
1
October 7-9, 2008

Microscopic scale simulation of the ablation
of fibrous materials

Jean Lachaud* and Nagi N. Mansour+

* NASA Postdoctoral Program Fellow at NASA Ames, Jean.R.Lachaud@nasa.gov
Sponsored by NASA’s Fundamental Aeronautics Program - Hypersonics Project

+ NASA Ames Research Center, Nagi.N.Mansour@nasa.gov

48th AIAA Aerospace Sciences Meeting, 4-7 January 2010, Orlando, Florida – Paper 2010-984



2

Today’s status
- Using surface ablation 
and equilibrium chemistry, 
the  recession has been 
overestimated by 61% [1] 
near the stagnation point
- Attempts of improvement 
using finite rate-chemistry

What does finite-rate 
chemistry imply?
Importance of the 
effective reactive surface 
of the material 
Possible in-depth 
reaction and mass loss

SEM 3 and 4 suggest the 
occurrence of some volume 
phenomena in the char layer:
- Oxidation (oxygen from the 
atmosphere)
- Sublimation
- Mechanical erosion of the 
matrix

. Introduction :  (a) observation. Introduction :  (a) observation
Fibrous Thermal Protection Systems (TPS); e.g. Stardust and PICA 

1 - Virgin PICA

SEM micrographs (1)
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3 - Charred PICA
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2 - Partially charred2

4 - Partially ablated
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Stardust, Jan. 15, 2006
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[1]     M. Stackpoole et al., Post-Flight Evaluation of Stardust Sample 
Return Capsule Forebody Heatshield Material, AIAA 2008-1202

(1)

First step for the 
porous medium
approach : oxidation
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. Introduction :  (b) comparison of 2 materials . Introduction :  (b) comparison of 2 materials 
Equilibrium chemistry vs. Finite-rate chemistry

Same fibrous preform, chemical composition, overall density
A : dense matrix layer around the fibers       B : Expanded, low density pore-filling matrix

• “Surface ablation” model (as described by Kendall et al., NASA CR-1060, 1968)
– Equilibrium chemistry  Only the chemical composition is important
– model for A = model for B  (in a control volume above the effective surface)

• “Ablation-zone model” model
– Finite-rate chemistry  Material architecture is also important
– model for A ≠ model for B  (surface roughness and porosity are modeled)
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1. Models and simulation tool
– Material models (A vs. B)
– Studied Problem
– Simulation tool : AMA

2. Simulation and analysis
– Simulated Problem
– A vs. B: Moderate Thiele number
– A vs. B: Small Thiele number

3. Discussion
– Effective Reactive Surface Area
– Effective reactivity

4. Conclusion

A

B

. Outline. Outline
Microscopic scale simulation of the ablation of fibrous materials
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Preform: carbon fibers, random orientations
Fibers:  diameter (10 µm), length (0.5 mm)

Virgin mass fractions: carbon fiber (65%), Phenolic resin (35%) 
Overall density (Virgin : 280 kg/m3; Pyrolyzed: 230 kg/m3)

1. Models1. Models
Materials: 2 ideal low density carbon/phenolic ablators

A B

Similarities

Difference

Preform: carbon fibers, random orientations
Fibers:  diameter (10 µm), length (0.5 mm)
Virgin mass fractions: carbon fiber (65%), Phenolic resin (35%) 
Overall density (Virgin : 280 kg/m3; Pyrolyzed: 230 kg/m3)

Dense phenolic resin surrounding the fibers: 1 µm
Virgin phenolic resin density: 1200 kg/m3

Pyrolyzed phenolic resin density: 600 kg/m3

Overall porosity: 0.85

Low density pore-filling matrix
Virgin phenolic resin density: 100 kg/m3

Pyrolyzed phenolic resin density: 50 kg/m3

Overall accessible porosity: 0; closed porosity
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• Problem studied:  Isothermal oxidation of materials A and B in their charred form
• Model

Starting point : differential recession of a
heterogeneous surface S by gasification

Ablation model: Transport, Reaction, and Local Surface Recession
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X(x,y,z=0,t)=XoVertical mass 
transfer of 
oxygen

X(x,y,z,t)

CARBONIZED
MATRIX

Local recession velocity

Local ablation flux per surface unit 

Oxygen transport

Local
concentration

Diffusion Convection
(if any)

n

n

Nomenclature
X =  Oxygen concentration (mol m-3)
D  =  Diffusion coefficient (m2 s-1)
k =  Reactivity (m s-1)
n =  Normal to the surface ( - )
vg =  Pyrolysis gas velocity (m s-1)
Ω =  Solid molar volume (m3 mol-1)

vg

1. Models and simulation tool1. Models and simulation tool

In the following
vg = 0
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Flow regime in the pores of the material [1] : from Knudsen to continuum
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1. Models and simulation tool1. Models and simulation tool

[1] J. Lachaud, I. Cozmuta, N. N. Mansour. Multiscale approach to ablation modeling 
of phenolic impregnated carbon ablators. Journal of Spacecraft and Rockets, accepted for publication.

Just as an illustration, Knudsen number in the pores along the Stardust trajectory 
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1. 1. Models and simulation toolModels and simulation tool
Random Walk for reaction/diffusion & Triangle Marching Cube for surface recession   
Random Walk : Knudsen & Intermediate (classical) - Continuum regime (Brownian Motion)

h

[1]  J. Lachaud, G.L. Vignoles. A Brownian 
motion technique to simulate gasification 
and its application to C/C composite 
ablation. Computational Materials 
Science, 44(4), 2009, pp. 1034-1041. 
doi:10.1016/j.commatsci.2008.07.015

3D simulation tool : 3D simulation tool : AMAAMA [1][1]
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Determination of the effective diffusion coefficient from first principle

Illustration : path of a walker in a periodic cell (code AMA). 
The material in this illustration is anisotropic.

eff refD D




The fibrous media is tortuous. This slows 
the diffusion process (collisions on the 
walls). We can determine the tortuosity 
factor as a function of the mean free path 
of the molecules; that is, as a function of  
the Knudsen number. 

1. Models and simulation tool1. Models and simulation tool

porosity (<1)

tortuosity (>1)
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1. Models and simulation tool
– Material models (A vs. B)
– Studied Problem
– Simulation tool : AMA

2. Simulation and analysis
– Simulated Problem
– A vs. B: Moderate Thiele number
– A vs. B: Small Thiele number

3. Discussion
– Effective Reactive Surface Area
– Effective reactivity

4. Conclusion

A

B

. Outline. Outline
Microscopic scale simulation of the ablation of fibrous materials
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Fiber preform : 1D steady-state analysis (diffusion time << ablation time)
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• The concentration field is a function of the Thiele number
Ls: material depth (m)
Deff: effective diffusivity (m²/s)
kf: fiber reactivity (m/s)
s : specific surface (m2/m3) 

Thiele  number

s

eff

f

L
D
sk

 

Ls

surface

bottom

z

2. Simulation and analysis2. Simulation and analysis

Large Thiele number : ablation is a surface phenomenon, A = B

Smaller  Thiele number : ablation is a volume phenomenon, A ≠ B ?

X(z=0)/X0=1
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• Hypotheses
– B is fully charred
– No pyrolysis gas blowing 
– Air
– Φ = 40, e. g. 

• T = 3360 K  (isothermal)
• P = 0.26 Atm
• ρf = 32 ρm

• oxidation by O2

km = 10 kf = 13.7 m/s
[Drawin 1992, Lachaud 2007]

N.B.: oxidation by O
kf = 100 m/s [Park], Φ > 1000

• Diffusion/reaction DSMC simulation 
– Physical time: 1.2 s
– Computational time : 2 days on 

a single core.

Oxidation of B at moderate Thiele Number, Φ = 40

Oxidation by the top

Periodic on 
the sides

2. Simulation and analysis2. Simulation and analysis
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Oxidation of B at moderate Thiele number (Φ = 40): 3 stages
2. Simulation and analysis2. Simulation and analysis

t = 0.0 s 0.4 s                           0.8 s                         1.2 s 

1) Matrix is removed 
first

2) Fiber diameter
decreases

3) Overall surface 
recession
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Same conditions (Φ = 40): Comparison of A & B
2. Simulation and analysis2. Simulation and analysis

A B
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Same conditions (Φ = 40): Comparison of A & B
2. Simulation and analysis2. Simulation and analysis

Material A

Material B

Similar behaviors at high and moderate Thiele number
i.e, high temperatures
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Small Thiele number (Φ < 0.01); Material A
2. Simulation and analysis2. Simulation and analysis

t = 0.0 t.u.                        5 t.u.                          10 t.u.                         100 t.u.  

At T=1000 K, 1 t.u. ≈ 4 minutes, oxidation by molecular oxygen.

0.
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 m
m
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Small Thiele number (Φ < 0.01): comparison of A and B
2. Simulation and analysis2. Simulation and analysis

Material A

Material B

Different behaviors at small Thiele numbers
i.e., moderate temperatures

0.
75
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0.
75

 m
m
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1. Models and simulation tool
– Material models (A vs. B)
– Studied Problem
– Simulation tool : AMA

2. Simulation and analysis
– Simulated Problem
– A vs. B: Moderate Thiele number (Φ=40)
– A vs. B: Small Thiele number (Φ=40)

3. Discussion
– Effective Reactive Surface Area
– Effective reactivity model

4. Conclusion

A

B

. Outline. Outline
Microscopic scale simulation of the ablation of fibrous materials
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3. Discussion3. Discussion
Effective Reactive Surface Area (ERSA). Illustration: fiber preform [1].
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For a fiber preform, the effective reactivity is  keff = γERSA kf(T)
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[1] J. Lachaud, I. Cozmuta, N. N. Mansour. Multiscale approach to ablation modeling 
of phenolic impregnated carbon ablators. Journal of Spacecraft and Rockets, accepted for publication.

Ls: material depth (m)
Deff: effective diffusivity (m²/s)
kf: fiber reactivity (m/s)
s : specific surface (m2/m3)
GSA: geometric surface area (m²) 

Thiele  number

s

eff

f

L
D
sk

 

Plotted for: kf=1 m/s; L=1cm; s=6x105 m2/m3
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3. Discussion3. Discussion
Effective reactivity of material B at small Thiele number (Φ < 0.01) 

k0: reactivity at t=0 (m/s)
s : specific surface (m2/m3)
h: matrix depth (m) 
εf: fiber volume fraction
kf: fiber reactivity (m/s)
εm : matrix volume fraction
km: matrix reactivity (m/s)
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In this case, the effective 
reactivity can be estimated 
analytically under the 
following hypotheses:
- No temperature gradient
- No pyrolysis gas flux
- The fiber diameter 
reduction is small 
(not valid for the last image)
- The matrix front is flat

We are currently working on the development of more elaborated models 
including
- Temperature gradients,
- Homogeneous finite-rate chemistry (ablation and pyrolysis gases) 
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. Conclusion and perspectives. Conclusion and perspectives

 New volume ablation model (oxidation only)
o Large Thiele number : A ≈ B
(usually high temperatures) 
o Smaller Thiele number : A ≠ B
(usually moderate and low temperatures)

 Finite-rate chemistry
o The effective reactivity of a material is not 
only a function of the temperature. It is also a 
function of the ERSA; that is, of:

- the geometric surface area available 
(depends on the ablation history);
- the Thiele number;
- the temperature gradient;
- homogeneous reactions occurring with 
pyrolysis gases.

 Perspective: Application to real re-entry conditions
o Thermal gradients
o Pyrolysis-ablation coupling (pyrolysis gases)

A

B
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Appendix
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Material B : Fit of post-flight density profile [1]

Char layer

Top of the 
ablation zone

. Application to Stardust conditions. Application to Stardust conditions

Surface 
recession

Surface ablation 
(current models)Ablation

zone

[1] J. Lachaud, I. Cozmuta, N. N. Mansour. Multiscale approach to ablation modeling 
of phenolic impregnated carbon ablators. Journal of Spacecraft and Rockets, accepted for publication.
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Pyrolysis-ablation coupling. Main problem : Finite-rate chemistry.

Virgin

Pyrolysis zone

Char
Not ablated

OH

Phenolic formaldehyde 
resin

CH4 + CO + 2 C2H2

H2   +

~ 200°C

~ 1200°C

Boundary layer

CH4 + O2 =  CO + H2O

2 O

O2

2 C (solid) + O2 =  2 CO

O2

2 O O

CO + O = CO2

Material code :
- ablation + pyrolysis
finite rate 
chemistry
(homogeneous and 
heterogeneous)
- pyrolysis : multi-
laws
- diffusion
- convection

CFD :
- finite rate chemistry
(homogeneous only)
- diffusion
- convection

Ablation zone

Shock

. Current developments: chemistry. Current developments: chemistry

C (sublimation)

C + O = CO

O
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Comparison of A & B for the end of Stardust re-entry
. Current developments: macroscopic scale model. Current developments: macroscopic scale model

Material A + Volume ablation model 

Material B + Volume ablation model 

1D simulation of the evolution 
of the density profile of the 
char layer of A &B in the 
conditions encountered during 
the end of the reentry of 
Stardust

Trajectory time
90s < t < 130s 
Wall temperature
1300 K  > T > 850 K

Temperatures provided by the 
TPS-ADP / Stardust post-flight 
analysis team.

Hypothesis 
Thermal Conductivity
kA=kB= kPICA


