Tribology & Mechanical Components Branch Overview

Dr. Robert F. Handschuh NASA Glenn Research Center Cleveland, Ohio, U.S.A.

Abstract:

An overview of NASA Glenn Research Center's Tribology & Mechanical Components Branch is provided. Work in space mechanisms, seals, oil-free turbomachinery, and mechanical components is presented. An overview of current research for these technology areas is contained in this overview.

Tribology & Mechanical Components Branch Overview

Dr. Robert F. Handschuh NASA Glenn Research Center Cleveland, Ohio, U.S.A.

- View from 30,000 feet
- Structures and Materials Division
- Tribology & Mechanical Components Branch
- Branch teams
- Oil-free bearing research activities
- Tribology activities
- Seals Team activities
- Drive system activities
- Summary

NASA Glenn Research Center

Materials and Structures Division

Propulsion and Power System Components

Aeroshells TPS; Cooled strs. Cryogenic tanks Nacelles Combustors Engine fan system Mechanisms Oil-Free engines Injectors High-power motors Space lubricants Protective Coatings Sensors Thermoelectrics

Surface mobility systems Nozzles In-space & on-surface modules Rotor discs and systems Turbine vanes Energy absorbing systems Mechanical drive systems Human health systems Thrusters Bearings and flywheels Solid oxide fuel cells, batteries High temp. and cryogenic seals Porous membranes BN nanotubes

Probabilistic methods Mechanical power transfer Impact dynamics Structural mechanics Material modeling Material characterization Functional materials Metallic alloys Computational materials Surface science Materials science

Core R&T Capabilities

Matl. and strl. Concepts Health prognostics Blast mechanics Structural dynamics Joining technology Failure and damage growth Processing technologies Shape memory alloys Protective coatings Extreme environment effects High temperature chemistry

Design technology Experimental methods Measurement technology Aeroelasticity Durability and life Fatigue and fracture High temp. and cryo seals Ceramic materials Multifunctional Materials Lubricant chemistry Friction and wear

"NASA's one-stop-shop for all its mechanisms & lubrication needs"

Branch Organization:

- > Oil-Free Turbomachinery Dr. Chris DellaCorte
- > Space Mechanisms & Lubrication Dr. Phil Abel
- > Aerospace Seals Dr. Bruce Steinetz
- > Aero Drive Systems Dr. Robert Handschuh

Tribology & Mechanical Components Branch

Oil-Free Turbomachinery

From basic research to application

- Aero / Space application
- World-leading bearing experts
- Advanced modeling methods
- Foil bearing predictive design

Aerospace Seals Research

Docking Seal

- Space habitat seals for extreme environments
- Structural / thermal protection seals

Heat Shield

Non-contacting turbine seals

Space Mechanisms & Lubrication

- Accelerated space lubricant life testing under vacuum
- New mechanism concepts for planetary environment
- New space lubricant development
- Terramechanics modeling & testing for efficient wheels

Aero Drive Systems

- Gear fatigue research
 - High speed gear lubrication
 - Drive system diagnostics
 - Fatigue crack modeling
 - Dynamic mechanical components
 - Rotorcraft transmission systems
- Advanced rolling element and wave bearing technologies

Oil-Free Turbomachinery

TGIR Award for Level I Milestone: "Core Hot Bearing Tests" (OFTET)

PM304 bushings for industrial furnaces and valves

Oil-Free Key Facilities & Capabilities

Coating deposition research facility

Foil bearing ambient pressure test rig

Hot high-speed thrust foil bearing rig

Shaft rotordynamic simulator test facility

Capstone MicroTurbine proof-of-concept & environmental durability test facility

Space Tribology & Materials

SPIRAL ORBIT TRIBOMETER Accelerated Lubricant Life Testing Under Realistic Conditions

VACUUM 4-BALL Accelerated Bulk Property Testing of Lubricants

Other Facilities: •Vapor Pressure of Fluids •Radiation Damage of Polymers

Carbon nanostructure transformation by industrially scalable GRC developed process

Addition of a small amount of nano-onions to oil improved the lifetime by a factor of 8x while decreasing the friction by a factor of 2.6

Spiral Orbit Tribometer (SOT)

⁴ Nano-onions mixed with oil (Krytox 143AB) form a nano-grease. When tested in the SOT, which mimics the motion of a ball bearing, significant friction and lifetime improvements in air are realized.

Surface Science Tools

XPS

Raman

NASA GRC Seal Team contributions have influenced several flight projects:

- Shuttle main landing gear door environmental seals
- Thermal barrier (braided carbon fiber rope) for nozzle joints of Shuttle and Atlas V SRM's

- NASA GRC Seal Team contributions have influenced several flight projects:
 - X-38 rudder/fin seals
 - X-37 flaperon seals

Low Impact Docking System (LIDS)

- LIDS is a system under development by NASA JSC designed to:
 - Provide gender-neutral (androgynous) interface permitting docking and berthing between any two space vehicles
 - Reduce impact loads between two mating space craft
 - Become new Agency standard for docking/berthing systems

Low Impact Docking System (LIDS)

Seal Test Facilities

Drive System Test Facilities

Spur Gear Fatigue Test Rigs

Spiral Bevel / Face Gear Test Facilities

Gear Noise / Dynamics Test Facility

Split Torque Test Facility

OH-58 Transmission Test Facility

High Speed Helical Gear Train Facility

Drive System Analytical Capabilities

Finite Element Based Structural - Thermal

High Speed Gearing Results NASA - ARL/VTD - Bell Helicopter

Condition Based Maintenance

Objectives: Increase reliability and decrease false alarms for mechanical component diagnostics. Demonstrate integration of oil debris and vibration based damage detection techniques results in improved capability.

Approach:

Instrument and monitor all GRC gear fatigue test facilities and work with other govt. agencies, university, and industry

Condition Based Maintenance

Wave Bearing Technology

Bearing Concept

- Improved stability and cooling
- Ability to tailor stiffness and damping
- Use of hard sleeves

Test Facility

Advanced Gear Material

Surface Fatigue Results

Gear Material	Number of failures	Number of tests completed	Median life (million cycles)
AMS 6308B [Ref. 10]	15	21	134
AISI 9310 [Ref. 13]	25	33	200
Ferrium ® C69 [present study]	5	10	361

Fracture Toughness

Ferrium[®] C69 AISI 9310

- Excellent Contact Fatigue
- Poor Fracture Toughness

Space Mechanism Wear

Dither Damage Assessment

Low Cycle Bending Fatigue

Civil Tiltrotor Drive System Configuration

Hover Ratio 131.4 : 1 Forward Flight Ratio 243.6 : 1

Penn State Univ. - NASA NRA R&D

Windage Test Facility, NASA-GRC

Dr. Robert F. Handschuh, Army Research Lab, NASA - Glenn Mark A. Stevens, NASA Glenn Research Center

High Speed Operation (hover): Wet / Dry Clutch engaged, Over-Running Clutch over-running Low Speed Operation (cruise): Wet / Dry Clutch disengaged, Over-Running Clutch driving

Dr. Robert F. Handschuh (October 2007)

Variable / Multi-Speed Drive Facility Concept

Summary

- Four main focus areas in the drive system area:
 - * Oil-Free Turbomachinery
 - * Tribology Surface Science
 - * Seals Static and Dynamic
 - * Drive System Technologies
- Currently conduct / manage research within our center as well as at contractor and university locations
- Involved in analytical and experimental developments
- Work closely with the space & aerospace industry, other government agencies / NASA centers, NESC....