

Microscopic scale simulation of the ablation of fibrous materials

Jean Lachaud* and Nagi N. Mansour*

* NASA Postdoctoral Program Fellow at NASA Ames, Jean.R.Lachaud@nasa.gov Sponsored by NASA's Fundamental Aeronautics Program - Hypersonics Project + NASA Ames Research Center, Nagi.N.Mansour@nasa.gov

. Introduction: (a) observation

Fibrous Thermal Protection Systems (TPS); e.g. Stardust and PICA

. Introduction: (b) comparison of 2 materials

Equilibrium chemistry vs. Finite-rate chemistry

Same fibrous preform, chemical composition, overall density

A: dense matrix layer around the fibers

B: Expanded, low density pore-filling matrix

- "Surface ablation" model (as described by Kendall et al., NASA CR-1060, 1968)
 - Equilibrium chemistry
 - → Only the chemical composition is important
 - model for A = model for B (in a control volume above the effective surface)
- "Ablation-zone model" model
- Finite-rate chemistry

 Material architecture is also important
 - model for A \neq model for B (surface roughness and porosity are modeled)

. Outline

Microscopic scale simulation of the ablation of fibrous materials

1. Models and simulation tool

- Material models (A vs. B)
- Studied Problem
- Simulation tool: AMA

2. Simulation and analysis

- Simulated Problem
- A vs. B: Moderate Thiele number
- A vs. B: Small Thiele number

3. Discussion

- Effective Reactive Surface Area
- Effective reactivity

4. Conclusion

Α

В

1. Models

Materials: 2 ideal low density carbon/phenolic ablators

m m 0.25 Volume Viewer

Preform: carbon fibers, random orientations

Fibers: diameter (10 µm), length (0.5 mm)

Virgin mass fractions: carbon fiber (65%), Phenolic resin (35%)

Overall density (Virgin: 280 kg/m³; Pyrolyzed: 230 kg/m³)

Dense phenolic resin surrounding the fibers: 1 µm

Virgin phenolic resin density: 1200 kg/m³ Pyrolyzed phenolic resin density: 600 kg/m³

Overall porosity: 0.85

Similarities

Difference

Preform: carbon fibers, random orientations Fibers: diameter (10 µm), length (0.5 mm) Virgin mass fractions: carbon fiber (65%), Phenolic resin (35%)

Overall density (Virgin: 280 kg/m³; Pyrolyzed: 230 kg/m³)

Low density pore-filling matrix

Virgin phenolic resin density: 100 kg/m³ Pyrolyzed phenolic resin density: 50 kg/m³ Overall accessible porosity: 0; closed porosity

Ablation model: Transport, Reaction, and Local Surface Recession

• Problem studied: Isothermal oxidation of materials A and B in their charred form

Model

Starting point : differential recession of a heterogeneous surface **S** by gasification

$$\frac{\partial S}{\partial t} + \mathbf{v}.\nabla S = 0$$

Local recession velocity

$$\mathbf{v} = -J \ \Omega_i \ \mathbf{n} \ ; \ \mathbf{i} = \{ \text{fiber, matrix} \}$$

Local ablation flux per surface unit

$$J = k_i X$$
; $i = \{fiber, matrix\}$

Oxygen transport

$$\underbrace{\frac{\partial X}{\partial t}}_{} + \nabla \cdot (-D\nabla X) + \mathbf{v_g} \cdot \nabla X = 0$$

Local Diffusion Convection concentration (if any)

Nomenclature

X = Oxygen concentration (mol m⁻³)

D = Diffusion coefficient ($m^2 s^{-1}$)

 $k = \text{Reactivity (m s}^{-1})$

n = Normal to the surface (-)

 $\mathbf{v_g} = \text{Pyrolysis gas velocity (m s}^{-1})$

 Ω = Solid molar volume (m³ mol⁻¹)

In the following

$$v_q = 0$$

Flow regime in the pores of the material [1]: from Knudsen to continuum

Just as an illustration, Knudsen number in the pores along the Stardust trajectory

Stardust trajectory
T-P conditions at TPS surface
Time from entry interface
(1 arrow = 1 s)

21 s : beginning of pyrolysis

51 s : peak heating 133 s : end of ablation

Mean free path of O_2 in air

$$\overline{\lambda} = 3.2 \times 10^{-5} \frac{T (in K)}{p (in Pa)}$$

Knudsen number

$$Kn = \frac{\overline{\lambda} (mean free path)}{\overline{d}_p(pore diameter)}$$

[1] J. Lachaud, I. Cozmuta, N. N. Mansour. Multiscale approach to ablation modeling of phenolic impregnated carbon ablators. Journal of Spacecraft and Rockets, accepted for publication.

Random Walk for reaction/diffusion & Triangle Marching Cube for surface recession Random Walk: Knudsen & Intermediate (classical) - Continuum regime (Brownian Motion)

3D simulation tool: AMA^[1]

Determination of the effective diffusion coefficient from first principle

Illustration: path of a walker in a periodic cell (code **AMA**). The material in this illustration is anisotropic.

The fibrous media is tortuous. This slows the diffusion process (collisions on the walls). We can determine the tortuosity factor as a function of the mean free path of the molecules; that is, as a function of the Knudsen number.

. Outline

Microscopic scale simulation of the ablation of fibrous materials

1. Models and simulation tool

- Material models (A vs. B)
- Studied Problem
- Simulation tool: AMA

2. Simulation and analysis

- Simulated Problem
- A vs. B: Moderate Thiele number
- A vs. B: Small Thiele number

3. Discussion

- Effective Reactive Surface Area
- Effective reactivity

4. Conclusion

В

Fiber preform: 1D steady-state analysis (diffusion time << ablation time)

The concentration field is a function of the Thiele number

$$X(z) = X_0 \frac{\cosh\left[\Phi(z/L_s - 1)\right]}{\cosh\Phi}$$

Thiele number

$$\Phi = \frac{L_s}{\sqrt{\frac{D_{eff}}{sk_f}}}$$

L_s: material depth (m)

D_{eff}: effective diffusivity (m²/s)

k_f: fiber reactivity (m/s)

s: specific surface (m²/m³)

Oxidation of B at moderate Thiele Number, $\Phi = 40$

Hypotheses

- B is fully charred
- No pyrolysis gas blowing
- Air
- $-\Phi = 40$, e. g.
 - T = 3360 K (isothermal)
 - P = 0.26 Atm
 - $\rho_f = 32 \, \rho_m$
 - oxidation by O₂

 $k_m = 10 k_f = 13.7 \text{ m/s}$ [Drawin 1992, Lachaud 2007]

N.B.: oxidation by O $k_f = 100 \text{ m/s [Park]}, \Phi > 1000$

- Diffusion/reaction DSMC simulation
 - Physical time: 1.2 s
 - Computational time : 2 days on a single core.

Oxidation of B at moderate Thiele number ($\Phi = 40$): 3 stages

Same conditions ($\Phi = 40$): Comparison of A & B

A B

Same conditions (Φ = 40): Comparison of A & B

Similar behaviors at high and moderate Thiele number i.e, high temperatures

Material B

Material A

Small Thiele number (Φ < 0.01); Material A

At T=1000 K, 1 t.u. ≈ 4 minutes, oxidation by molecular oxygen.

Small Thiele number (Φ < 0.01): comparison of A and B

. Outline

Microscopic scale simulation of the ablation of fibrous materials

1. Models and simulation tool

- Material models (A vs. B)
- Studied Problem
- Simulation tool : AMA

2. Simulation and analysis

- Simulated Problem
- A vs. B: Moderate Thiele number (Φ=40)
- A vs. B: Small Thiele number (Φ=40)

3. Discussion

- Effective Reactive Surface Area
- Effective reactivity model

4. Conclusion

В

18

3. Discussion

Effective Reactive Surface Area (ERSA). Illustration: fiber preform [1].

For a fiber preform, the effective reactivity is $k_{eff} = \gamma_{ERSA} k_f(T)$

$$\gamma_{ERSA} = \frac{ERSA}{GSA} = \int_{z=0}^{L} s_f X(z) / X_0 dz = \left[sL \frac{\tanh \phi}{\phi} + (1 - \varepsilon) \right]$$

Plotted for: $k_f=1 \text{ m/s}$; L=1cm; s=6x10⁵ m²/m³

L_s: material depth (m)
D_{eff}: effective diffusivity (m²/s)
k_f: fiber reactivity (m/s)
s : specific surface (m²/m³)
GSA: geometric surface area (m²)

Thiele number $\Phi = \frac{L_s}{\sqrt{D_{eff}}}$

[1] J. Lachaud, I. Cozmuta, N. N. Mansour. Multiscale approach to ablation modeling of phenolic impregnated carbon ablators. Journal of Spacecraft and Rockets, accepted for publication.

3. Discussion

Effective reactivity of material B at small Thiele number (Φ < 0.01)

In this case, the effective reactivity can be estimated analytically under the following hypotheses:

- No temperature gradient
- No pyrolysis gas flux
- The fiber diameter reduction is small

We are currently working on the development of more elaborated models including

- Temperature gradients,
- Homogeneous finite-rate chemistry (ablation and pyrolysis gases)

 $\kappa_{eff} = \kappa_0 \left[1 + \frac{1}{(\varepsilon_m k_m / k_f + \varepsilon_f)} \right]$

 k_0 : reactivity at t=0 (m/s)

s : specific surface (m²/m³)

h: matrix depth (m)

 ε_f : fiber volume fraction

k_f: fiber reactivity (m/s)

 ε_m : matrix volume fraction

k_m: matrix reactivity (m/s)

20

age)

. Conclusion and perspectives

- ✓ New volume ablation model (oxidation only)
 - Large Thiele number : A ≈ B (usually high temperatures)
 - Smaller Thiele number : A ≠ B
 (usually moderate and low temperatures)
- ✓ Finite-rate chemistry
 - The effective reactivity of a material is not only a function of the temperature. It is also a function of the ERSA; that is, of:
 - the geometric surface area available (depends on the ablation history);
 - the Thiele number;
 - the temperature gradient;
 - homogeneous reactions occurring with pyrolysis gases.
- ✓ Perspective: Application to real re-entry conditions
 - Thermal gradients
 - Pyrolysis-ablation coupling (pyrolysis gases)

Α

В

Appendix

. Application to Stardust conditions

Material B: Fit of post-flight density profile [1]

[1] J. Lachaud, I. Cozmuta, N. N. Mansour. Multiscale approach to ablation modeling of phenolic impregnated carbon ablators. Journal of Spacecraft and Rockets, accepted for publication.

. Current developments: chemistry

Pyrolysis-ablation coupling. Main problem: Finite-rate chemistry.

CFD:

- finite rate chemistry (homogeneous only)
- diffusion
- convection

Material code:

- ablation + pyrolysis
- →finite rate chemistry (homogeneous and heterogeneous)
- pyrolysis : multilaws
- diffusion
- convection

24

. Current developments: macroscopic scale model

Comparison of A & B for the end of Stardust re-entry

z (mm)

