NASA Glenn PSL-3&4 Control System Upgrade

by Paul J Lizanich

Tech Lead Electrical Engineer of the PSL Jet Engine Test Facility

Summary:

An overview of the PSL-3&4 Jet Engine Test Facility control system; including its history, a description of the present effort to upgrade from Emerson Ovation v2.2 to V3.3.1, and future upgrade plans.

NASA Glenn PSL-3&4 Control System Upgrade

Paul J Lizanich

Background

Facility originally constructed with panels containing pushbuttons, switches, loaders, and controllers.

In 1990 a WDPF (Westinghouse Distributed Process Family) control system was installed in PSL.

Similar systems were also installed in the IRT, 8x6, 9x15, and 10x10 wind tunnels.

The WDPF systems included state-of-the-art 8 color graphics on WEStation operator consoles with bulky CRT monitors and chiclet keyboards.

The WDPF system contained OCR-161 controllers and large Q-line I/O cards.

Ovation Evolution

Ovation supports a wide variety of industry standard platforms, operating system, and network architectures; permitting incremental or discrete evolutions of each system as needed.

Background – Ovation v2.2

In the early 2000s, WDPF evolved into the Ovation product line. NASA Glenn migrated from WDPF to Ovation v2.2 starting in 2002.

Current Ovation Configuration

- NASA Glenn's major aeronautical facilities today:
 - Ovation v2.2
 - OCR-161 processors
 - AutoCAD control sheets
 - Win2k engineering and operator PCs
 - Windows NT servers
 - Historian
- The goal is to modernize the facilities around testing and budgetary constraints.

Ovation Improvements since v2.2

Ovation v3.0 and above recommends upgrade to OCR400 processor. Ovation v3.0 enables Q-line to Ovation I/O migration.

Ovation Improvements since v2.2

Ovation 3.1 and above requires migration from AutoCAD control sheet drawings to Emerson's eCAD drawings

Other Ovation Improvements Since v2.2

- HART (Highway Addressable Remote Transducer) protocol devices require Ovation 2.3 and above
- Ovation 3.3.1 runs on Win 7 or XP operator stations, and Windows Server 2008 or 2003 server class machines

Ovation Upgrade

- Emerson has a process called Evergreen for the migration of older WDPF or Ovation systems to the up-to-date versions of Ovation.
 - DPU upgrade from OCR161 to OCR400 controllers
 - Control sheet change from AutoCAD to eCAD
 - MMI/PC upgrades to Windows7 (or WindowsXP)
 - Server upgrades to Windows Server2008 (or 2003)
- Emerson Q-line I/O twilight
 - Q-line I/O is scheduled to be dropped from Ovation SureService support in 2018
 - Emerson has an upgrade path for Q-line I/O card replacement which does not require any field wiring changes

Ovation Upgrade

- There are two differing approaches being taken based upon schedule and budget
 - Incremental approach
 - Phase I Evergreen
 - v2.2 to v3.3.1
 - OCR-161 controller to OCR-400
 - AutoCAD to eCAD
 - Win2k to Win7
 - Phase II I/O Migration
 - Q-line to Ovation line I/O
 - All at once approach

Ovation v3.3.1 Migration Plan

- NASA Glenn has adopted a multi-year plan to upgrade all four major facilities
 - -2010
 - PSL Evergreen
 - 2011
 - IRT Evergreen and I/O card migration
 - -2012
 - PSL I/O card migration
 - -2013+
 - 8x6/9x15
 - 10x10

Verification Plans

- Each facility will perform an Ovation system Validation Plan as part of the Evergreen process
 - Prudent due to control sheet changes
 - Validation Plan includes
 - Subsystem checkout
 - Integrated subsystems test
 - Full facility operation
- Each facility will perform end-to-end checks and subsystem checkouts as part of I/O card replacement
 - To ensure all I/O connectors to the field have been properly connected to new I/O cards

PSL Ovation Network Configuration

PSL Ovation Controller Upgrade

- Fully redundant controller pair
 - Dual Intel processors
 - PCI bus structure
 - Up to five process control tasks each with different loop execution rate
 - 128MB Flash & 128MB RAM
 - Four 10/100MB Ethernet NIC ports
 - Dual network interfaces
 - Dual processor power supplies
 - Dual I/O power supplies
 - Dual auxiliary power supplies
 - Dual input power feeds
 - Dual I/O interfaces

Ovation 3.3.1 I/O Limits

- I/O capacity
 - Local I/O
 - Two sets of 8 branches of 8 Ovation I/O modules
 - Two nodes of 4 crates of 12 Q-line cards
 - Remote I/O
 - Eight remote nodes of 8 branches of 8 Ovation I/O modules
 - Eight remote nodes of 48 Q-line cards

DPUs 1/51, 2/52, & 3/53

DPUs 5/55 & 6/56

DPU 7/57

DPU 8/58

Schedule

Questions?

Contact Info:

Paul J Lizanich

Tech Lead Electrical Engineer of the PSL Jet Engine Test Facility Sierra Lobo, Inc. 21000 Brookpark Road MS 125-1 Cleveland, OH 44135 216.433.5724 paul.j.lizanich@nasa.gov