system design may also contain nonlinear effectstdgain scheduling.

Phase and gain margins can be used as stability metrics ptiaelaystems under some circumstances. One
possible use would be when an adaptive control processnsrtated by switching off the adaptation, essentially
freezing the adaptive parameters, or when the adaptivalstgmverges to a steady state value. Some methods of
approximate phase and gain margin analysis for adaptiveeadmave been proposed that could be used without
turning off the adaptation. One method for analyzing sti3bihargins is based on a LMI approach by transforming
the nonlinear adaptive control into a linear parameteringrform? In another approach, it is proposed to define a
LTI system that bounds the closed-loop adaptive systemtarddvaluate the phase and gain margins for the bounded
LTI system in a local time window.® A potential benefit of this approach is that the adaptationke “driven” or
adjusted on-line to meet an approximate phase margin spafi to improve the time delay margin of the closed-
loop systent. Both approaches frand® ® use similar system error dynamics.

Time delay margin has been viewed as a more readily acceptéitrfor relative stability of nonlinear control.
While time delay margin is a suitable stability metric folaptive control, a current challenge is that there is no well-
established analytical tool for computing the time delaygima Other methods for estimating the time delay margin
have been proposed. One such method applies a Pade apptioritoapproximate a time-delay systérThe Pade
approximation transforms the original time-delay systatn & higher order system without the time delay that can be
analyzed by the Lyapunov method to estimate the time delagimaHowever, the Lyapunov method with the Pade
approximation yields highly conservative estimates ofetidelay margin even for a simple scalar adaptive control
system. The discrepancy between the time delay margin &stihby this method and the numerical evidence from
simulations is at least three orders of magnitéide.

Despite the fact that new theoretical methods are beinglalese for computing time delay margin, they are still
not ready to be used in a unified framework like the classibabp and gain margins. The most direct way to compute
time delay margin is by simulations. The time delay margiessmated by introducing a time delay at the input of an
adaptive control system and then adjusting it until theedbop system is on the verge of instability. However, for
adaptive control to be accepted in the future, simulatiasell time delay margin computation is not considered to be
sufficient as long as there is a lack of analytical tools fergame.

This paper presents a new method for estimating time delagimimr model-reference adaptive control of systems
with almost linear structured uncertainty. Bounded lingability analysis method has recently been introduced to
represent the conventional model-reference adaptive jaw locally bounded linear approximation within a small
time window using the comparison lemma. The locally bounlileghr approximation of the combined adaptive
system is cast in a form of an input-time-delay system ovemallstime window. The time delay margin of this
system represents a local stability measure and is compugytically by a matrix measure method, which provides
a simple analytical technique for estimating an upper baafrtime delay margin. Based on simulation results for
a scalar model-reference adaptive control system, bothdheded linear stability method and the matrix measure
method are seen to provide a reasonably accurate and yenodmservative time delay margin estimation.

Il. Introduction

[I1. TimeDelay Margin for Linear Time Invariant Control

A. TimeDelay Margin for a Simple Scalar System

Consider a scalar time-delay system
X(t) = ax(t) + bu(t) 1)

wherex(t) : [0,0) — R, u(t) : [0,0) — R, andb > 0.
The system has a feedback control
u(t) = —kx(t) )
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with a closed-loop pole=a—bk < 0.
The closed-loop system is designed to be robust to a timg déthe input such that

X (t) = ax(t) + bu(t —tg) 3)

wherety is defined as a time delay margin for the original system in(&}.
The Laplace transform of the closed-loop time-delay sysseexpressed as

(s— a-+ bke '9%) x(s) = x(0) (4)
To calculate the time delay margi) a number of approximate methods can be used. Considerlibwifag

1. Taylor’s Series Approximation:

The terme~S can be expanded using the Taylor’s series as

e S —1_tys+ %tgsz —_ (5)
Expressing in time domain, one gets
. 1,.
u(t—td):u(t)—tdu(t)+§t§u(t)—... (6)
The first-order Taylor’s series approximation in effect iréte-difference approximation of a time derivative
since ' ‘1
U(t)%u()_:j( _d) (7)
d
Then, the time-delay system can be approximated as
. . bt2
x(t):ax(t)+bu(t)—btdu(t)+7u(t)—... (8)

So, the effect of time delay shows up as time derivatives efdbntroller. This linear equivalent system is
now conditionally stable. To see this, consider only the-firsler approximation of the closed-loop time-delay

system as
X(t) = (a—bk)x(t) + bktgx (t) 9)
which can also be written as
x(t) = 2= ) (10)
" 1—Dbkty

One can see that the system can be not guaranteed to be stablié &— bk < 0 since there is an additional
requirement
1—bkty >0 (11)
that must be fulfilled.
Thus the time delay margin estimate of the system is given by
. 1

t = e (12)

This indicates that the time delay must be kept low if the beak gain is large for the closed-loop system to be
stable. The result is independent of the paramatdthe Taylor’s series approximation of the time delay term
does not yield a proper transfer function since the numbeewds is greater than the number of poles.

2. Pade Approximation:

Pade approximation is frequently used to approximate tiglaydeffects by a rational polynomial function of
the form
Q(s)
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where the degree of the polynomil(s) is less than or equal to that &(s) for a proper transfer function
representation of the time delay.

Consider the following first-order Pade approximation

otes 2—1t4s

© 2+1gs (14)
The system characteristic equation is
tys> 4 (2 — atg — bktq) s+ 2bk — 2a=0 (15)
which results in a time delay margin estimate of
2
tj= 16
47 a+bk (16)

The result now is dependent on all system parameters. Theagcof the estimation increases with increasing
the order of the Pade approximation.

. Lyapunov-Krasovskii Method:

Stability of time-delay systems can be analyzed using treplyov-Krasovskii methot 1% Consider the fol-
lowing Lyapunov-Krasovskii functional

V(x(t)):xz(t)—i-%/t X2 (1)dt >0 (17)
t—ty

The time derivative o¥/ (x(t)) along the solution trajectory is evaluated as
V (x(t)) = 2ax? (t) — 2bkx (t) X (t —tg) + tlx2 (t)— tlx2 (t—tq) (18)
d d

By completing the squares, one obtains

V (x(t)) = <2a+ bk + %) X2 () + (bk— %) %2 (t —tg) — bKX (t) + X (t — tg)]? (19)

Sincebk > 0, the time-delay system is uniformly stable if the follogrimequalities are satisfied

m+m+§<o (20)
d
1
bk— = <0 (21)
ty

The solution of the inequalities is feasiblesik 0 andbk < —a. This yields

1 1
—_—— <ty < 22
2a+bk ~ ¢ bk (22)
The result of the time delay margin estimate based on thelyapKrasovskii method is generally non-unique
and is dependent upon the selection of the Lyapunov-Kr&éduactional. For example, suppose the following
Lyapunov-Krasovskii functional is selected
1 t
V(x(t)) = pxz(t)—i—t— px%(1)dT >0 (23)
d Jt—t4

wherep > 0, then

V (x(t)) = 2pax? (t) — 2pbkx? (t) 4 2pbko? (t) — 2pbkx (t) X (t —tg) + gxz (t)— gxz (t—tg) (24)
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which becomes

V(x(t)) = <2pa+ p?b2kZ + tE) X2 (t) + (1— t£> X2 (t —tq) — [pbkx (t) 4 X (t —tg)]? (25)
d d
The solution of the inequalities
2pa -+ pPo?k? + tB <0 (26)
d
1-Poo 27)
ty

yields

b2k2
ty<p< b2k2 11— (28)

fora< 0 andbk < —a.

. Lyapunov-Razumikhin Method:

The Lyapunov-Razumikhin method can be considered as atsob#ige more general Lyapunov-Krasovskii
functional approach® However, a nice aspect of the approach is that it utilizestions as opposed to func-
tionals as the main ingredient. The Lyapunov-Razumikhe&otem states that the system is asymptotically
stable if there existg > 1 andP = P' > 0 such that

V(x(t) < —¢|x(®)]? (29)

whereg > 0, whenever

V (x(t+0)) < nV (x(t)) (30)
forall 6 € [—tg,0).
Consider the following Lyapunov candidate function

V (x(1)) = (1) (31)
DifferentiatingV (x(t)) along the solution trajectory of(t) yields
V (x(t)) = 2ax? (t) — 2bkx (t) X (t —tq) (32)
Recall from fundamental theorem of calculus that
x(t—td):x(t)—/ttt x(1)dt (33)
—d
Then

\'/(t)_2ax2(t)—2bkx2(t)—2|o|<x(t)/t [ax(T) — bkx (T —tq)]dT
t—tg

2 (a— bk)x? (t) + 2bk|x (t)|

/t [ax (1) — bkx(T —tg)]dT
t—ty

2(a— bk)x (t) + 2[a] bk|x(t |/ 7)) dt+ 2622 X ¢) |/ (T—tg)|dT (34)

Sincet —ty < 1 <t, then the Lyapunov-Razumikhin theorem gives
IX(T—ta)| < x(T)] < [x(t)] (35)
Thus

V (x(t)) < 2(a—bk)x? (t) + 2|a bk |x(t)] t X(t)|dT + 2b%K? X (1)] t Ix(t)|dt

t—tq t—tg
= 2(a—bk)X? (t) + 2tq|a] blod (t) + 2t4b?k®> (t)
=2[a—bk+tg(|a]bk+b%k?)] X2 (t) (36)
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So the time-delay system is asymptotically stable if
a—bk+1tq (|a| bk +b%?) < 0 (37)
Hence, the time delay margin can be found as

bk—a
W < bk (kT [a]) (38)

It is noted that the time delay margin of the time-delay syst#f Eq. (3) can actually be found exactly by
computing the system pofe= o + jw as follows:

0+ jw—a+bke e 1 — (39)
The system is neutrally stable for= 0 so that the following equations result
—a+ bkcoswty =0 (40)

w—bksinwty =0 (41)

The solutions of these equations yield flwe-axis cross-over frequency and the time delay margin as
w=vb%k2 a2 (42)

. 1 1 a
td == \/ﬁ cos H( (43)

The solution actually tends to the Taylor’s series appratiom for bk > a. Also, there exists a relationship
betweera andbk such that the system is stable, independent of time delayg.otlcurs whera < 0 andbk < —a.

Example Givena= 1 andbk = 2, the Taylor’s series approximation yielgs= 0.5 sec, whereas the Pade approx-
imation yieldstj = 0.667 sec. The exact valuetjs= 0.604 sec. Thus, the Pade approximation gives a better estimat
than the Taylor's series approximation, but also ovemesties the time delay margin. The Lyapunov-Krasovskii
method has no solution sinee> 0. The Lyapunov-Razumikhin method givgs= 0.167 sec.

Givena = —1 andbk = 2, the exact value is nowj = 1.209 sec. The Pade approximation over-estimates the
time delay margin with; = 2 sec. The Taylor’s series approximation yields the sanimast oft] = 0.5 sec which
is independent o&. The Lyapunov-Krasovskii method also provides no solusortebk > —a. The Lyapunov-
Razumikhin method givet§ = 0.5 sec, which is the same as the Taylor’s series approximdtidact, fora < 0, both
the Taylor’s series approximation and the Lyapunov-Rakbimimethod produce the same result.

Givena= —1 andbk = % the system is stable, independent of time delay. The Tayderies approximation yields
t; = 2 sec and the Pade approximation yielfis- —4 sec. The time delay margin corresponding to the Lyapunov-
Krasovskii functional (17) i$y = 2 sec and that for the Lyapunov-Krasovskii functional (Z23)i= 7.464 sec. The
Lyapunov-Razumikhin method givés= 2 sec, which again is the same as the Taylor’s series appatixim

In these examples, both the Lyapunov-Krasovskii and LyaptRazumikhin methods are quite conservative even
for a simple linear time invariant scalar system. Relaxati the conservatism in the Lyapunov-Karsovskii and
Lyapunov-Razumikhinis possible and usually requiresipatar and functional optimization.

B. Time-Delay Margin by Matrix Measure Method

For a vector time-delay system
X (t) = Ax(t) — BKx(t —tg) (44)

wherex(t) : [0,00) — R" andA (A—BK) € C™, i.e.,A— BK is Hurwitz, the time delay margin can be found from the
following characteristic equation _
det(jwl — A+ BKe 1) =0 (45)

The bounds omw andty can be estimated by a matrix measure methBefiningu as an eigenvalue of a symmetric
part of a complex matrix such that

C—i—C*) (46)

Hi(C) = A (T
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where C € C is a complex matrix an@* is its complex conjugate transpose, thehas the following properties

Hi(C)eR (47)
ne) = e (57 ) =i @
w(©= i (555 ) = im P 9
H(C)=-p(-C) (50)
7(jC) = —u(jC) (51)
1(C) <Re\ (C) < H(C) (52)
ImA (C) < T (~JC) (53)
H(C) <] (54)
H(C+D)<u(C)+H(D) (55)
H(C+D)>p(C)+u(D) (56)
H(C-D)=H(C)—u(D) (57)
H(C-D)<u(C)—pu(D) (58)
The matrix measurg affords a simple way to estimate the bounds on the systens fml@ MIMO system.
Lemma 1:The time-delay system (44) is asymptotically stable if thléofving inequalities hold
tg < o%cos*1 % (59)
@ < T (~A) +[BK| (60)

where||.|| = |.||, is the.Z>-norm.
Proof: The real parts of the system poles are bounded from above by

0 = Re\ (A—BKe 1) < I(A) + T (—BKe 1) <TI(A) + I (—BK) |coswty| + I (jBK) |sinawty] (61)
Let 0< wty < 7, then the time-delay system is stableik 0 which implies
H(A) < = (—BK)coswty — I (jBK) sinwty = p (BK) coswty — T (jBK) sinwty
- < U (BK)coswty — 1 (jBK)sinwty  (62)
Upon some algebra, this can be expressed as
[[1% (BK) + 2 (jBK) ] co€ wty — 21 (A) T (BK ) coswty + F2 (A) — T2 (jBK) > 0 (63)

The solution yields a bound on time delay margjias

AT Tl 2 2 =2
td<lcos1M(A)M(BK)+M(_JZBK)\/M_(2ESK)+M (IBK) — 2 (A) 4
w p~ (BK) +1* (JBK)
But
% (BK) < T2 (BK) + 12 (jBK) < ||BK||? (65)
So
— (i 2 2 _ .
td<icos,lu(A)IIBKIIJru(JBK)Z\/IIBKH [ (A) 1 g1 EA+A(IBK) (66)
w IIBK || w |[BK]|
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The imaginary parts of the system poles are bounded fromesinpv

w=ImA; (~jA+ jBKe %) <Ti(—jA)+T1 (jBKe 1)
< H(=jA) + T (JBK) [coswt| + H (BK)[sinata]  (67)

which can be expressed as

© < T (=JA) + /B2 (BK) + F2 (JBK) < T (= jA) + [BK| (68)

where for added conservatism the less than or equal sigpleced by the less than sign.
Corollary: The time-delay system (44) is asymptotically stable indeleat of time delay if

H(A) <[BK[| <—p(A) (69)
Proof: The time-delay system is stable, independent of time dilay,

K (A) + U (—BK) coswty +  (jBK) sinwty < p (A) — T (BK) coswty + U (jBK) sincty

< () + /T2 (BK) + 2 (JBK) = () + /72 (BK) + T (JBK) < 1 (A) + [BK|| <0 (70)
This implies
H(A) < —|IBK]| (71)

Note that this condition is in addition to the requiremeratth— BK is Hurwitz, which can easily be shown by a
similar argument that

H(A) <|[[BK]| (72)

Therefore
H(A) <[[BK| <—p(A) (73)
[ |

Example:Given
A pr—

Ol,BK:OO
-1 1 0 2

The bounds omw andt} are computed as follows:

H(A) =1
A(jBK) =0
[BK] =2
w <A (—]A) +|BK]| = 3rad/sec
1 1 HA) m
tg < — —— = — =0.349
g < oS [BK ~ 9 sec

The exact results can be determined from

jw _1 2 H * H *
= —w +2wsinwty +1— jw(l—2coswty) =0
1 jw—1+2(coswt;— jsinwt) d Jool a)
w= @7 = 2.189 rad/sec
21
ti = ———— =0.478 sec
T 3(V3+VT)

Thus, the time delay margin estimated by the matrix meas@thaod is reasonably conservative but not overly
conservative that renders it impractical for design andysiapurposes.
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Example:Given
A =

o3 13]7BK:lo o]
-3 3 11

This time-delay system is stable, independent of time dslage

T(A) =0.041
H(A) = —1541
IBK|| = 1.414

H(A) < [[BK[| < —p(A)

C. Time-Delay Margin by Lyapunov-Kar sovskii Method

Stability of time-delay differential equations based oa tlyapunov-Karsovskii method have been studied exhaus-
tively by many author$:1° As shown above, different Lyapunov-Karsovskii functichiad to different results.
Invariably, the negative-definiteness of the time deniatif a Lyapunov-Karsovskii functional results in a lineaa-m
trix inequality that can be solved for a time delay margin.iM/this study does not focus on the Lyapunov-KarsovskKii
method, it is instructive to illustrate this technique fatimating time delay margin.

For the same time-delay system (44) with an assumptiGh) € C—, then consider the following Lyapunov-
Karsovskii functional

T 1/t
V(t) =x (t)PX(t)—FE/H x' (1)Px(t)dr >0 (74)

whereP=P" > 0.
EvaluatingV (t) yields

V(1) =x" (t)Px(t)+x" (t)Px(t)+ tle (t)Px(t) — tle (t —tg) Px(t —tq)
d d
=x" () ATPx(t) —x" (t —tq) K" BTPx(t) +x" (t) PAX(t) — x" (t) PBKX(t —tg)

+ le (t)Px(t) — le (t—tq)Px(t—tq) (75)
g tg

For stability,V (t) < Ois satisfied by the following LMI

ATP+PA+LP —PBK

<0 76
~KTBTP -ip (76)

V. Time Delay Margin for Adaptive Control

A. Mode Reference Adaptive Control

Given a nonlinear plant
X(t) = AX(t) +Blu(t) + f (X(t)) +A(x(t),u(t),z(t),1)] (77)

z(t) = g(z(t) ,x(t),u(t),t) (78)
wherex(t) : [0,0) — R" is a measurable or observable state veeaidy,: [0,0) — RYis an unobservable state vector,
u(t) : [0,00) — RP is a control vectorA € R™" andB € R™P are known such that the pajA,B) is controllable,

f (x(t)) : R" — RP is a matched structured uncertainkyx(t),u(t),z(t),t) is a matched unstructured uncertainty or
unmodeled dynamics, amz(t) ,x(t),u(t),t) : [0,00) x R" x RP x R9 — RY represents the unmodeled dynamics.

The unstructured uncertainfy(x(t) ,u(t),z(t),t) can be due to numerous unmodeled effects and are generally
cannot be captured in the control model due to modeling difficin flight vehicles, these effects can represent variou
complex modes of interactions including aeroservoelastides, pilot interactions, nonlinear unsteady aerodyosami
near stall and post-stall, atmospheric disturbances ssigharp-edged wind gusts and wake vortices; just to name
a few. The tendency for the unstructured uncertadofy(t),u(t),z(t),t) is to destabilize a control system since it
cannot be accounted for in a control design. In a typicalrobesign framework, stability margins are built into a

90f 20

American Institute of Aeronautics and Astronautics



control system to accommodate for the unstructured uringrt&(x(t) ,u(t),z(t),t) while the structured uncertainty
f (x(1)) is kept as small as possible by increasing the accuracy aftheol model. The certification for stability of a
control system is based on meeting well-accepted spedifitsafior stability margins, such as MIL-F-9040D standards
used for certifying flight control systems.

The matched structured uncertairftyx) has a form of

f(x)=0"Td(x) (79)

where®* e R™P is an unknown constant weight matrix that represents a petranuncertainty, and (x) : R" — R™
is a vector of known functions
The objective is to design a controller that enables thetpéafollow a reference model

Xm (t) = AmXm (1) + B (t) (80)

whereAy, € R™"is Hurwitz and knownBm, € R™P is also known, and(t) : [0,00) — RP € .%, is a command vector
with f € Z.
Defining the tracking error as(t) = xm (t) — X(t), then the controlleu(t) is specified by

u(t) = Kx (t) + Ker (t) — ugg (X(t)) (81)

whereKy € RP*" andK; € RP*P are known nominal gain matrices, ang (x(t)) :— RP is a direct adaptive signal.
Then, the tracking error equation becomes

(t) =Sin(t) — X(t) = Ane(t) + (An— A~ BK)X(t) + (B~ BK) T (1) + B [uaa (x(1)) - @ T@(x(t))|  (82)

We choose the gain matric& andK; to satisfy the model matching conditioAst BKyx = Ay, andBK; = By,
The adaptive signalyg is an estimator of the parametric uncertainty in the planhghat

Uag () = ©T D (x) (83)

where® € R™P js an estimate of the parametric uncertaidty
Let ® = ©® — ©* be an estimation error of the parametric uncertainty. Thenttacking error equation can be
expressed as .
é(t) = Ane(t) +BOT (t) @ (x(t)) (84)

The system can be designed to follow the reference modelanitinect model reference adaptive control update
law
O(t) = —Td(x(t))e' (t)PB (85)

whereP = PT > 0 solves the Lyapunov equation
PAn+ALP = -Q (86)

whereQ=Q" > 0.

If A(x(t),u(t),z(t),t) =0, then the adaptive law (85) can be shown to be stable antisésa(t) — 0 ast — .
As the adaptive gaifl increases, the tracking error further decreases. The Uipgieof the adaptive gain is set by
the sampling frequency of the discrete-time implementeticthe adaptive law. Concomitant with the increase in the
adaptive law is an increase in the high frequency contertiénadaptive signal. The estima@gt) is essentially a
nonlinear integral gain sind@ (t) can be expressed as

o) = —/Otrdb(x(t))eT (t)PBdT (87)

For a LTI system, as an integral gain increases, the classolfpoles move away from the real axis along the
imaginary axis. Hence, the frequency of the closed-loopesysncreases. The phase margin for an LTI system
generally decreases with increasing the integral gainnBEveugh® (t) is a nonlinear integral gain, the behavior is
similar to that of an LTI system.
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In real systems, because the unstructured uncertaifty, z,t) is not always zero, the adaptive law (85) is not
robust and cannot guarantee boundedness of tracking &emy robust modification schemes can be incorporated
into the adaptive law (85) to improve its robustness to unehetidynamics such as-modificatiort

Ot)=-r [cb(x(t))eT (t)PB+ 0O (t)} (88)

e-modificatiort?
Ot)=-r [cb(x(t))eT (t)PB+ HeT (t)PBHe(t)} (89)

or optimal control modification which has recently beenadduced®
O(t) = - [@(x(t)e” (1)PB— v (x(1)) T (x(1)) ©(t) BT PAL'B] (90)

whereg, 1, v > 0 are tuning parameters in the modification schemes.

All these modifications invariably introduce new parameteradjust the adaptive law, for exampéejs such a
parameter in the above adaptive law. The modification patensieffectively add a damping mechanism to the adaptive
law to ensure that the adaptive signal is bounded. Howeaveyeneral there exists a trade-off between performance
and robustness. In the adaptive law above, increasing thetiad gainl” results in a better tracking performance
but poorer robustness, while increasing the paranwtenproves robustness but results in a poorer tracking gbilit
Thus, a current challenge in adaptive control design is talide to select appropriately the tuning parameters that
can achieve stability and performance specifications. ey, there is no well-accepted stability and performance
metrics for adaptive control design and analysis.

B. Bounded Linear Stability Method

Global stability is the ultimate requirement for any cohtigstem including linear time invariant and nonlinear adap
tive control. Global stability is difficult to prove even biig Lyapunov method since it requires a complete detail
information of a system. Because of uncertainty, it is moaetable to design a control system to satisfy specified sta-
bility margins rather than attempting to prove that theeysis globally stable. Linear time-invariant control sysge
have been designed with the classical phase and gain marhials are well accepted and understood.

In dealing with nonlinear adaptive control, time delay niattgas been proposed by numerous authors as a substi-
tution for the classical phase margin to indicate relattabitity of a nonlinear adaptive control system. Unforttaiy
there is no existing nonlinear theory for global stabilifytime-delay nonlinear adaptive control. Attempts to over-
come this theoretical gap including methods that approtémaatime-delay system with a Pade approximation and
then invokes the Lyapunov method to obtain an estimate ofitfie delay margin. The global stability requirement
based on the Lyapunov method inherently results in highhseovative estimates of a time delay margin. To relax the
global stability, linearization of the nonlinear adaptoantrol system can provide some local stability estimasésgu
the classical linear stability margins. To obtain an egentLT| system, the adaptive law can be linearized at a terta
point in time when the weights have reached their steadg stdties, usually long after initial transients have séttle
down. However, transient responses during adaptationeamortant and can compromise system robustness.

As an alternative to linearization, the bounded linear iktatanalysis method has recently been introduced to
approximate a nonlinear adaptive law with its bounded lingasion over a short analysis time window using a
comparison lemma. The bounded linear approximation of ttaptive law then allows the LTI stability concept to
be analyzed for the adaptive law locally within the analygisdow. The resulting time delay margin estimated by
the bounded linear stability method using the phase mangihtlae gain cross-over frequency has been shown to
have a reasonable agreement with simulation results. $nsthidy, the bounded linear stability analysis provides an
approximate locally bounded linear version of a nonlinetapdive law. Using this locally bounded linear system, a
time delay margin can be estimated using the matrix measetiead as derived previously.

The bounded linear stability analysis method is based omsioreof the comparison lemrifastated as follows:

Lemma 2:The equilibrium statg (t) = 0 of the differential equation

y(t)=-0" O)re)y(t) (91)

wherey(t) : [0,0) —» R, @ (t) € % :[0,00) — R" is a piecewise continuous and bounded function,fapdd € R™",
is uniformly asymptotically stable, if there exists a camty > 0 such that

1 t+To

= o' (n)ro(r)dr>y (92)
To Ji
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which implies thay (t) is locally bounded by the solution of a linear differentigbation

z(t) = —yz(t) (93)

fort € [ti,ti + To), wheretj =ti_1 + Toandi=1,2,...,n — oo,
Proof:Choose a Lyapunov candidate function and evaluate its teneative

VD) =3V () (94)
V() =0T ()T d(t)y? (1) = —207 ()T D(L)V (1) (95)
Then, there existg > 0 for whichV is uniformly asymptotically stable since
t+To
V(t+To) =V (t)exp<—2/ o' (1) F(D(r)dr) <V (t)e M (96)
t
This implies that
t+T0
exp( 2 / )dr) <e M (97)
Thus, the equilibriuny (t) = 0 is uniformly asymptotically stable if
1 t+To
= o' (n)ro(r)dr>y (98)
To Jt

providedd (t) € %, is bounded.
Theny(t) € £ N %, since

V(t—>oo)—V(O)§—2y/0wy2(t)dt:>2y/0wy2(t)dtgV(O)-V(t—WO)<°° (99)

It follows that
V() < -2\ (1) = ) < =W (100)
which implies that the solution of Eqg. (91) is bounded from\&blfy( ) > 0 and from below ify(t) < 0 by the local
solution of
2(t) = —yz(t) (101)
fort € [ti,ti + To), wherety =0,ti =ti_1+ Top, andi = 1,2,... ,n — oo,
Equation (101) also applies fd@r = ®(y(t)) since the conditio® (y(t)) € %> is identically satisfied given that
y(t) € £ N Z. This is shown by evaluating (t) as

V) =y() % — 0T (yt)Fo(y()y(t) % — 207 (y(t) FO(y(t)V (1) (102)
Thus &V dy
Suppose there exisyssuch that
. < —ydt (104)

y(t) —

Then multiplying both sides of Eq.104) by y?(t) and dividing bydt result in the same equation as Eq. (100).
Thus,V (t) is uniformly asymptotically stable andt) is bounded by the same equation as Eqg. (101). Therefore,
given by Eq. (92) satisfies Eq. (104).

In this study, the comparison lemma allows the stability ofilimear adaptive control to be analyzed in a local
sense using its bounded linear approximation.

[
The adaptive law (85) thus now can be expressed by its bouimded version as
O (1)@ (x(t)) = —BPe(t) @' (x(t)) FP(x(1)) < —yBPe(t) (105)

wherey = inficp, 141 ( ft'”OdJT T))Fd(x(1 ))dr) >0eRfort e [t,t + To), whereto = 0,ti = tj_1 + To, and
i=1,2,...,n— oo,
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C. TimeDelay Margin by Matrix Measure Method

In the presence of unstructured uncertainty, sufficientstiess must be built into the design of an adaptive coatroll
Time delay margin can be thought of as a measure of stabdliystness for adaptive control. If the bound on the
unstructured uncertainfy(x, u,z,t) could be determined, then a time delay margin can be estilfiat@n input time-
delay system with an equivalent stability behavior. Thostéad of studying the stability of the original system (77)
one seeks to investigate stability robustness of the fatigequivalent input time-delay system

X(t) = AX(1) + B [u(t —tg) + @ D (x(1)) (106)

The following two problem statements are equivalent: 1)dapecified time delay margin, what is the largest
adaptive gaif” that can be used in the adaptive |&85) for a stable adaptation, and 2) for a given adaptive gam
the adaptive law85), what is the estimate of the time delay margin?

Consider a special case when the uncertainty is almostlinetructure; i.e.,

P (X) =x+9(X) (107)

whereg(x) is a vector function whose magnitudes of higher order déviga are much smaller than that of the first-
order derivative.
Then by Taylor’s series expansion

B dg(x) 1 d’g(x)
‘D(X)—X‘*‘Q(XO)‘FWX:XO(X—XO)*'z dx2 ‘xe

(X—X0)% +...

—xrg00)+ B g1 002) a0
X=X

The error equation corresponding to the time-delay systdd6)(can be derived by substituting the time-delay
version of the controller from Eq. (81), thus resulting in

&(t) = AmXm (t) + Bur (t) — AX(t) — B [Kxx(t—td)—i-Krr(t—td) —o' (t—td)fb(x(t—td))—i-G)*TcD(x(t))} (109)
which upon simplification can be expressed as
e(t) = Ae(t) + BKxe(t — tg) + BUag (t —tg) — BO* T @ (X(t)) + BKy [Xm (t) — Xm (t —ta)] +BK: [r (t) —r (t —tq)] (110)

Using the bounded linear approximation of the adaptive 188),(one gets a piecewise locally bounded linear
approximation of the adaptive law (85)

U (1) = O () D (X(1)) + O (1) D (x(t)) ~ —yB Pe(t) + O (t) D (x(t)) (111)

fort € [tj,ti + To), wheretg =0,ti =t_1+ Tp, andi = 1,2,...,n — oo,
The second term in the right hand side can be locally appratachby a first -order Taylor’s series as

TP (X()=0" (t)P(x(1)+O0" ()P (X(H)A+0O" () [P (x(t) — D(x(t))] +...
=0/ D(x(1)+ 6 DAt +... (112)

where®; = O () and®; = O(t;).
The piecewise bounded linear local approximation of thetdalaw (85) then becomes

Uad () ~ —yB Pe(t) + 0] & (x(t)) + O DAt (113)

Furthermore, the terrd® (x(t)) can be approximated by a first -order Taylor’s series as

) . 2 ' '
b x(t)) = 22Uy = OPXWD 4 4 PN 1 ) )] + Z2 D iy e+
= O} [im (1) — &(t)] + P X [xn (t) — () =] +... (114)
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where®, = d® (x(t;)) /dx and®; = 32d (x(t;)) /9.
Differentiating the error equation (110) yields
8(t) = Ae(t) + BKye(t —tg) — yBB  Pe(t —tg) + BO, ®; [Xn (t —tg) — &(t —tg)]
+BO @ X [Xn (t —tg) — e(t —tg) — X] + BO DAt — BO* T [Xin (t) — &(t)]
—BO* @ % [Xn (t) — e(t) — ] + BKy [Xin (t) — Xm (t —tg)] + BK; [f (t) — F (t —tg)] (115)

fort € [tj,ti + To), wheretg =0,ti =t_1+ Tp, andi = 1,2,...,n — oo,
Thus, the locally bounded linear approximation of the eeguiation can be expressed as

A+BOT®d BO O X

I 0 e(t)

l &(t)

| —
@D D
—_ =
— -+
S— —
| I
|

BKx—BO/®, —yBBTP—BO X

[ et —tg) ]Jr [ di(t) +2(t—te)+ds | jqq

0 0 e(t—tg) 0
where
dy (t) = —BO* ®;%p (t) — BO*T®; %X (t) + BKykm (1) + BK; f (t) (117)
da (t — tg) = BO ;X (t —tg) + BO; @ %X (t — tg) — BKykm (t —tg) — BK,F (t —tg) (118)
ds = —BO; ®; %X + BO diAt + BO* T D! %x (119)

are treated as time varying disturbances and therefore thaffiect the closed-loop adaptive system stability.

Equation (116) shows that the stability of the locally boeddinear approximation depends not only on the
adaptive gai but also on the trajectory of the state vect¢r) together captured in the parameyefurthermore, it
also depends on the initial values of the state vextand its time derivative;, the weight®;, and the derivative@{
andd)f, as well as the unknown parametet. Using the matrix measure method as defined previouslyirtreedelay
margin of the adaptive system can be estimated as

w <H(—jG)+||Di (120)
1 AG)+HE(D)
tg < —COS " ——F——— (121)
A i[=]
where
Ty Ty v
Ci— A+BO*' @, BO" P X (122)
I 0
_ To T T %
D; — BKXJ:) BO, ®;, yBB P+OB(9I D, X% (123)

fort € [tj,ti + To), wheretg =0,ti =t_1+ Tp, andi = 1,2,...,n — oo,

It is noted that the computation of the local time delay nmaigiretrospective in that the estimate is computed for
a time window for which most recent data have been colleciedralysis.
D. Estimation of Time Delay Margin for Scalar Adaptive Systems

Consider a scalar system with linear structured unceytaint

X(t) =ax(t) +bu(t) + 6*x(t)] (124)
The reference model is given by
Xm(t) = amXm (t) + b (t) (125)
The controller is given by
u(t) = kex (t) + ker (t) — 6 (1) x(t) (126)
6 (t) = —Ix(t) pbe(t) (127)
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The input time delay version of the system is
X(t) = ax(t) +bu(t —tq) + 0"x(t)] (128)

From the response of the delay-free scalar system, the pseayns evaluated as

r ti+To
y= —/ X2 (1)dt (129)
TO tj
The matrice€; andD; are
a+b6* 0
. — 130
G e ] (130)
. 2
D, = bkxo+ b6, Vbo P 1 (131)

The following parameters are computed analytically as

R 2
B _):a+b6 +1/(a+bB*)°+1 132)

pi(e >

. 1
A(-ic) =5 (133)

2
n(joy) = 2P (134
10411 =/ bk — b8+ y2bp2 (135)

The cross-over frequency and time delay margin are thematgd as
. 1 2. orao
@ <T(=IC)+ [IDil| = 5+ (b — &)+ y2b%p (136)
(G + T (jD; a+bo*+ 1/ (a+h6%)+ 1+ yb?
ty, < %coslu(g)mg_“”(m') = 2 cost ( ) s (137)
I

1+ 2/ (bk— b8)? + y2bAp? 2,/ (b — b6)2 + y2b4 p2

The “exact” values of the cross-over frequency and timeyd@largin for the locally bounded linear approximation
of the error equation can be determined as follows:

det(ja —G +Die 194 ) =0 (138)

This results in two equations
—af — (bky — b6) w sinwty + yb>pcoswity = 0 (139)
—(a+bB%) w — (bky — b)) cw coswty — yb®psinawity =0 (140)

The cross-over frequency equation is obtained as
W'+ [(a+b6")? - (bl — b§)?] w? — yb'p? = 0 (141)

The solution gives

2
(bky — b8)? — (a+bB*) + \/4y2b4p2+ [(a+ b6*)% — (bky — be.)ﬂ
2

G = (142)
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= L g1 YOPPar — (a+ b6") (bl —b6h) o
¢ W y2b4p2 + (bky — b8})?

The adaptive gain for which the adaptive system is stabikgpgendent of time delay, can be estimated as

(143)

—a—b*+/(—a—bo*)2+1

191 = 3/ (~bl+b8)+ y2b2p2 < —p () = > (144)
To\/%+ (a+bb*)? {1+ 1+ @+ be*)z} — (bky— b&)?
r< (145)

bzpftit‘JrT X2 (1)drt

providedx(t) = 0 for allt € [t;,t; + To).

Metrics-driven adaptive control is a concept whereby thapéide gainl can be adjusted for each time window
in order to achieve a desired or specified time delay marghis fiype of adaptation can allow a trade-off between
transient performance and stability robustness.ty&e a desired time delay margin, then the metrics-driventagap
gain can be computed from

1 G HEG)+HEGDi () [T [T
N m ™ Pl ‘f<?o/til Xz(T)dT) o

This is a nonlinear equation which can be solved for the metlriven adaptive gain; for a current time window
t € [ti,ti + To) using the information from a previous time windbw [t;_1,t_1 + To). It is noted that the adaptive gain
I is inversely proportional to the mean-square value of tistesy state[% ftit:l” x2 (1) dt, which has a notion of the
system state “energy”. Thus, stability of the adaptive eysis dependent on the product of the adaptive gain and
the system state mean-square value. For metrics-driveptiagl@ontrol to achieve a desired time delay margin, this
product needs to be kept at a desired value. Therefore, Hytstem state mean-square value is high, then the adaptive
gain needs to be reduced, and vice versa.

Example:Givena=1,b=1,8*=0.1,an=-1,bn=1,p=1,08(0) =0, r(t) = sin(t). The control gains are
computed to b& = —2 andk, = 1.

ForI = 1, the time histories of the staigt), controlu(t), and the weigh® (t) for the delay-free system are
plotted in Fig. 1. It is noted that the weig8{t) converges to the correct value after abiott40 sec.

1 T T T T
x 0 —
-1 L L L L
0 20 40 60 80 100
2 T T T T
-2 L L L L
0 20 40 60 80 100
0.1
@ 0.05f B
O 1 1 1 1
0 20 40 60 80 100

t, sec

Fig. 1 - Time Histories of Delay-Free Adaptive Control Syste
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Select a time windowlp = 1 sec. For the first window & t < Ty, from the response of the delay-free scalar
system, the parametgiis evaluated numerically at= Tp as

1

V:?O

To
/ rx?(1)dr = 0.0266
0
and
I(C1)=1.293

. 1
H(—jCy) = >

T (jD1) = 0.0133
D1 = 2.000

The bounds on the cross-over frequency and time delay margicalculated to be
w < 2.500 rad/sec

ty, < 0.344 sec

For comparison, the “exact” values of the cross-over fragyeand time delay margin for the locally bounded
linear approximation of the error equation are computeckto b

wy = 1.670 rad/sec

tg, = 0.591 sec
and for the non-adaptive LTI system for whiélft) = O for all t are

w=1.670rad/sec

tg =0.592 sec

The “exact” results are almost the same since the estimateg the locally bounded linear approximation of the
error equation are for the first time window for whigh= 0.

The numerical evidence of the time delay margin is estimételget; ~ 0.407 sec. Thus, the estimated local
time delay margin for the first time window is in a reasonalgeeament with the numerical evidence. On the other
hand, the “exact” value of the time delay margin for the lgcAbunded linear approximation of the error equation
over-estimates the time delay margin of the adaptive sysfidme process is then repeated for the next time window
and so on.

Figure 2 is a plot of the variation of the local time delay miagstimates within the time interval for three different
sizes of time windowTy = 1 sec,To = 5 sec, andy = 10 sec. Itis noted that as the window size increases, thatiari
in the local time delay margin estimates decreases. Theetdirge window allows a more uniform average value of
the parametey to be computed, thus reducing the local variation of timayetargin estimate from one time window
to another. It appears that the mean value of the computeddétay margins is relatively insensitive to the window
size. In fact, the mean estimate of the time delay marginHerthree time window size€g = 1 sec,Top = 5 sec, and
To = 10 sec are 0.319 sec, 0.319 sec, and 0.318 sec, respectively.

Figure 3 is a plot of the mean value of the time delay margimmeges as a function of the unknown parameter
—-1<06* <1forTy=1sec. Generally@* is not known, so in a verification setting, time delay mardiowd be
computed over all possible parameter variations withiir thieysical bounds. As can be seen in Fig. 3, §dr< 0,
the time delay margin estimate of the adaptive system istgrél@an that whe®* > 0. This is consistent with the
observation that fo6* < 0, the open-loop system is more stable than that wiHen 0. Also plotted is the time delay
numerical evidence from simulations. The numerical evigan larger than the mean value of the time delay margin
estimates as computed from the bounded linear stabilitjysisamethod by about 20 to 30 percent. Nonetheless,
the estimation of the time delay margin by the bounded liséability analysis method is quite reasonable and, more
importantly, is not too overly conservative. This is im@t from a practical perspective since any analytical tool f
estimating time delay margin for an adaptive system musehéstic with reliability, good accuracy, and sufficient
conservatism.

Figure 4 is a plot of the mean value of the time delay margimeges as a function of the adaptive gaircl
F <100 forTp = 1 sec. It can be seen that as the adaptive fdircreases, the time delay margin of the adaptive
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system decreases. This is a well-known phenomenon in theentional model reference adaptive control. Thus,
there exists a trade-off between transient performancestatility robustness. Increasing the adaptive dagives
better transient performance but at the expense of robestiMetrics-driven adaptive control could provide a way to
maintain consistent time delay margin throughout adaptati exchange for lower transient performance.
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Fig. 3 - Time Delay Margin Variation with Unknown Parameé&r
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V. Conclusions

This paper presents a new method for estimating time delagiméor model reference adaptive control. The
bounded linear stability analysis method provides a lgdatlunded linear approximation of the conventional model
reference adaptive law. In effect, the adaptive law is fiamnsed into a locally bounded linear approximation within
small time windows for which local time delay margins are todstimated. A matrix measure approach provides
a simple analytical method for computing an upper boundroétidelay margin for a linear system is introduced.
This method is shown to provide a good estimate of time delaygi for a linear system without incurring too
much conservatism. To analyze the time delay margin, thptagasystem is formulated as an input-time-delay error
equation. Using this method for the locally bounded linggpraximation of the input-time-delay error equation, time
delay margin for a model reference adaptive control can bhmated. A special case for a scalar model reference
adaptive control system is studied. The method was ableavige a reasonable, yet not too conservative estimate
of the time delay margin for the scalar adaptive system. Tfexteof the time window size was examined. As
the time window size increases, the variation in the esBmaf the local time delay margins for each time window
decreases. It is found that the mean value of the local tinteydeargin estimates over the time interval is quite
insensitive to the time window size. Thus, the mean valua@efdcal time delay margin estimates could be considered
as a representative time delay margin estimate for theeetitire interval. The method also correctly predicts a
typical behavior in model reference adaptive control whegithe time delay margin decreases with an increase in the
adaptive gain. Future work will relax the restriction of alst linear uncertainty and also extend this method to robust
modification schemes in adaptive control.
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