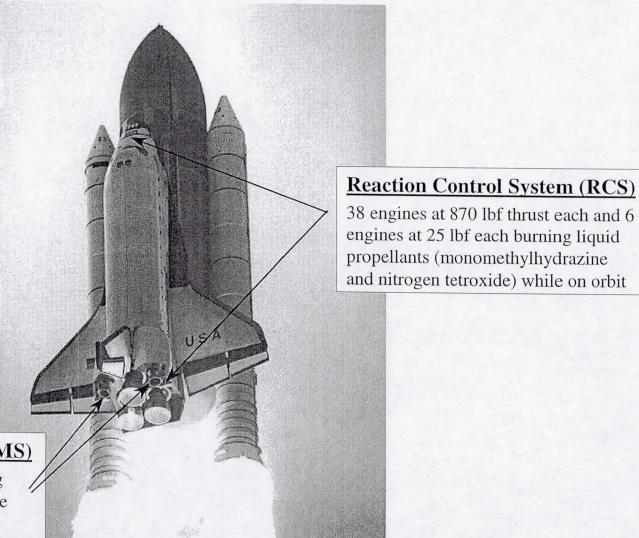


On-Orbit Propulsion OMS/RCS

Energy Systems Division Engineering Directorate NASA/Johnson Space Center

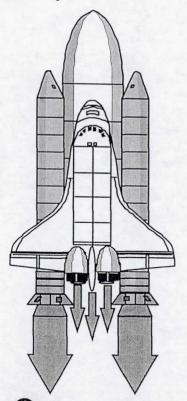

April 26, 2001

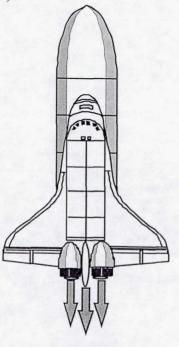
On-Orbit Propulsion Systems

Orbital Maneuvering System (OMS)

2 engines at 6000 lbf thrust each burning liquid propellants (monomethylhydrazine and nitrogen tetroxide) while on orbit

SPACE SHUTTLE ASCENT

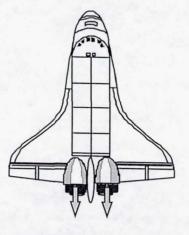

LIFT-OFF/ASCENT


Solid Rocket Boosters (SRB's) and Main Engines (SSME's)

Mission Time $= 2 \min$

Altitude = 150,000 ft

Velocity = 4200 ft/sec

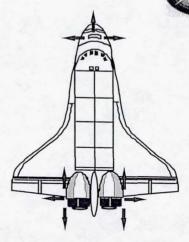

ASCENT

Main Engines (SSME's)

Mission Time = 8.5 min

Altitude = 365,000 ft

Velocity = 26,000 ft/sec


ORBITAL INSERTION

Orbital Maneuvering System (OMS) Engines

Mission Time = 40 min

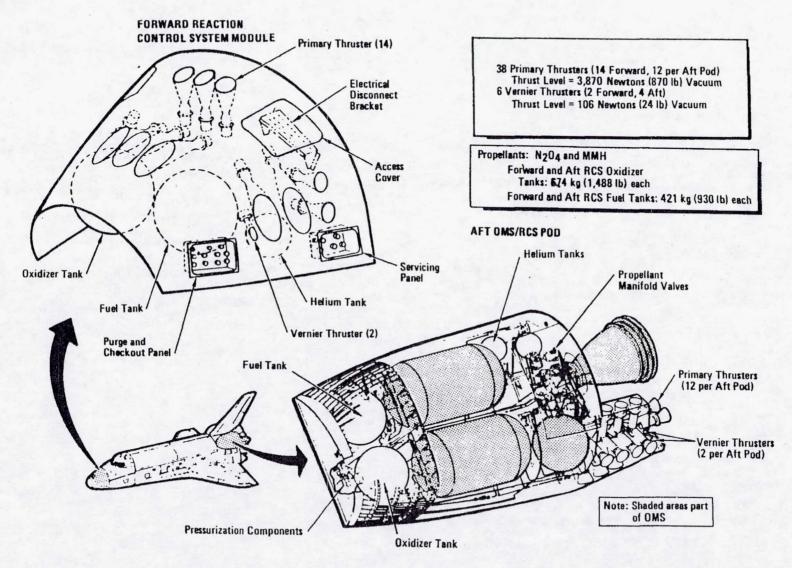
Altitude = 100-200 nmi

Velocity = 17,500 mi/hr

ON-ORBIT OPERATIONS

Reaction Control System (RCS) Engines

Mission Time = N/A


Altitude = 100-200 nmi

Velocity = 17,500 mi/hr

Orbital Maneuvering Subsystem Functions

- Provide thrust for:
 - Orbit Insertion
 - Orbit Circularization
 - Orbit Transfer
 - Rendevous
 - Deorbit
 - Launch Abort
- Provide additional propellant for on-orbit RCS use
- Crossfeed capability (system redundancy feature)

Orbital Maneuvering System Description

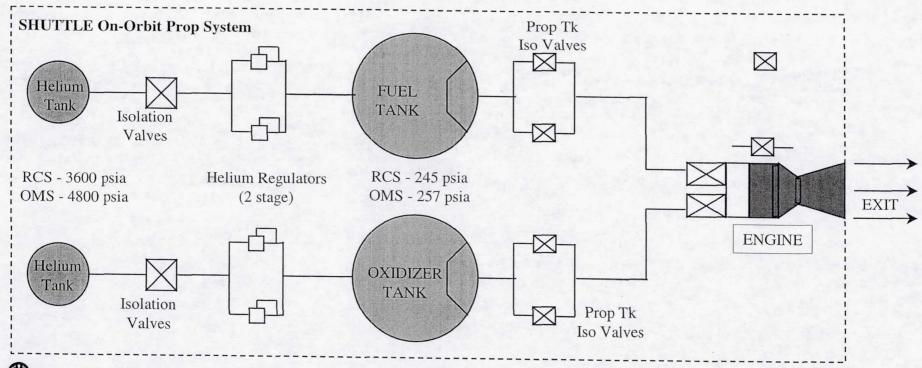
- Located in two independent pods on the aft end of the Orbiter
 - Each pod contains one OMS engine, one fuel tank, one oxidizer tank, one helium storage tank, associated pressurant/propellant feed system valves and tubing
 - OME Performance:
 - » Thrust 6,000 lbf
 - » Specific Impulse (Isp) 315 secs
 - » Nominal Chamber Pressure 130 psia
 - Propellants, monomethyl hydrazine (MMH) and nitrogen tetroxide
 (N2O4) are <u>hypergolic</u> <u>react on contact</u>
 - Each engine can be fed from either pod (i.e., either engine can burn propellants from left, right, or both pods)
 - Each pod contains interfaces to EPD&C (power to valves), GN&C (engine controls), D&C (crew insight), instrumentation, thermal control system circuitry, and C/W.

Reaction Control System Function

- Provide thrust for velocity changes along the axis of the Orbiter
 - Separation from the External Tank (FRCS)
 - Minor orbit adjustments during rendezvous (fwd & aft)
 - · Reboost for ISS, HST
 - Back-up to OMS for Deorbit
- Provide vehicle attitude control on orbit and entry
 - Maneuver to attitude for rendezvous, payload deployment/capture, special mission requirements
 - Vehicle control during entry prior to aerosurface control (yaw jets used down to 45Kft)

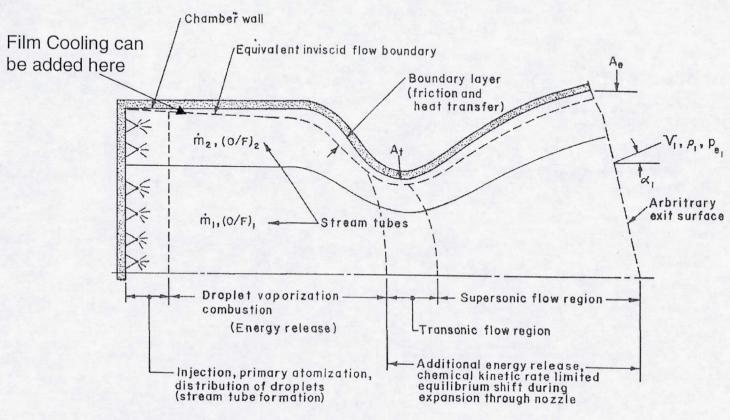
Reaction Control System Description

- Fwd RCS includes 14 primary (870 lbf) and 2 vernier (25 lbf) jets
- Aft RCS (located in OMS pods) each contain 12 primary and 2 vernier jets
 - Aft RCS manifolds can be fed by RCS tanks in the opposite pod (crossfeed mode)
 - or OMS propellant tanks from either pod (interconnect mode)
 - FRCS manifolds are stand-alone (we ALMOST had fwd interconnect)
- Each RCS contains a helium storage tank, one fuel tank, one oxidizer tank, associated feed/pressurization system valves and plumbing
 - Unlike OMS, the RCS fuel and oxidizer tanks are pressurized by independent helium systems



How Does the Shuttle OMS/RCS Work?

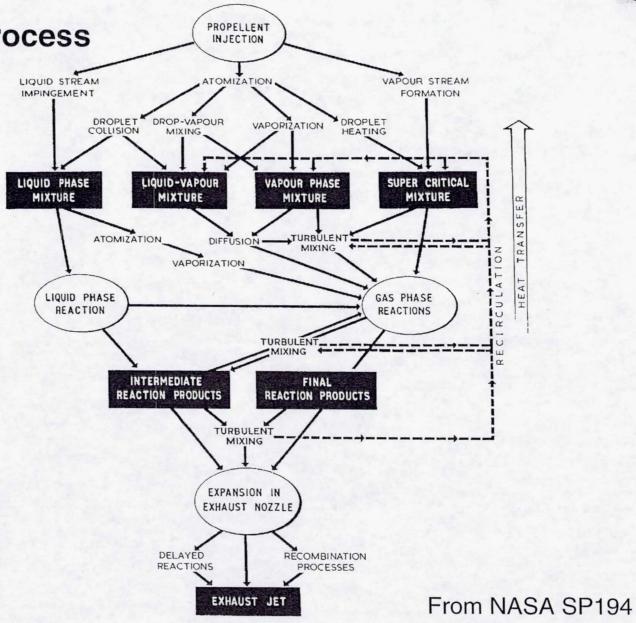
- Regulated helium pushes liquid fuel (MMH) and oxidizer (N2O4) into rocket engine for spontaneous combustion
- Propellant Acquisition Devices (screens) use capillary forces to collect propellant and direct it to tank outlet


OMS/RCS Thruster Fundamentals

Thrust Chamber Performance

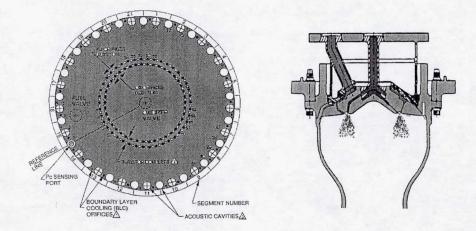
$$F_{\text{vac}} = \int_{s} \dot{m}_{i} V_{i} \cos \alpha_{i} + \int P_{e_{i}} dA_{e_{i}}$$

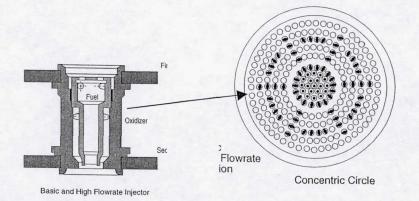
 $\begin{aligned} &\text{Isp} = F_{\text{vac}}/\text{mdot} &\text{(Overall Performance - Thrust per propellant consumption)} \\ &C^* = P_c A_t / \text{mdot} &\text{(Combustion Chamber Performance - characteristic velocity)} \\ &Cf = T / (P_c A_t) &\text{(Nozzle Performance - Thrust coefficient)} \end{aligned}$


Typically Analyzed By using TEP and TDK (see division analysis tools)

Combustion Process

Description





Injectors

- Several different types
 - Pintle
 - Coaxial
 - Impinging
- Several manufacturing Techniques
 - Drilled
 - Etched Platelet
 - Machined (Coaxial and Pintle)

From NASA SP194

Combustion Instability

Definition

- An undesirable dynamic interaction between the combustion process and other parts of the system or engine
- Low frequency (Chugging)
 - Coupling between engine and feedsystem
 - · Apollo R4D used on Cassini required modification of feedsystem
- First Longitudinal Chamber Mode
- **High Frequency**
 - Coupling between chamber acoustics and the combustion process
 - · Fix is to use acoustic damping devices to damp oscillations or inherently stable injector (pintle)
 - Shuttle primary RCS engine experienced instability
 - Triggered by gas injestion in the fuel side during start-up, which caused a disturbance sufficient to create an instability
 - Instability was the 1T at 6000 Hz

Some High Frequency Modes

Purely tangential modes

First (IT)

Second (2R)

Chambers

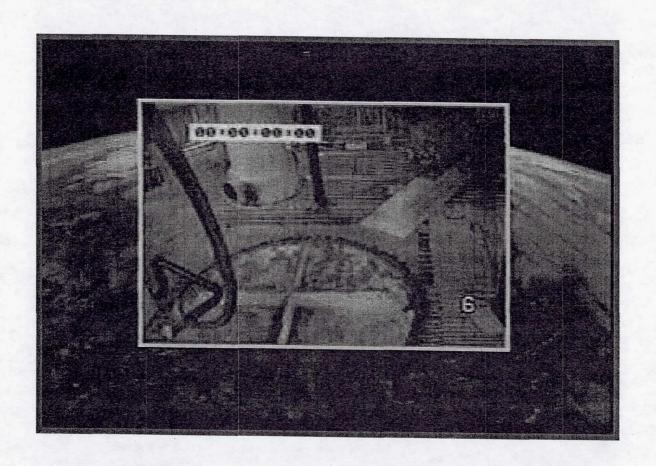
- Regeneratively Cooled
 - Fuel or oxidizer is routed through chamber wall (nickel or stainless steel)
 - OMS Engine is fuel cooled
- Film Cooled
 - C103 (Niobium) with disilicide coating
 - RCS engine use this material and film cooling

Non Toxic OMS/RCS

Trade Study Comparison of Propellants

	MMH/NTO	H2O2/H-C	LOX/Alcohol	LOX/Methane	LOX/Methane	LOX/LH2
Performance	Pressure-Fed	Pressure-		Pressure-Fed	Pump-Fed	Pump-Fed
		Fed			i amp i ca	i dilip-i ed
Total Mass (Isp)	SOA	-	+	+	+	
Power Required (Heaters)	SOA		+	+	+	+
Volume, (Density Isp)	SOA	+	+		+	+
Reliability and Safety						
Number of Components	SOA	+	+	+		
Explosive Residues	Need Imp	+	+			
Plume Contamination		100	+		+	+
Non-Corrosive	Need Imp		+	+	+	+
Low Leakage	Need Imp	+	+	+	+	+
Fast Response	SOA	+	+	+	+	
Toxicity	Need Imp	+	+	+		
Flammability	Need Imp	+	+	+	+	+
Cost				+	+	
Inert (Dry) Mass	SOA	+	+			
Propellant Cost	Need Imp		+	+		
Number of Components	SOA	+	+	+	+	
Operations				+		
Long Term Storability (Years)	SOA					
Propellant Management	SOA		+			
Ground Propellant Handling	Need Imp			+		
Integration w/Power/ECLSS	Need Imp		+	+	+	+
Commonality with HEDS Roadmap	Need Imp		+	+	+	+
,	neca mp		+	+	+	+
Total +		9	10	10	40	
Total 1		9	18	16	13	9

+ = Better than NTO/MMH (or equal to if also good)


= Worse than to NTO/MMH

SOA = State of the Art

Lox/Ethanol Engine Firings

References

- AIAA Volume 147 "Modern Engineering for Liquid Propellant Rocket Engines"
- NASA SP-194 "Liquid Propellant Rocket Combustion Instability"
- AIAA Volume 169 "Liquid Rocket Engine Combustion Instability

