
NASA/CR–2010–216874

Multifidelity Analysis and
Optimization for Supersonic Design

Ilan Kroo
Stanford University, Stanford, California

Karen Willcox and Andrew March
Massachusetts Institute of Technology, Cambridge, Massachusetts

Alex Haas and Dev Rajnarayan
Stanford University, Stanford, California

Cory Kays
Massachusetts Institute of Technology, Cambridge, Massachusetts

December 2010

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a
key part in helping NASA maintain this
important role.

The NASA STI Program Office is operated
by Langley Research Center, the lead center
for NASA’s scientific and technical
information. The NASA STI Program Office
provides access to the NASA STI Database,
the largest collection of aeronautical and
space science STI in the world. The Program
Office is also NASA’s institutional
mechanism for disseminating the results of
its research and development activities.
These results are published by NASA in the
NASA STI Report Series, which includes the
following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed to
be of continuing reference value. NASA
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript length
and extent of graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest, e.g.,
quick release reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services that complement the
STI Program Office’s diverse offerings
include creating custom thesauri, building
customized databases, organizing and
publishing research results . . . even
providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home
Page at http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA STI Help Desk
at (443) 757–5803

• Phone the NASA STI Help Desk at (443)
757–5802

• Write to:
NASA STI Help Desk
NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076–1320

NASA/CR–2010–216874

Multifidelity Analysis and
Optimization for Supersonic Design

Ilan Kroo
Stanford University, Stanford, California

Karen Willcox and Andrew March
Massachusetts Institute of Technology, Cambridge, Massachusetts

Alex Haas and Dev Rajnarayan
Stanford University, Stanford, California

Cory Kays
Massachusetts Institute of Technology, Cambridge, Massachusetts

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

December 2010

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not
constitute an offical endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

Available from:

NASA Center for AeroSpace Information (CASI)
7115 Standard Drive

Hanover, MD 21076–1320
(443) 757–5802

Abstract

Supersonic aircraft design is a computationally expensive optimization problem and multi-
fidelity approaches offer a significant opportunity to reduce design time and computational
cost. This report presents tools devloped to improve supersonic aircraft design capabili-
ties including: aerodynamic tools for supersonic aircraft configurations; a systematic way
to manage model uncertainty; and multifidelity model management concepts that incorpo-
rate uncertainty. The aerodynamic analysis tools developed are appropriate for use in a
mutltifidelity optimization framework, and include four analysis routines to estimate the
lift and drag of a supersonic airfoil, a multifidelity supersonic drag code that estimates the
drag of aircraft configurations with three different methods: an area rule method, a panel
method, and an Euler solver. In addition, five multifidelity optimization methods are de-
veloped, which include local and global methods as well as gradient-based and gradient-free
techniques.

1

Contents

1 Overview 4

2 Multifidelity Analysis Methods 6

2.1 Supersonic Airfoil Analysis Methods . 6

2.2 Multifidelity Wave Drag Code . 7

2.2.1 Aircraft Parameterization . 7

2.2.2 Integration of Vehicle Sketch Pad with the Multifidelity Wave Drag
Code . 10

2.2.3 Area Rule Method . 11

2.2.4 A502 Geometry Generation . 12

2.2.5 CART3D Geometry Generation . 13

2.2.6 Code Comparisons . 13

2.3 Mission Analysis with Multifidelity Cruise Drag Estimates 19

2.3.1 Trimming and CL Matching with A502 and CART3D 20

2.3.2 Surrogate Modeling of Inviscid Cruise Drag 22

2.4 ModelCenter Interface . 24

3 A Multifidelity Line Search Method 26

4 Supersonic Aircraft Design Problem 29

4.1 Preliminary Design . 29

4.1.1 Baseline SSA Performance with CART3D Drag Estimates 32

4.2 Multifidelity Optimization Results . 34

5 Multifidelity Expected Improvement 39

5.0.1 Two-Fidelity Expected Improvement 39

5.0.2 Two-Fidelity Expected-Improvement Test Problems 40

5.0.3 Constrained Multifidelity Optimization 42

6 Multiobjective Approaches to
Surrogate-Based Optimization 44

6.1 Trading Performance and Risk . 44

6.2 Selecting One or More Designs from the Pareto Front 48

6.3 Preliminary Results . 49

7 Bodies of Revolution with Minimum Wave Drag 54

7.0.1 Parametrization and Problem Formulation 54

7.0.2 Results . 55

8 Drag Minimization of a Wing-Body Configuration 58

8.1 Problem Definition . 58

8.2 Analysis . 60

8.3 Multifidelity Design Procedure . 60

8.4 Results . 61

8.5 Discussion . 71

2

9 High-Fidelity-Gradient-Free Local
Optimization 74
9.1 Motivation . 74
9.2 Trust-Region-Based Multifidelity Optimization 75
9.3 Interpolation-Based Multifidelity Models . 77
9.4 Numerical Implementation of Algorithms . 79

9.4.1 Trust Region Implementation . 79
9.4.2 Fully Linear Bayesian Calibration Models 79

9.5 Multifidelity Optimization Examples . 81
9.5.1 Rosenbrock Function . 81
9.5.2 Supersonic Airfoil Optimization . 85

9.6 Combining Multiple Fidelity Levels . 87
9.7 Summary . 90

10 High-Fidelity-Gradient-Free
Constrained Optimization 91
10.1 Motivation . 91
10.2 Constrained Optimization of a Multifidelity Objective Function 93

10.2.1 Trust-region Model Management . 93
10.2.2 Trust-region Subproblem . 95
10.2.3 Trust-region Updating . 95
10.2.4 Termination . 96
10.2.5 Convergence Discussion . 97
10.2.6 Implementation . 99

10.3 Multifidelity Objective and Constraint Optimization 101
10.3.1 Finding a Feasible Point . 101
10.3.2 Interior Point Trust-region Method . 102
10.3.3 Multifidelity Objective and Constraints Convergence Discussion 103
10.3.4 Multifidelity Objective and Constraint Implementation 104

10.4 Supersonic Airfoil Design Test Problem . 104
10.4.1 Multifidelity Objective Function Results 106
10.4.2 Multifidelity Constraint Results . 107
10.4.3 Multifidelity Objective Function and Constraint Results 107

10.5 Summary . 108

A ModelCenter Multifidelity Optimization Installation Instructions 110

3

1 Overview

The following report (deliverable number 15c) presents work done at Stanford University
and MIT on multifidelity design strategies for supersonic aircraft design as part of the NRA
for Research Opportunities in Aeronautics (NNL07AA33C). The project’s goals were the
development of tools that can be used for the analysis and design of supersonic aircraft con-
figurations; a systematic way to manage model uncertainty; and development of multifidelity
model management concepts that incorporate uncertainty.

A number of aerodynamic analysis tools appropriate for use in a mutltifidelity optimiza-
tion framework were developed as part of this project. They are presented in Chapter 2.
Sec. 2.1 details four analysis routines that can be used to estimate the lift and drag of a
supersonic airfoil. Sec. 2.2 describes a multifidelity supersonic drag code that estimates the
drag of aircraft configurations with three different methods: an area rule method, a panel
method, and an Euler solver. A comparison of the drag predictions made by these methods
on selected wing-body configurations is also presented. These drag prediction methods were
then integrated with PASS SE to create a mission analysis method with low- and high-
fidelity estimates of inviscid cruise drag (Sec. 2.3). In addition, an architecture to use a
ModelCenter project as a multifidelity optimization problem has been developed. Sec. 2.4
will discuss the architecture and present a sample project.

Five multifidelity optimization methods were developed within this project, including
local and global methods as well as gradient-based and gradient-free methods. The first
method, Chapter 3, stems from the underlying principles of SQP methods, which are efficient
single-fidelity optimization algorithms. These methods solve a subproblem in which the real
function is approximated by a quadratic and a line search is then performed in the direction
of the quadratics optimum. We propose the use of a corrected low-fidelity model rather
than the purely quadratic model in the subproblem, with the subsequent line search in the
direction of the point it identifies.

Chapter 5 describes a two-fidelity gradient-free method that is based on the expected
improvement [see 1, 2] algorithm. This method uses Gaussian Process (GP) regression [3]
(also known as Kriging[4]) to model the difference between low- and high-fidelity functions.
This algorithm combines both uncertainty and the mean performance from the Kriging
model into a single metric which is then used to determine new points for evaluation with
the high-fidelity analysis method. The method presented in Chapter 6 keeps uncertainty
and mean performance separate and uses a multiobjective search to find designs that should
be evaluated using the high-fidelity analysis.

Chapter 9 describes a multifidelity optimization algorithm that combines ideas from
multifidelity expected improvement methods and SQP-based methods. The algorithm uses
Bayesian model calibration and a Gaussian Process to model the error between a high- and
low-fidelity function. The algorithm never computes gradients of the high-fidelity function;
however it demonstrates convergence to a high-fidelity optimum using sensitivity information
from the calibrated low-fidelity function which are constructed to have negligible error in
the neighborhood around the optimum. The algorithm will be extended to address general
nonlinearly constrained multifidelity optimization problems in Chapter 10. In this chapter
a similar calibration strategy will be used for both the objective function and constraints
in order to demonstrate convergence to a point where the Karush-Kuhn-Tucker (KKT)
conditions are satisfied.

In addition to discussing the various multifidelity optimization techniques, a number of
supersonic design problems are also presented. These problems include the design of a body

4

of revolution with minimum wave drag (Chapter 7), the minimization of drag for a wing-
body configuration at fixed CL (Chapter 8), the design of a supersonic aircraft (Chapter 4),
the minimization of drag for a supersonic airfoil (Secs. 9.5.2 and 10.4), and the maximization
of L/D with a upper bound on drag (Sec. 10.4).

5

2 Multifidelity Analysis Methods

2.1 Supersonic Airfoil Analysis Methods

Three supersonic airfoil analysis methods were developed to enable testing of multifidelity
optimization methods that include multiple lower-fidelity estimates to optimize a single
high-fidelity analysis result. The three methods are a supersonic linear panel method, a
shock-expansion theory panel method, and an Euler solver, Cart3D [5, 6]. Figure 2.1 shows
the approximate level of detail used in the models, and Table 2.1 compares the lift and
drag estimates from each of the models for a 5% thick biconvex airfoil at Mach 1.5 and 2◦

angle of attack. The linear panel method and shock-expansion theory both require sharp
leading and trailing edges which will be enforced by construction for all of the airfoil designs
considered. In addition to these three methods, the linear panel method will also be used
on the camberline of an airfoil which is akin to subsonic thin airfoil theory. The camberline
analysis will in general give a poor result for supersonic airfoil drag as the trends estimated
using only the airfoil camberline can be significantly different from the trends using a method
considering thickness. A specific example of when the camberline method produces a poor
result is a symmetric airfoil at 0◦ angle of attack which has no drag considering only the
camberline, but which may have considerable thickness drag that will be estimated using
any of the higher-fidelity models.

(a) Panel method. (b) Shock-expansion. (c) Cart3D.

Figure 2.1. Supersonic airfoil model comparisons at Mach 1.5 and 2◦ angle of attack.

Panel Shock-Expansion Cart3D
CL 0.1244 0.1278 0.1250
% Diff 0.46% 2.26% 0.00%
CD 0.0164 0.0167 0.01666
% Diff 1.56% 0.24% 0.00%

Table 2.1. 5% thick biconvex airfoil results comparison at Mach 1.5 and 2◦ angle of attack.
Percent difference is taken with respect to the Cart3D results.

6

2.2 Multifidelity Wave Drag Code

Three different methods have been integrated to create a multifidelity wave drag routine.
The lowest fidelity code is based on the linear area rule method. The middle fidelity code is
A502/Panair[7], a high-order surface panel method, and the high fidelity code is CART3D,
an Euler solver. These methods are all capable of analyzing wing, body, tail, and nacelle
geometries. Nacelles are currently modeled as parabolic bodies of revolution with a max-
imum cross section area equal to the maximum area of the nacelle minus the streamtube
capture area. In CART3D, however, flow-through nacelles can also be analyzed.

The input to the multifidelity wave drag code is an xml file containing the parameteri-
zation of the aircraft, described below in Sec. 2.2.1 . A schematic of the program is shown
in Fig. 2.2.

Figure 2.2. Schematic of the multifidelity wave drag code.

Because A502 and CART3D compute the total inviscid drag the wave drag component is
estimated by subtracting the vortex drag of an elliptically loaded wing with the same lift
and span.

2.2.1 Aircraft Parameterization

For initial tests of the multifidelity optimization tools, aircraft are defined using a set of
parameters appropriate for conceptual design. The following tables and figures describe
those parameters related to the geometry of the fuselage, wing, body, tail, and nacelles.

7

Wing

The main wing consists of two trapezoidal elements with section geometry assumed to
vary linearly from the root to the tip of each element. Table. 2.2 defines the main wing
parameters.

Sref Trapazoidal reference area (excluding chord extensions)
AR Aspect ratio of reference trapezoidal planform, b2/Sref
Λc/4 Quarter chord sweep of trapezoidal wing
λ Trap wing taper ratio, ctip/croot

lex Leading edge extension as fraction of trap root chord
tex Trailing edge extension as a fraction of trap root chord

chordextspan Chord extensions span fraction
φ Wing dihedral

x/L x location of wing root leading edge as a fraction of fuselage length
z/L z location of wing root leading edge as a fraction of fuselage length

Table 2.2. Wing parameterization.

Fig. 2.3 illustrates some of these parameters for a generic supersonic wing.

Sref

b/2

b/2*chordextspan

lex*croot

croot

tex*croot

Figure 2.3. Wing geometric parameters.

Tail Geometry

The horizontal and vertical tail geometry parameterization is similar to that of the wing,
but the planform is assumed to be made of a single trapezoid.

8

Sh/Sref Ratio of horizontal tail area to Sref
ARh Horizontal tail aspect ratio
Λh Quarter chord sweep
λh Taper ratio
φh Dihedral

(zh/bv) Height of horizontal tail root as a fraction of vertical tail height
Sv/Sref Ratio of vertical tail area to Sref
ARv Vertical tail aspect ratio, height2/Sv
Λv Quarter chord sweep
λv Taper ratio
xv/L Location of vertical tail root trailing edge as a fraction of fuselage length.

Table 2.3. Horizontal and vertical tail parameterization.

The wing is defined by three airfoil sections at the root, the chord break, and the tip. The
tails have the same airfoil section (one for the vertical tail and one for the horizontal tail)
for the root and tip. Airfoil sections may be NACA 4 series, NACA65 series or biconvex.
Airfoils sections are parameterized in the same way regardless of the airfoil section being
used. The parameterization is given in Table. 2.4.

(t/c) Thickness to chord ratio
(xmaxcam/c) Location of maximum camber as fraction of chord
cambermax/c Max camber as fraction of chord

θ Incidence of the section

Table 2.4. Airfoil parameterization.

Fuselage

The fuselage is parameterized by specifying the radius, height-to-width ratio, and camber
at a number of stations. Given these distributions an Akima spline[8] is fit to each one fully
define the fuselage width and camber. The magnitude of rh/rw is assumed to be constant
over the length of the fuselage.

Table 2.5. Fuselage parameterization.

L length of the fuselage
rw/L Fuselage width as fraction of fuselage length

zcamber/L Height of fuselage centerline as fraction of fuselage length
rh/rw Ratio of fuselage height to width

9

Figure 2.4. Fuselage geometry parameterization.

Nacelle

For drag purposes, in the area rule method and A502, nacelles are modeled as parabolic
bodies of revolution with a maximum cross-section equal to the the maximum cross-section
of the nacelle minus the stream tube area. A flow-through nacelle is modeled with an outer
surface defined by a quadratic such that the maximum diameter is Dmax. The inner surface
is a cylinder with cross-sectional area Ao.

Table 2.6. Nacelle parameterization.

Lnacelle Nacelle length
Dmax Maximum diameter of nacelle
Ao Stream tube area
xn/L x location of nacelle inlet as fraction of fuselage length
yn/L y location of nacelle center line as fraction of fuselage length
zn/L z location of nacelle center line as fraction of fuselage length

2.2.2 Integration of Vehicle Sketch Pad with the Multifidelity Wave
Drag Code

A Vehicle Sketch Pad (VSP) interface has been developed to visualize the geometries created
with the current codes. For testing purposes, a VSP model is exported by adding the
following line to an xml input file.

<var name="VSPfilename"><val>vsptest</val></var>

This will result in a VSP model with the name “vsptest.xml” containing the fuselage, wing,
tails, and nacelles. The airfoils imported to VSP are the airfoils that are generated by

10

the geometry routines in the multifidelity wave drag code. A sample supersonic aircraft
configuration is shown in Fig. 2.5.

(a). Side view of VSP model. (b). Four view of VSP model.

Figure 2.5. VSP model generated by multifidelity wave drag code.

2.2.3 Area Rule Method

The area rule method (see reference [9] for a good discussion of area rule methods) for this
project was developed to analyze configurations that correspond to the parameterization
described in Sec. 2.2.1. We also assume the lift distribution of the main wing to be elliptic
over the span, which is a valid assumption for the low-aspect-ratio wings found on most
supersonic aircraft. ∆P is assumed to be constant over the chord. Other ∆P distributions,
if desired, can be incorporated into the code with very minor modifications. Currently it is
assumed that the tail carries no lift.

In order to avoid double-counting the wing area inside the fuselage, we model the wing-
fuselage intersection as a straight line. In other words, the fuselage remains the same, but
we assume the wing root to be a straight line between the intersection of the wing’s leading
and trailing edges with the fuselage, as shown in Fig. 2.6. This approximation may result in
a small amount of area being double-counted or neglected, depending on the exact fuselage
shape.

11

Figure 2.6. Approximate wing-fuselage intersection.

2.2.4 A502 Geometry Generation

A routine was developed to create the required input file for the panel method A502, which
primarily contains geometry information. Input files for configurations ranging from full
aircraft to a fuselage by itself can be generated using the parameterization described in
Sec. 2.2.1. Below is an example of an aircraft configuration generated for A502. The
different panel colors correspond to the different boundary conditions. Orange specifies
panels with the flow tangency condition (i.e., actual aircraft geometry), light blue indicates
lifting surface wake panels, and black corresponds to body-wing wake panels.

Figure 2.7. Aircraft representation for A502.

12

2.2.5 CART3D Geometry Generation

A routine was developed to generate plot3d files, which are used by CART3D to generate
grids, based on the parameterization specified in Sec. 2.2.1. The method can generate full
configurations, or any subset of the components used in a full aircraft configuration (i.e.,
just a fuselage, or wing, etc.). Some sample geometries are shown in Fig. 2.8.

(a) Flow through nacelles modeled (b) Nacelles modeled as parabolic bodies

Figure 2.8. Sample geometries of supersonic aircraft generated with the new routine used
to create plot3d files from PASS input files.

2.2.6 Code Comparisons

In this section the three methods are compared to one another for three wing-body config-
urations. The first geometry, shown in Fig. 2.9, is a low sweep configuration with a leading
edge sweep of 21.80o, AR = 4, Sref = 625 ft2 and 2% thick biconvex airfoils. The fuselage
is a parabolic body with a fineness ratio of 20 and is 100 ft long. Fig. 2.10a-c show good
agreement between the three methods for the low sweep configuration.

Figure 2.9. Low sweep configuration.

13

(a) CD as a function of CL, as wing incidence is
varied, at M∞ = 1.5.

(b) CDw as a function of CL, as wing incidence is
varied, at M∞ = 1.5.

(c) CD as a function of M∞ at CL = 0.

Figure 2.10. Comparison between CART3D, A502, and the area rule method for the con-
figuration in Fig. 2.9.

Wing Cp distributions were extracted from CART3D and A502 solutions for one of the
lifting cases and compared (Fig. 2.11).

14

(a) (b)

(c) (d)

Figure 2.11. Cp Comparisons at four spanwise locations for M∞ = 1.5 and a wing incidence
of 2.61o. CART3D predicts CL = 0.1407 and CD = 0.0087. A502 predicts CL = 0.1413 and
CD = 0.0086.

As one may expect from the agreement seen in Fig. 2.10 the Cp distributions predicted by
the two methods also agree quite well.

The second configuration, seen in Fig. 2.12, has a double delta planform that is based
on a design study done at NASA [10] . It has Sref = 1775 ft2, AR = 2.0285, subsonic
leading edges (inner leading edge sweep of 75.04o and 64.54o outer) with symmetric 3% thick
NACA65 airfoils and a fuselage with a fineness ratio of 20 and a length of 120 ft. Although
agreement is quite good for the non-lifting case (Fig. 2.13a), there is some disagreement in
the lifting case (Fig. 2.13b). A comparison of Cp distributions is shown in Fig. 2.14.

Figure 2.12. Double delta configuration.

15

(a) CD as a function of CL, as wing incidence is
varied, at M∞ = 1.6.

(b) CDw as a function of CL, as wing incidence is
varied, at M∞ = 1.6.

(c) CD as a function of M∞ at CL = 0.

Figure 2.13. Comparison between CART3D, A502, and the area rule method for the con-
figuration in Fig. 2.12.

16

(a) (b)

(c) (d)

Figure 2.14. Cp comparisons at four spanwise locations for M∞ = 1.6 and a wing incidence
of 2.61o. CART3D predicts CL = 0.1021 and CD = 0.0061. A502 predicts CL = 0.1010 and
CD = 0.0052.

Fig. 2.14 shows that CART3D is predicting some transonic flow, most notably seen in
Fig. 2.14d which appears to show a shock occurring roughly at 107 ft. The presence of the
transonic flow over the outer portion of the wing will be missed by A502, and thus it makes
sense that the drag predicted by CART3D is higher than that from A502.

Fig. 2.15) shows the high sweep configuration with Sref = 1812 ft2, AR = 2.89, a leading
edge sweep of 54.45o and symmetric 3% thick NACA65 airfoils and a fuselage with a fineness
ratio of 20 and a length of 128 ft. The agreement between the three methods in CD at zero
lift, Fig. 2.16a, is good as long as M⊥ is sufficiently below one (at M∞ = 1.6 M⊥ = 0.93).
Although A502 and the area rule method agree well in the lifting case (Fig. 2.16a and
Fig. 2.16b), there is some disagreement with CART3D at higher values of CL. As with the
double delta configuration, these differences can be attributed to the regions of transonic
flow occurring over the outer portion of the wing (see Fig. 2.17d).

17

Figure 2.15. High sweep configuration.

(a) CD as a function of CL, as wing incidence is
varied, at M∞ = 1.4.

(b) CDw as a function of CL, as wing incidence is
varied, at M∞ = 1.4.

(c) CD as a function of M∞ at CL = 0.

Figure 2.16. Comparison between CART3D, A502, and the area rule method for the con-
figuration in Fig. 2.15.

18

(a) (b)

(c) (d)

Figure 2.17. Cp Comparisons at four spanwise locations for M∞ = 1.4 and a wing incidence
of 2.25o. CART3D predicts CL = 0.1228 and CD = 0.0078. A502 predicts CL = 0.1264 and
CD = 0.0075.

2.3 Mission Analysis with Multifidelity Cruise Drag Es-
timates

In order to use the multifidelity optimization methods developed on full aircraft design prob-
lems a multifidelity mission analysis method was needed. The various methods developed
to estimate wave drag have been integrated into a mission analysis routine to provide low-
and high-fidelity estimates of cruise drag, thus providing low- and high-fidelity estimates of
certain performance goals such as range, L/D and T/D.

The multifidelity mission analysis method developed revolves around PASS SE[11], which
Desktop Aeronautics has supplied free of charge for this project. PASS SE is a modified
version of PASS[12] that uses an area rule method to estimate supersonic wave drag (vortex
drag is calculated assuming ideal spanwise loading on each surface), and a vortex-lattice
method to estimate low speed aerodynamic performance. Thus the area rule method devel-
oped for the multifidelity wave drag code is not used in the multifidelity mission analysis
code. PASS SE is used to estimate component weights, take-off and landing field lengths,
subsonic aerodynamic performance, and subsonic stability. PASS SE can also estimate su-
personic aerodynamic performance using its own area rule method. The routines previously
developed to run A502 and CART3D were integrated with PASS SE to provide multifi-

19

delity estimates of cruise drag. This allows mission performance goals, such as range, to be
computed in a multifidelity manner.

Figure 2.18. Multifidelity analysis method.

All data required for this analysis method is contained in an xml file that contains the
aircraft parameterization described in Sec. 2.2.1. In addition to containing the parameter-
ization of the aircraft’s geometry these input files also contain parameters describing the
engine (e.g., sea level static thrust), the mission profile (e.g., cruise altitude, take-off flap
deflection and the number of passengers), and weight related parameters (e.g., maximum
take-off weight).

2.3.1 Trimming and CL Matching with A502 and CART3D

Low-fidelity drag prediction routines, such as area rule methods like the one in PASS SE,
assume the aircraft is trimmed at the desired CL. Therefor, in order to compare drag
estimates with high-fidelity methods, like A502 and CART3D , they must be done with the
aircraft trimmed at the proper CL. The same method (described below) does this for both
A502 and CART3D.

For a given aircraft configuration, CL and Cm are functions of the aircraft’s angle of
attack (α) and horizontal tail deflection (δe). Furthermore, both CL and Cm are well
approximated by linear functions of α and δe (see Fig. 2.19).

CL = CLαα+ CLδeδe+ CL0
(2.1)

Cm = Cmαα+ Cmδeδe+ Cm0
(2.2)

20

(a) CL as a function of α and δe. (b) CM as a function of α and δe.

Figure 2.19. CL and CM estimates as a function of angle of attack and elevator deflection.

A502 (or CART3D) is run three times with different combinations of α and δe, and the
resulting values for CL and Cm are used to determine the coefficients in Eqs. 2.1 and 2.2
from Eqs. 2.3 and 2.4. α1 δe1 1

α2 δe2 1
α3 δe3 1

 CLα
CLδe
CL0

 =

 CL1

CL2

CL3

 (2.3)

 α1 δe1 1
α2 δe2 1
α3 δe3 1

 Cmα
Cmδe
Cm0

 =

 Cm1

Cm2

Cm3

 (2.4)

Next, Eqs. 2.1 and 2.2 are solved for estimates of the angle of attack and tail deflection, α̃
and δ̃e, that should result in the aircraft being trimmed at the proper CL (C∗L is the desired
CL).

α̃ =
−CL0

Cmδe + Cm0
CLδe + CmδeC

∗
L

CLαCmδe − CLδeCmα
(2.5)

δ̃e =
−CLαCm0 + CmαCL0 − CmαC∗L

CLαCmδe − CLδeCmα
(2.6)

The analysis routine is run one more time at α̃ and δ̃e giving C̃L, C̃m, andC̃D. Note that
because the mission consists of two cruise points, a total of eight A502 (or CART3D) runs
are performed per function evaluation. This process results in C̃L being within 0.001 of C∗L
and the aircraft nearly trimmed, C̃m ≈ 0.0005. The estimate of drag, Eq. 2.7, is calculated
by assuming that L/D is nearly constant for the configuration trimmed about the desired
CL.

ChighD =
C̃D

C̃L
C∗L (2.7)

Based on the error in CL and Cm typical of this method, the drag values are well within
one count of the true drag (i.e.,the drag value if the aircraft were perfectly trimmed exactly
at the desired CL).

21

2.3.2 Surrogate Modeling of Inviscid Cruise Drag

The multifidelity algorithms discussed in this work all use surrogate models that represent
the difference between estimate of a given function from low- and high-fidelity analysis
methods. The method discussed in Chapter 3 uses quadratic model, Eq. 2.8, to represent
the difference between low- and high-fidelity drag predictions. Because the analysis methods
influence how the surrogate model is built, namely the computation of gradients, we discuss
the methods here.

ε̃(x− xc) = ε0 +∇ε(xc)T (x− xc) +
1

2
(x− xc)TH(xc)(x− xc) (2.8)

In Eq. 2.8 xc denotes the current best design (analogous to the trust region center in a trust
region method), ε0 is the difference in drag at xc, ∇ε(xc) is the gradient of the difference
at xc, and H is a quasi-Newton estimate of the Hessian of the difference. Currently the
quasi-Newton method being used is the well-known BFGS update scheme.

Estimates of the gradient of drag from the low- and high-fidelity methods are needed
to build the quadratic correction model. Thus, we must be able to compute the partial
derivatives of drag with respect to the response surface parameters, i.e., aircraft geometry
parameters and CL. The following two sections discuss the methods used to compute these
derivatives using the low- and high-fidelity methods.

Low-Fidelity Sensitivities

Computation of the gradient of drag from the low-fidelity analysis is complicated by the fact
that it is not smooth, due to the area rule that provides estimates of wave drag. Examples
of this behavior can be seen in Fig. 2.20.

(a) (b)

(c) (d)

Figure 2.20. Low-fidelity estimates of inviscid cruise drag.

Two characteristics of the variation in drag predicted by the low-fidelity analysis are appar-
ent from Fig. 2.20. First, the data are reasonably smooth apart from some spikes. Secondly,

22

the overall trends tend to be quadratic (and even linear in some cases). It seems reasonable
to assume that if the “bad” data can be thrown out and a curve fit to the remaining data,
a satisfactory estimate can be obtained of the derivative of drag with respect to a given
parameter. Although this would be far too time consuming if the data were generated with
CART3D, they are being generated by a method that takes roughly one second to run.

Therefore it seems quite reasonable, especially compared to the time it takes CART3D
to run, to compute low-fidelity derivatives of drag in the following manner. Evaluate the
drag at 20-30 points in some neighborhood of the current design, filter the data, and then
estimate the derivative from the remaining data. The “bad” drag estimates show up as
large spikes, as is evident from Fig. 2.20, and are thus simple to remove. A method has
been developed that filters the drag data by removing any points for which the increase in
drag is above a maximum rate of change (e.g., half a count for a change of only 1% in the
design variable). An example of this smoothing technique is shown in Fig. 2.21.

Figure 2.21. Example of data filtering technique used to estimate derivatives from a noisy
area rule method.

High-Fidelity Sensitivities

Unlike the low-fidelty method, it is not feasible to run CART3D many times to get an
estimate of the gradient. Because an adjoint method is not available to us finite differencing
will be used, however, for this to work the high-fidelty estimates of inviscid drag must be
smooth (because A502 is not smooth the discussion here assumes the high-fidelity method
is CART3D).

To show that the high-fidelity drag function (Eq. 2.7) is smooth it must be so with respect
to parameters that define the aircraft’s geometry, xi, and with respect to CL. Differentiating
Eq. 2.7 with respect to xi or C∗L gives the following (note that C∗L is not a function of xi).

23

∂ChighD

∂xi
=

∂C̃D
∂xi

C̃L − ∂C̃L
∂xi

C̃D

C̃L
2 C∗L (2.9)

∂ChighD

∂C∗L
=

∂C̃D
∂C∗

L
C̃L − ∂C̃L

∂C∗
L
C̃D

C̃L
2 C∗L +

C̃D

C̃L
(2.10)

So long as ∂C̃D
∂xi

, ∂C̃L∂xi
, ∂C̃D∂C∗

L
, and ∂C̃L

∂C∗
L

are smooth, and C̃L is never zero (as we are concerned

with cruise conditions, this should not occur), the drag function will be smooth. Recall that
both C̃L and C̃D are functions of xi, α̃, δ̃e, and that C∗L is not a function of any of those

parameters . Furthermore, α̃ and δ̃e are functions of xi andC∗L. Differentiating C̃D and C̃L
with respect to xi or C∗L gives the following.

∂C̃L
∂xi

=
∂C̃L
∂xi

∣∣∣∣∣
α̃,δ̃e=const

+
∂C̃L
∂α̃

∂α̃

∂xi
+
∂C̃L

∂δ̃e

∂δ̃e

∂xi
(2.11)

∂C̃D
∂xi

=
∂C̃D
∂xi

∣∣∣∣∣
α̃,δ̃e=const

+
∂C̃D
∂α̃

∂α̃

∂xi
+
∂C̃D

∂δ̃e

∂δ̃e

∂xi
(2.12)

∂C̃L
∂C∗L

=
∂C̃L
∂α̃

∂α̃

∂C∗L
+
∂C̃L

∂δ̃e

∂δ̃e

∂C∗L
(2.13)

∂C̃D
∂C∗L

=
∂C̃D
∂α̃

∂α̃

∂C∗L
+
∂C̃D

∂δ̃e

∂δ̃e

∂C∗L
(2.14)

The partial derivatives of C̃L and C̃D with respect to xi (with α̃ and δ̃e held constant), α̃,
and δ̃e should be smooth.

Thus, if ∂α̃
∂xi

, ∂δ̃e
∂xi

, ∂α̃
∂C∗

L
and ∂δ̃e

∂C∗
L

are smooth then this method should provide smooth

predictions of drag. From Eqs. 2.5 and 2.6 it is clear that ∂α̃
∂C∗

L
and ∂δ̃e

∂C∗
L

are smooth. For

∂α̃
∂xi

and ∂δ̃e
∂xi

to be smooth all of the coefficients in Eqs. 2.5 and 2.6 must be smooth with
respect to xi. This will be true if CL1,2,3

and Cm1,2,3
from Eqs. 2.3 and 2.4 are smooth with

respect to xi, which should be true. Note that we have assumed the absence of complex
shock interactions that could cause sudden changes to the flow field. Although this condition
should hold true for the aircraft geometries being analyzed in this work, the possibility, no
matter how remote, should not be disregarded. In addition, it has been assumed that the
flow solver itself, including mesh generation, and geometry generation, will behave in a
smooth manner.

2.4 ModelCenter Interface

ModelCenter has been shown to be an efficient platform for multifidelity optimization of
supersonic aircraft [13]. It enables a designer to choose a desired fidelity level and to
integrate many analysis methods into a single multidisciplinary optimization. Therefore,
a method to integrate ModelCenter with the multifidelity methods discussed in this report
has been developed.

The multifidelity line search method discussed in Chapter 3 has been implemented in
Java. Thus, ModelCenter.jar can be used to create a simple and direct interface with
ModelCenter using the API. This allows the optimization method to use existing analysis

24

routines that have been developed in ModelCenter. Information on the Java code can be
found in the MultifidelityOptManual.pdf, which was sent along with this report.

The local multifidelity optimization methods based on Bayesian model calibration (Chap-
ters 9 and 10) are written in Matlab. Those methods behave just like the built-in Matlab
optimization toolboxes and can optimize any Matlab function. Therefore, a Matlab function
that instantiates the ModelCenter API, runs a ModelCenter project, and returns the result
has been developed. This enables seamless integration between the multifidelity optimiza-
tion methods and ModelCenter. Specific instructions to install this interface, for the Matlab
code, on a Windows platform are included in the Appendix.

The ModelCenter interface, in Java and Matlab, was tested with the simple multifidelity
Rosenbrock example shown in Figure 2.22. These methods are able to run the model and
return the result in a fraction of a second. Thus these interfaces provide an effective,
low-overhead approach to optimizing ModelCenter projects using multifidelity optimization
methods that are not native to ModelCenter.

Figure 2.22. Screenshot of a ModelCenter project to optimize a multifidelity Rosenbrock
problem.

25

3 A Multifidelity Line Search Method

Trust region methods often work quite well on simple or low-dimensional problems because
the response surface is accurate over large regions of the design space. As the functions
of interest become more complex or the dimensionality increases, however, the convergence
rates of these methods can be quite slow. This can happen when the response surface
provides poor estimates of the true function, and the trust region must shrink, sometimes
significantly, before any progress can be made. Excessively small trust regions often result
in very limited progress at each iteration, thus making these methods inefficient on more
complex problems, such as those being considered in this work.

Removing the trust region from the process may permit a more efficient multifidelity
method on complex problems. One possibility comes from the theory underlying SQP
methods. These methods solve a subproblem in which the real function is approximated by
a quadratic and a line search is then performed in the direction of the quadratic’s optimum.
We propose the use of a corrected low-fidelity model rather than the purely quadratic model,
with the subsequent line search in the direction of the point it identifies. Algorithm 1 shows
how this method may be implemented.

Algorithm 1 Overview of a multifidelity line search method.

1: Initialize surrogate models
2: repeat
3: Find x̃∗k by minimizing corrected low-fidelity model
4: Perform a line search in the direction of x̃∗k − xc to find x∗k
5: if Improvement is not made then
6: Take a step in the steepest descent direction to find x∗k and reset the Hessian
7: end if
8: Set xc = x∗k and compute information needed for the fit (such as the high-fidelity

gradient)
9: Update surrogate models with any new information

10: Update Lagrange multipliers if constraints exist
11: until convergence

When constraints are present the objective function becomes the Lagrangian, or Augmented
Lagrangian, and the Lagrange multipliers can be estimated in the same way as in trust region
algorithms [14].

If the surrogate model is poor for large distances from xc there may be little to no
imrpovement in the true function along the line x∗k−xc. The surrogate model may, however,
still be quite reasonable for smaller distances. This implies that the corrected low-fidelity
optimization may perform well initially and only becomes misleading when the distance from
xc has increased significantly. Therefore, even if the true performance of the high-fidelity
function is worse at x∗k, and there may be no improvement along path A (see Fig. 3.1),
there should be a point along path B showing improved performance (as we approach xc
along path B the step will start to point in the steepest descent direction). Thus, we
propose a second method that backtracks along the trajectory of the corrected low-fidelity
optimization. This method is outlined in Algorithm 2.

26

Figure 3.1. Possible search directions based on the optimum of the corrected low-fidelity
model. Path A represents the line from xc to x∗k, while path B represents the path taken
while optimizing the corrected low-fidelity model.

Algorithm 2 An alternative to the multifidelity line search described by Algorithm 1.

1: Initialize surrogate models
2: repeat
3: Find x̃∗k by minimizing corrected low-fidelity model
4: Backtrack along the path of the low-fidelity optimization to find x∗k
5: if Improvement is not made then
6: Take a step in the steepest descent direction to find x∗k and reset the Hessian
7: end if
8: Set xc = x∗k and compute information needed for the fit (such as the high-fidelity

gradient)
9: Update surrogate models with any new information

10: Update Lagrange multipliers if constraints exist
11: until convergence

As an example we compared the two methods described above, as well as a trust region
method, in minimizing the Rosenbrock function. The low-fidelity model is given by Eq. 3.2.

fHigh = (1− x1)
2

+ 100
(
x2 − x2

1

)2
(3.1)

fLow = 50
(
x2 − x2

1 − 0.3
)2

(3.2)

This low-fidelity model is somewhat representative of what might be expected from a low-
fidelity model in a realistic engineering problem. The general shape of the function will point
the optimizer toward promising regions of the design space, i.e., where x2 ≈ x2

1, however,
the location of optima differ. In this case, any point along the curve x2 = x2

1 + 0.3 will yield
the minimum of the low-fidelity function, zero, while the high-fidelity optimum of (1,1)
does not lie along this curve. Fig. 3.2 shows the performance of each method, including

27

direct optimization of the high-fidelity function with Matlab’s SQP solver fmincon, for 50
high-fidelity function evaluations.

Figure 3.2. Minimization of the Rosenbrock function using four different optimization meth-
ods.

The three multifidelity methods clearly outperform the SQP method. Of the three, the
two line search methods converge faster than the trust region method. The first line search
method appears to have a modest performance advantage initially, while the second one
shows better performance later in the optimization process. The poor performance of the
second line search method during the first few iterations is likely due to the back tracking
algorithm employed here. Simply, we back track along the low-fidelity optimization path
until any improvement in the objective function is found. The use of a more intelligent back
tracking scheme (e.g., Brent’s method[15], which is used in the first line search method)
should improve the performance of this method during the first few iterations. Despite
the promising performance of these two line search methods in this example, far more
experimentation is needed before any conclusions can be reached about the effectiveness of
either method.

28

4 Supersonic Aircraft Design Problem
The multifidelity optimization method presented in Chapter 3 is currently being used to
design an aircraft that falls within NASA’s “N+2” generation of supersonic aircraft, i.e.,
a small supersonic airliner (SSA). We have chosen to design an aircraft that will carry 39
passengers, cruise at Mach 1.6, and have a range of 4200 nmi. TOFL and LFL are those
specified by NASA for their “N+2” public domain configuration. Table. 4.1 summarizes
these design goals.

Cruise Mach Number 1.6
Range 4200 nmi
TOFL 9000 ft
LFL 6500 ft

Payload 39 pax

Table 4.1. SSA design goals.

4.1 Preliminary Design

Prior to applying our multifidelity design techniques to this problem a preliminary design was
generated using PASS SE for mission analysis and inviscid drag predictions. The following
optimization problem was used to find the preliminary design and optimization was done
with the Nelder-Mead simplex method[16].

Minimize Cost
w.r.t. Design Variables
s.t. Range ≥ 4200 nmi

TOFL ≤ 9000 ft
LFL ≤ 6500 ft

2nd Segment Climb ≥ 0.024
(D/T)Initial ≤ 0.95
(D/T)Final ≤ 0.95

(D/T)Transonic ≤ 0.95
Subsonic Static Margin ≥ 0.0

Fuselage diameter at stations 4-6 ≥ 8.79
Fuel Volume ≥ Required Fuel Volume
CL Margins ≥ Min. CL Margins

Elevator Deflections ≤ Max. Allowed Deflections
x/c gear ≤ 0.76

Table 4.2. Optimization problem for preliminary design of the SSA.

The objective function is a metric for cost that is both a function of airframe and engine
costs as well as operational costs, such as fuel burn. The idea is that we do not want to
design an aircraft that is very light, to gain an inexpensive airframe, if this is at the expense
of burning significantly more fuel, thus resulting in very high operational costs. The mission

29

is composed of various segments, e.g., transonic flight, initial cruise, and final cruise, and we
require the aircraft to have sufficient thrust during all of these stages. Because some fuselage
radii were allowed to vary, a constraint on the minimum radius in the cabin section was
imposed. The constraints on wing and horizontal tail CL margins and elevator deflections
are imposed during all flight conditions (take-off, climb, cruise, etc.). Additionally, CL
margin on the vertical tail has been constrained during engine out conditions. Lastly the
main landing gear was required to be a sufficient distance from the wing’s trailing edge.
Although a total of 23 parameters were allowed to vary, only a subset were allowed to vary
during any given optimization (numerous optimizations were performed). Table. 4.3 lists
all of the design variables, and the wing-related parameters are shown in Fig.2.3.

MTOW
Sref

AR of Sref
Quarter chord sweep of Sref

LEX
TEX

Chord extension span
x position of wing root leading edge

(t/c)Root,(t/c)Break,(t/c)tip
SH/Sref

Radius at fuselage stations 5-9
S.L.S. Thrust

x position of engine
Initial and final cruise altitudes

Take-off and landing flap deflections

Table 4.3. Design variables. See Fig. 2.3 for the wing related parameters.

Fig. 4.1 shows the optimized fuselage. For the preliminary design we assumed that the
cabin runs from just aft of the cockpit (station 3) to station 6, providing roughly 50 ft of
cabin space. Thirteen rows of 36” pitch seating requires at least 39 ft. With roughly 50 ft of
cabin space this might be feasible, though a slight reduction may be needed to accommodate
the galleys and bathrooms. The height over the majority of the cabin is large enough so
that people less than 6’ 2” will not have to crouch while walking. Although the fineness
ratio of this fuselage is roughly 17.3, which may be considered low, this aircraft performed
better than other configurations with higher fineness ratios that were looked at.

30

Figure 4.1. Preliminary fuselage design.

Fig. 4.2 shows the preliminary configuration of this aircraft and Table. 4.4 provides some
sizing data. Wing size was driven primarily by the LFL and main gear location requirements,
which pushed the wing size up, while cruise performance (i.e., reduced drag in cruise)
attempted to reduce the wing size. The optimizer appears to have found the smallest wing
possible while still satisfying the requirements for LFL and main gear location. In order to
prevent a large rise in induced drag during transonic flight as the wing area was reduced,
the aspect ratio became larger then might be expected for a supersonic aircraft. TOFL,
due to the large allowable distance, was rarely an active constraint. The large TOFL also
allowed the aircraft to take-off at a relatively low CL, resulting in 2nd segment climb being
easily satisfied. Although the engines might have been reduced further to take advantage
of the large margin in the TOFL constraint, they appeared bound by the requirement for
sufficient thrust during initial and final cruise, both of which were active constraints.

Figure 4.2. Preliminary SSA design.

31

MTOW (lb) 124195
Sgross (ft2) 1392
ARgross 3.15

Inner/outer leading edge sweeps (deg) 62.5/58.74
SH/Stotal 0.1

S.L.S. Thrust (lb) 31028
Initial/final cruise altitudes (ft) 45395/55435

Table 4.4. Preliminary SSA sizing.

4.1.1 Baseline SSA Performance with CART3D Drag Estimates

The baseline SSA configuration was analyzed with the high-fidelity method (CART3D) for
cruise drag estimation and the results are shown in Table 4.5.

Drag Method PASS SE CART3D
Range (nmi) 4200 3690
Initial (D/T) 0.95 1.08
Final (D/T) 0.95 1.08

Initial cruise CD (drag counts) 119.1 155.5
Final cruise CD (drag counts) 114.9 152.1

Table 4.5. Cruise performance computed with PASS SE and CART3D drag estimates.

The large increase in inviscid drag, roughly 36 counts, results in an aircraft with insufficient
range and thrust during cruise. This large increase results from the baseline configuration
lacking ideal spanwise and longitudinal lift distributions along with the presence of shocks
over the wing. The spanwise lift distribution, which is clearly not elliptic, is plotted in
Fig. 4.3 against an elliptic lift distribution for the desired CL. The Cp distributions at four
spanwise locations are plotted in Fig. 4.4, which clearly show the presence of shocks sitting
on the wing’s upper surface.

32

Figure 4.3. Spanwise lift distribution of the baseline SSA at a CL of 0.1958.

(a) (b)

(c) (d)

Figure 4.4. Cp cuts of the baseline SSA at a CL of 0.1958.

33

Fig. 4.5a shows the variation in Mach number over the wing as well as the interaction
between the flow leaving the wing and the pod (representing the nacelle). Note that the
shocks emanating from the pod do not hit the wing’s trailing edge. Fig. 4.5b shows the
distribution of CP on the upper surface of the baseline configuration at cruise conditions.
Note the sudden rise in Cp in the streamwise direction over the wing (denoted by the abrupt
change from dark blue to light blue), which runs along the wing’s span.

(a) Mach number plot showing the flow over the wing and pod.

(b) Upper surface Cp distribution.

Figure 4.5. Flow field about the baseline configuration at cruise conditions.

4.2 Multifidelity Optimization Results

The baseline configuration was optimized using the multifidelity line search method dis-
cussed in Chapter 3 and the mission analysis routine discussed in Sec. 2.3, with CART3D
as the high-fidelity method and the area rule method as the low-fidelity method. Finite
differencing was done with a central difference method and Brent’s method was used to
perform the line search. Because the mission analysis routine is not completely smooth, a
Nelder-Mead simplex method was used to perform the low-fidelity optimization. The mul-
tifidelity optimization problem is shown in Table 4.2 and the design variables and response
surface variables are given in Table. 4.6.

34

Design Variables Response Surface Variables
AR
Sref

Quarter chord sweep of Sref
LEX
TEX

Chord extension span
x position of wing root leading edge

(t/c)Break and (t/c)tip
IncidenceBreak and Incidencetip

Max. CamberBreak and Max. Cambertip
SH/Sref

Fuselage radius at stations 7 and 8
S.L.S. Thrust

x position of engine
MTOW CL

Initial and final cruise altitudes –
Take-off and landing flap deflections –

Table 4.6. Design and response surface variables.

Fig. 4.8 shows the objective function, constraint violation, and step size history for the
first run (a total of seven iterations). Note that the objective function, cost, has been scaled
to be on the order of one. Each constraint has also been scaled to be on the order of one,
and the constraint violation plotted is the sum of all the violated constraints.

35

(a) (b)

(c)

Figure 4.6. Results from the first multifidelity optimization of the SSA.

Fig. 4.8 shows that the optimizer was able to significantly reduce the total constraint vi-
olation, with a reduction in the objective function, during the first iteration. After this
iteration, however, very little progress was made. This behavior is likely due to how the
Hessian was initialized. In this case, it was initialized to the identity matrix, i.e., Hii = 1.0.
A value of one in the Hessian produces a significant amount of curvature in the associated
direction. In other words, changing a parameter by a relatively small amount will produce a
large change in drag. Fig. 4.7a and b show this behavior for the corrected low-fidelity drag
function, from the first iteration, as a single parameter is varied.

(a) (b)

Figure 4.7. Variation in the corrected low-fidelity drag function from the first iteration.

Fig. 4.7a shows that, due to the curvature, there is essentially no reduction in drag about

36

the nominal design for sweep. In fact, the only response surface parameter with an appar-
ent possibility for a significant reduction in drag was CL, as Fig. 4.7b shows. In fact, a
reduction in drag only seemed possible by reducing CL, as Fig. 4.7b shows. Therefore, the
optimizer exploited this aspect of the corrected low-fidelity drag function and reduced the
total constraint violation in the only way it could, i.e., by cruising at a lower altitude and
thus reducing CL. This, of course, improved (D/T) at the expense of range.

A quadratic fit to drag was generated by evaluating a large enough number of designs,
throughout the design space, so that least squares could be used to determine the coefficients
of the quadratic. For better speed, the fit was generated by running A502, rather then
CART3D. The diagonal elements of the initial Hessian were then set to be of the same
order of magnitude as the coefficients found from the fit of A502 data. Fig. 4.8 shows the
objective function, constraint violation, and step size history for this run (a total of seven
iterations).

(a) (b)

(c)

Figure 4.8. Optimization history.

As Fig. 4.8 shows, this time the optimizer was able to find a feasible solution. The correction
to the fit allowed both D/T and range constraint violations to improve during the first
iteration, rather than only D/T as before, and significant reduction in constraint violation
after the first iteration. Fig. 4.8c shows that the optimum of the corrected low-fidelity
function, in all but one iteration, was very close to the best point along the line (a step size
of 1.0 indicates a step to the optimum of the low-fidelity optimization), suggesting that the
drag correction fit was doing a good job this time.

Fig. 4.8 also shows a run done with the path following algorithm discussed in Chapter 3.
The points tested during the corrected low-fidelity optimization were clustered using k-
medoids[17], and the cluster centers evaluated with the high-fidelity analysis (six points
were analyzed each iteration). It should be noted that this clustering algorithm finds a

37

cluster center that is a data point, rather then an average of nearby points. Fig. 4.8a and
b show that the two runs were nearly identical. Fig. 4.8c shows step size which, for the
path following run, was computed as: the distance from the current point to the new point
divided by the distance from the current point to the optimum of the corrected low-fidelity
model.

Fig. 4.9 compares the Cp distribution of the initial and optimized designs and Table. 4.7
provides sizing data for these two designs (because the path following design is so similar to
the line search one pictures and plots of it have been omitted).

Figure 4.9. Comparison of preliminary (bottom) and optimized (top) SSA configurations.

Preliminary Optimized
MTOW (lb) 124195 143976
Sgross (ft2) 1392 1725
ARgross 3.15 3.31

Inner/outer leading edge sweeps (deg) 62.5/58.74 59.58/55.41
SH/Stotal 0.1 0.08

S.L.S. Thrust (lb) 31028 32996
Initial/final cruise altitudes (ft) 45395/55435 41292/52511

Table 4.7. Comparison of preliminary and optimized SSA configurations.

Due to the significantly higher drag values predicted by CART3D, the engines increased
in size to improve D/T. With bigger engines and lower (L/D) values, significantly more
fuel was needed for the aircraft to satisfy the range requirement. Thus the weight went up
significantly as did wing area, which had to increase to satisfy field length requirements.
In an attempt to reduce drag, to satisfy D/T, the optimizer reduced the cruise altitude to
values lower than one would expect. In addition to this, Fig. 4.9 shows that shocks from
the nacelle impinge the wing’s trailing edge on the optimized design. This does not seem
optimal (though this may be necessary in order to satisfy the x/c gear constraint), and
suggests that a better solution may exists. Despite these drawbacks, however, a feasible
design was found, which represents progress. More work is clearly needed, but the method
shows promise.

38

5 Multifidelity Expected Improvement

In this chapter, we present an extension of the well known two-stage optimization tech-
nique known as maximization of expected improvement [see 1, 2]. First, using two models
of differing fidelity we formulate a two-fidelity expected improvement technique for bound-
constrained optimization. Next the two-fidelity method is compared to the standard ex-
pected improvement method on some test problems. Finally, an alternative to exterior
penalty methods for handling nonlinear inequality constraints is formulated. For a brief
review of surrogate modeling (in this case Kriging) and basic expected improvement please
see the work by Rajnarayan et al. [18].

5.0.1 Two-Fidelity Expected Improvement

Assume we have a high-fidelity simulation G, which has high computational cost and high
accuracy, and a low-fidelity simulation Gl, which has negligible computational cost compared
to G, but also suffers from poor accuracy. Even if the individual models G and Gl themselves
are not smooth, the difference between these two models is likely to be a smooth, well-
behaved function Eldred and Dunlavy [19]. Therefore, we fit a GP regression to the difference
between the two models, which can be thought of as a correction to the low-fidelity model.
Such a combination of multifidelity models is described by Eldred and Dunlavy [19] in the
context of additive and multiplicative surrogate corrections, and is used by Choi et al. [20]
in design optimization of a supersonic business jet. These corrected surrogates are then used
in a trust-region optimization. To use the vocabulary in the literature, we advocate using a
global additive surrogate correction on the low-fidelity model to perform global search using
a two-stage method.

Denote the correction values obtained from the GP by Gdiff(x), and our approximation
by G̃(x). Mathematically,

G̃(x) = Gl(x) +Gdiff(x). (5.1)

Thus, each evaluation of the approximate model in Eq. 5.1 will involve evaluating both the
low-fidelity model Gl(x) and the GP regression Gdiff(x) for the correction values. Note that
this approximation agrees exactly with the high-fidelity simulation at the points in D. In
reality, the GP actually yields a posterior probability distribution on the values Gdiff(x).
This distribution completely determines the posterior probability distribution on the values
G̃(x). Under the assumptions of a GP, this posterior distribution is a Gaussian, with mean
ĝ(x) = G̃(x) and variance σ(x). The method of expected improvement as well as other global
optimization techniques are still applicable, but with one significant difference: the objective
functions for the auxiliary problem are no longer smooth. The branch and bound method
from EGO can no longer be directly applied, and neither can the multi-start gradient descent
methods described by Jones [1]. This is depicted in the Fig. 5.1 below. Fig. 5.1.a. shows the
low-fidelity model and a small number of high-fidelity samples. Fig. 5.1.b. shows the GP
fit to the difference, or surrogate correction. Fig. 5.1.c. shows the corrected approximation
that matches the high-fidelity data exactly at existing designs, and Fig. 5.1.d. shows the
expected improvement surface for this problem. An important observation about this curve
is the fact that is not smooth! Now we can invoke the technique of iterated maximization
of expected improvement, exactly as described by Jones et al. [2], with the only difference
being that we need to use a gradient-free method to solve the auxiliary problem. In this
paper, we use existing gradient-free techniques previously described by [see 21, 22].

39

a. b.

c. d.

Figure 5.1. Multifidelity Approximation and Auxiliary Optimization Problem.

5.0.2 Two-Fidelity Expected-Improvement Test Problems

We test the technique described above on a few analytic test problems. The problems chosen
are the 3- and 6-dimensional Hartman problems, described by Dixon and Szegö [23], and
the 4-dimensional Woods problem, given by

G(x) = 100(x2 − x1)2 + (1− x1)2 + 90(x4 − x2
3)2 + (1− x3)2

+10.1[(1− x2)2 + (1− x4)2] + 19.8(1− x2)(1− x4), x ∈ [−1, 1]4. (5.2)

We constructed ‘low-fidelity’ models for these functions by adding a simple analytical
‘error’ function to them. In the case of the Hartman problems, the low-fidelity model used
was

Gl(x) = G(x) +A sin

(
ω

n∑
i=1

(xi − a)2

)
. (5.3)

The error in this case corresponds to a radially undulating error symmetric about the point a,
with ‘amplitude’ A and ‘frequency’ ω. For both Hartman3 and Hartman6, a = 0.4, A = 0.5.
For Hartman3, ω = 10, whereas for Hartman6, we used ω = 25. A plot of the 1-dimensional
version of this undulating error is shown in Fig. 5.2.

40

Figure 5.2. 1-D version of error applied to Hartman functions.

For the Woods problem, we used a relatively simple error model, given by the quadratic
10
∑4
i=1(xi − 0.5)2. In all cases, we ensured that the low-fidelity model did not share the

optima of the high-fidelity model, thereby ensuring that direct optimization of this low-
fidelity model would be misleading.

We now apply the method of maximization of expected improvement using the difference
between the analyses of these two fidelities. To compare multiple runs of the algorithm, we
specify a sample budget that determines termination. For Hartman3, we start with 20
initial samples and allow 20 additional high-fidelity evaluations. For Hartman6, we start
with 32 initial samples and allow 60 total high-fidelity evaluations. For the Woods problem,
we start with 40 initial samples and take 40 additional samples through the optimization
process. In contrast, the maximum number of low-fidelity evaluations was fixed at 4000 for
all problems.

41

a. Hartman3 b. Hartman6

c. Woods

Figure 5.3. Performance of two-stage expected improvement maximization on academic test
problems.

Shown in Fig. 5.3 are summaries of 100 trials of the expected improvement maximization
algorithm on these academic test problems. To remove effects of the initial sample set, we
used the same set of initial Latin Hypercube samples for both algorithms on a given trial.
The results are plotted by showing the best design found at each stage of the algorithm. The
solid line represents the sample average performance, and the shaded regions represent the
95% confidence interval for this average. In the case of the Woods problem, a semilog plot
is used, so we cannot plot the confidence intervals as before. Instead, we plot median per-
formance, 10th and 90th percentiles of performance, as well as best and worst performance.
The solid lines represent the true optima of the Hartman problems.

We can see that the presence of the low-fidelity model greatly reduces the variance
of the algorithm from trial to trial. In other words, the dependence on the initial set of
samples, and consequently on the data-fit constructed from them, is reduced. The discovery
of optima is also much quicker, owing to the reduced uncertainty in the multifidelity function
approximation. In the case of the Hartman problems, we note that the performance in the
single-fidelity case, is comparable to that claimed by Jones et al. [2], indicating that our
auxiliary optimizer is indeed functioning properly.

5.0.3 Constrained Multifidelity Optimization

In Sec. 5.0.1 we described the use of two-fidelity expected improvement maximization tech-
niques for bound-constrained optimization. In this section, we review the application of a
similar technique Schonlau et al. [24] to general nonlinear inequality constrained optimiza-

42

tion. The concept of expected improvement can be extended to problems with constraints
as follows. A given point xtest has a continuum of possibilities for its objective values as
well as constraints. If we use, say, Kriging fits for the objective function and constraints, we
now have posterior probability distributions over all these functions. Now, note that this
point yields an improvement over current designs if the true objective value is lower than
the best objective value seen so far and it satisfies all of the constraints. In addition, we
may consider the posterior probability distributions of objective function and constraints
as independent: given the design variables x, the objective values and constraint values
are indeed conditionally independent. Now, the computation of (constrained) expected im-
provement is an integral over all possible objective function values and constraint values,
but the aforementioned independence enables us to split the integral into the product of two
integrals, which turn out to be the original (unconstrained) expected improvement integral
and the probability of feasibility of this new design. The derivation is as follows. Suppose
the problem at hand is

minimize f(x),
subject to gi(x) ≤ 0, i = 1, . . . ,m.

(5.4)

The improvement of some set of values (f, g1, . . . , gm) is given by

I(f, g1, . . . , gm) =

{
max(fbest − f, 0), gi ≤ 0, i = 1, . . . ,m,
0, otherwise.

(5.5)

Then, the expected improvement integral breaks down as follows

E[I(x)] =

∫
df dg1 . . . dgm p(f, g1, . . . , gm)I(f, g1, . . . , gm),

=

∫
df dg1 . . . dgm p(f)

m∏
i=1

p(gi)I(f, g1, . . . , gm),

=

[∫ ∞
−∞

df I(f)

] m∏
i=1

∫ 0

−∞
dgi p(gi) (5.6)

In practice, if the feasibility probability is generally very low, the second term in Eq. 5.6
is very small everywhere, leading to problems of numerical accuracy. We have found that
modifying the feasibility probability above to reflect the probability of improving the feasi-
bility of each constraint ameliorates most of these numerical problems, and therefore this is
the approach we follow. In other words, the constrained expected improvement is given by

E[I(x)] =

[∫ ∞
−∞

df I(f)

] m∏
i=1

∫ gibest

−∞
dgi p(gi). (5.7)

There is reason to believe that this multiplicative formulation for constraints will have
poor numerical performance as the number of constraints grows. In addition, this method
completely ignores the objective value in infeasible regions. This has been known to cause
slow convergence. We are presently comparing this technique with the well-known exterior
penalty methods for constraints.

43

6 Multiobjective Approaches to
Surrogate-Based Optimization

This work was in collaboration with Geoffrey Bower, Ph. D. candidate at Stanford Uni-
versity, who is funded under NASA’s Subsonic Fixed-Wing Program NRA titled Multi-
disciplinary Optimization Techniques For Efficient Subsonic Aircraft Design, a cooperative
research effort between MIT, Stanford, Boeing and Purdue.

There are a number of drawbacks to the method described in Chapter 5. At each
iteration, expected improvement chooses a single ‘best point’ for evaluation using the high
fidelity analysis. It does this by synthesizing this figure of merit, expected improvement,
from the surrogate prediction and uncertainty. It therefore relies heavily on the surrogate
model and uncertainty being predicted well, and is closely linked with the assumptions made
by them, such as Gaussianness. It is also known that the fit is a drastic approximation at
the early stages of the algorithm [25].

In addition, we may wish evaluate to evaluate more than one high-fidelity design at
each iteration. One such algorithm is presented by Schonlau et al. [24]. The motivation for
picking multiple points is manifold: we may wish to exploit parallel computation for the
high-fidelity simulation; or the auxiliary optimization involving the low-fidelity model may
be sufficiently resource intensive that we want to restrict the number of these optimizations;
or from a theoretical viewpoint, it may be beneficial to maintain a balanced portfolio of
designs that trade performance and risk, and are thereby rendered relatively insensitive to
modeling errors and assumptions.

In order to address these points, we propose an algorithm that formulates the auxiliary
optimization as a multiobjective problem, one that balances uncertainty and performance,
and computes an entire population of designs that form the risk-performance pareto frontier.
This method is amenable to both multifidelity implementations and parallelization, and
therefore seems quite promising. The following sections discuss the choice of objectives for
this multiobjective approach, the selection of multiple points from the pareto front, and the
results of some tests on analytic problems.

6.1 Trading Performance and Risk

During every iteration, a two-stage, surrogate-based optimization algorithm attempts to
pick promising designs, based on both the predicted performance, and the uncertainty or
risk in that prediction. This is indeed akin to balancing a stock portfolio: it is desirable to
maintain a balance between high-risk, high-return stocks and low-risk, low-return stocks,
and such an approach is known to perform well in practice. In the context of surrogate-
based optimization, we first need to investigate some reasonable indicators of performance
and risk.

In an ideal world, we would like excellent returns at zero risk, or, in the optimization
context, very low objective values with almost no uncertainty. In other words, if we are
almost certain of the location of the global optimum, and we haven’t yet evaluated that
point, we must do so forthwith. From this line of reasoning, two possible objectives to be
simultaneously minimized are the mean prediction and a measure of the uncertainty such
as the variance. More generally, we want one objective to be an optimistic estimate of
performance that can only be achieved at the cost of hurting another pessimistic estimate,

44

which forms the second objective. In addition to these considerations, we seek points that are
informative. In other words, points where the uncertainty is large may, in general, provide
information about the location of minima. Intuitively, a good set of objectives will seek the
competing goals of minimizing objective cost, reducing risk, and maximizing information
gain. These considerations together have led to the set of objectives listed in Table 6.1. For
now, we consider only two-objective problems for reasons outlined in subsequent discussions,
but a better formulation may involve three or more objectives.

Type Objective 1 Objective 2
I µ σ
II µ− kσ σ
III µ µ− kσ
IV µ −σ
V µ− kσ µ+ kσ

Table 6.1. Possible objectives for multiobjective surrogate-based optimization.

A brief motivation for each of these formulations is presented below.

• Type I: Seeks good mean performance and small uncertainty. Among points with good
mean performance, this metric prefers lower uncertainty.

• Type II: Seeks good optimistic performance and small uncertainty. Among points
with good optimistic performance, this metric prefers lower uncertainty.

• Type III: Seeks good optimistic performance and good mean performance. Among
points with good optimistic performance, this metric prefers good mean performance.

• Type IV: Seeks good mean performance and large uncertainty. Among points that
have good performance, this metric prefers higher uncertainty as a surrogate for in-
formation. This is the most exploratory of the objective pairs.

• Type V: Seeks both good optimistic performance and good pessimistic performance.
Among points that have good optimistic performance, this metric prefers those with
better pessimistic performance.

At every iteration of the algorithm, we perform a multiobjective minimization trading
risk and performance, and this yields a pareto front of risk and performance. Among designs
on this front, one can only trade one objective for another; in other words, no design on
this front offers both lower risk and better performance than any other design on the front.
For the Type I objectives, if we assume that the pareto fronts are convex, then we can
use a tradeoff parameter and minimize µ− kσ for a wide range of values k. This is indeed
suggested by methods in the literature [26], and has been shown by Jones [1] to be identical to
maximizing probability of improvement for a wide range of k. In general, though, we expect
the pareto front to be nonconvex, and needs to be computed using a true multiobjective
optimization approach. We form our ‘balanced portfolio’ of designs by picking a few designs
from this pareto surface. This overall algorithm is depicted in Algorithm 3. To further
illustrate the idea, we consider the following 1-dimensional function

f(x) = x2 + 0.2(1− |x|) sin(4πx+ π/3) for − 1 ≤ x ≤ 1.

A few samples of this function, and the resulting fit are shown in Fig. 6.1(b). The pareto
front corresponding to type-I objectives is shown in Fig. 6.1(a). The correspondence between
designs on the front and their location in the design space is achieved by color-coding them.

45

Algorithm 3 Overview of multiobjective optimization generating multiple samples per
iteration.

1: Initialize surrogate model
2: repeat
3: Perform multiobjective optimization (see Table 6.1 for details of the objectives them-

selves.)
4: Select promising designs from the pareto front
5: Evaluate these designs using the high-fidelity analysis
6: Use new designs to update surrogate model
7: until convergence

(a) Pareto front for type-I objectives (b) Type-I objectives, µ and σ.

(c) Pareto front for type-II objectives (d) Type II objectives, µ− kσ and σ.

Figure 6.1. The risk-performance pareto front and corresponding designs in the design space.

46

(a) Pareto front for type-III objectives (b) Type III objectives, µ and µ− kσ.

(c) Pareto front for type-IV objectives (d) Type IV objectives, µ and −σ.

(e) Pareto front for type-V objectives (f) Type V objectives, µ− kσ and µ+ kσ.

Figure 6.2. The risk-performance pareto front and corresponding designs in the design space.

47

Thus, the low-risk designs (dark blue) can be seen to be very close to existing designs,
whereas the high-risk, high-performance designs (red) are further from existing designs.
This is done for types III-V and is shown in Fig. 6.2

6.2 Selecting One or More Designs from the Pareto
Front

Once the pareto front has been identified, we need an algorithm to pick one or more promis-
ing designs from it, for evaluation using the high-fidelity analysis. Typically, the pareto
surface is populated by hundreds of points, making it impractical to evaluate all of them.
We want to select a number large enough to ‘cover’ all interesting regions of this front, while
at the same time not picking designs that are too similar. This section proposes some tech-
niques to pick a fixed or variable number of points for evaluation, based on some reasonable
heuristics.

A very simple approach is to select a fixed number of designs from the front, equally
spaced on it. This is indeed one of the approaches we attempt. Nevertheless, when viewed in
the space of design variables, it is often seen that points on the pareto front tend to ‘bunch
up’ in a few distinct regions, as seen in Fig. 6.1. This suggests the following approach:
cluster points on the front based on the design variable values. This yields a few distinct
clusters, from each of which one point can be chosen for evaluation. This approach has
been suggested by Jones [1] in the case of maximizing probability of improvement for a
range of targets. In our experiments, we implemented Fuzzy c-means[27] and k-mediods[17]
methods. The first method is a well-known clustering algorithm, and is the de facto standard
in many machine learning applications. Fuzzy c-means clustering allows points to belong
to each cluster with a varying degree of belonging. The degree of belonging is inversely
proportional to the distance between the point and the cluster center. Thus points very
close to a cluster center will have a high degree of belonging to that cluster and a very
small degree of belonging to other clusters. The algorithm determines cluster centers by
minimizing the sum of the distances of the data points to the cluster centers, where distances
are weighted by the degree of belonging. The resulting cluster centers are not collocated
with any of the data points and thus are not necessarily on the pareto front. In the second
method, k-medoids, each data point belongs solely to the cluster with the closest center.
As with Fuzzy c-means, this algorithm determines cluster centers by minimizing the sum
of the distances between data points and cluster centers. However, unlike Fuzzy c-means,
k-medoids requires that each cluster center be a member of the data set. This guarantees
that the points sampled lie on the Pareto front. We are presently experimenting with these
clustering approaches to pick multiple points from the pareto front.

One of the motivations for clustering is that we want to avoid redundant high-fidelity
evaluations: points very close to each other in the design space will tend to have very
similar performance, so little is gained by evaluating many points close together. Clustering
provides one way to find distinct points, but a single cluster may be large enough that it
may be worthwhile evaluating multiple points in it. One way to work around this problem
is to specify a cluster size, but it is difficult to pick this size a priori. Instead, we propose
using the information-theoretic measure of entropy to pick informative samples. In some
sense, the most informative samples are those that result in the greatest drop in entropy
upon evaluation. In other words, let Y be the unknown objective value of some design, and
Z be the observed objective value upon evaluation, and let H(·) be the entropy of a random
variable. We want to find designs with a value of H(Y)−H(Y | Z) above some threshold.
In the zero-noise case, Y and Z are the same, implying that H(Y | Z) = 0. Therefore we
seek H(Y) above a certain threshold. It turns out that in the case of Gaussian random

48

variables, such as in Kriging, entropy is directly related to variance:

Y ∼ N (µ, σ)⇒ H(Y) = ln(σ
√

2πe).

This indicates that we can just look for designs whose posterior variance is above a certain
threshold. It turns out that this also allows us to specify the threshold in relative terms, as
a fraction of the maximum uncertainty (prior variance) for the Kriging model.

Following these techniques, we propose the following adaptive method to pick mutually
non-redundant designs from the front: we sort the designs in increasing order of risk. Start-
ing from the low-risk end of the front, we seek the first design that exceeds an information
threshold. This threshold can be specified in terms of relative uncertainty or correlation, so
we can select a value in a reasonable manner. We proceed by adding designs that exceed this
threshold to a set of candidate designs. Every time we do this, we update the uncertainty
predictor alone. Whenever a design is added, other designs on the front that are nearby in
the design space become redundant, and thereby do not exceed the information threshold.
The search continues until all designs on the pareto front have been tested this way. If
no designs exceed the threshold, then the point with the maximum uncertainty is selected.
This is somewhat similar to a single-objective, multipoint approach proposed by Schon-
lau et al. [24], but in that approach, assumptions were made about the true performance
of designs not yet evaluated. Besides, this approach requires multiple sequential auxiliary
optimizations.

6.3 Preliminary Results

In this section we present the results of applying some of these algorithms to analytic test
problems. Specifically, we compare the performance of the following 10 algorithms. Two
methods that pick a single point per iteration — maximizing expected improvement and
minimizing a statistical lower bound µ − kσ with k cyclically varied with each iteration;
four multipoint algorithms that pick a fixed number of designs per iteration (this number
was fixed at three in our experiments); and four multipoint algorithms that adaptively pick
the number of samples per iteration based on relative uncertainty as described above. The
multipoint algorithms used four of the objective pairs listed in Table 6.1, types I, II, III,
and V. In our experiments, for types II, III and V, we used k = 2.

The three test functions used are: the 4-dimensional Woods function that exhibits poor
scaling, the 4-dimensional Shekel-5 function with multiple local minima separated by rela-
tively flat regions, and the 6-dimensional Hartman-6 function with multiple local minima.
For the Shekel and Hartman problems, we used just a single-fidelity model, whereas for the
Woods problem, we used a two-fidelity model by constructing a low-fidelity approximation
using a radially symmetric nonlinear sinusoid, similar to that described in Sec. 5.0.2. We
ran 50 trials for each of the ten algorithms on each problem. The initial surrogate for each
trial was constructed using 20 Latin Hypercube samples, and to ensure a fair comparison,
the same set of initial samples was provided to each algorithm on a given trial. Therefore,
performance differences are due only to the choices made by the algorithm.

49

(a) Hartman-6 (b) Woods

(c) Shekel-5

Figure 6.3. Best, worst and median performance for single-point algorithms. Note that
minimizing a series of statistical lower bounds performs quite well, and that maximizing
expected improvement exhibits slow convergence.

50

(a) Hartman-6 (b) Woods

(c) Shekel-5

Figure 6.4. Best, worst and median performance for fixed-infill-size multipoint infill sample
algorithms. The three points were selected to lie at the one-third, two-thirds, and maximum
risk points of the front. The lowest risk point was never chosen because, at least for types
I and III, it is always one of the already-evaluated designs.

51

(a) Hartman-6 (b) Woods

(c) Shekel-5

Figure 6.5. Best, worst and median performance for adaptive multipoint algorithms. Note
that the performance is relatively insensitive to the choice of objectives, both in this case
and the previous, fixed-infill-size case.

52

(a) Hartman-6 (b) Woods

(c) Shekel-5

Figure 6.6. Comparison of the best single-point algorithm, the best fixed-infill-size multi-
point algorithm, and best adaptive multipoint algorithm. Note that the adaptive algorithms
perform no worse than the best single-point algorithms, and at times do much better. As will
be shown in a subsequent section, evaluating multiple designs per iteration can result in sig-
nificant savings in wall-clock time when the high-fidelity analyses are truly time-consuming.

53

7 Bodies of Revolution with Minimum
Wave Drag

As an intermediate step between analytic test problems and full aircraft design we minimize
the wave drag on axissymmetric bodies of revolution using the multifidelity techniques
described in Chapters 5 and 6. The body has a fixed length and either a fixed cross-
sectional area or a fixed enclosed volume. The axial radius distribution is varied in order to
minimize drag, subject to the constraint on cross-sectional area or enclosed volume. If the
flow is assumed inviscid, then the only source of drag is wave drag. Further, assume that
the shock waves created by the body are of negligible strength. Finally, the body is assumed
to be sufficiently slender that it is valid to apply the flow-tangency boundary condition at
the flow-aligned axis of revolution, rather than at the body surface. These assumptions
lead to the area rule method and the bodies with minimum wave drag are the well-known
Sears-Haack bodies.

For bodies with high fineness ratios predictions by A502 and CART3D agree well with
the predictions made by the area rule method discussed in Sec. 2.2. As the fineness ratio
decreases, however, the difference between wave drag predictions grows. This is to be
expected: applying the boundary condition to the axis of revolution is less valid for bodies
with low fineness ratios. At a fineness ratio of 20, the difference between the wave drag
computed with the area rule and the higher fidelity methods is roughly 4%. But at a
fineness ratio of 10, the difference has grown to 9%. This demonstrates the need for a
multifidelity approach in such a problem.

7.0.1 Parametrization and Problem Formulation

The optimization problem can be posed in the following way.

min Cdw(δri)
w.r.t. δri
s.t. c(δri) = c0.

(7.1)

Here the design variables, δri, are deviations from a nominal design, in this case, a parabolic
radius distribution, specified at a given set of 13 locations along the axis of revolution. The
radius for any value of x is found using an Akima spline fit to the specified radius distribution.
Depending on the problem statement, either the maximum radius or the enclosed volume
is constrained.

The optimization problem in Eq. 7.1 was originally stated using an equality constraint
on either total volume or maximum radius, but using an inequality constraint does not alter
the solution. Writing the constraint as c(δri) ≥ 0 does not affect the solution because, for
fixed body length, increasing maximum diameter or enclosed volume will always increase
the minimum drag. So we pose the problem as follows.

min Cdw(δri)
w.r.t. δri,
s.t. c(δri) ≥ c0.

(7.2)

54

7.0.2 Results

The multifidelity techniques described in Chapters 5 and 6 were used to solve this prob-
lem with the area rule method as the low-fidelity analysis. Initially A502, as opposed to
CART3D, was chosen as the high-fidelity analysis in the interests of low computational
costs during the development of the multifidelity expected improvement method. Once the
methods were working the high-fidelity analysis was switched to CART3D. The radii at the
nose and tail are fixed to zero regardless of the constraint, while the radius at the middle
of the body is fixed when the constraint is on maximum radius. The following results are
for a body with a length of 100 ft, a maximum radius of 5 ft, or a total enclosed volume of
4200 ft3, and M∞ = 1.5

Figs. 7.1.a and 7.1.b show the progress of the single- and two-fidelity expected improve-
ment methods, discussed in Sec. 5.0.2, for a representative run of each. Both methods were
initialized with the same 20 samples drawn from a Latin Hypercube over the design space.
A total of 40 additional design evaluations were allowed.

(a) Single fidelity expected improvement (b) Two fidelity expected improvement

(c) Two fidelity expected improvement (note y-axis
scale)

Figure 7.1. Progress of single-fidelity and two-fidelity expected improvement methods ap-
plied to wave drag minimization of of an axisymmetric body of revolution with fixed maxi-
mum radius.

Fig. 7.1 shows that the single-fidelity method explores relatively undesirable regions
of the design space and evaluates many designs with relatively large drag. In fact, A502
could not evaluate three out of these 40 designs (these failures are denoted by vertical red

55

lines) due to the presence of super-inclined panels. This happens because, with 20 samples,
the GP regression generates a rather poor model of a 12-dimensional design space, thereby
prompting the algorithm to explore undesirable regions. In contrast, the two-fidelity method
is guided toward good regions by the low-fidelity analysis. In fact, in the first two iterations
it finds a design with a lower drag than the linear-theory optimum (Sears-Haack body).
This happens because the high- and low-fidelity models are often in good agreement and
thus 20 samples suffice to produce a reasonable model of the difference between them, even
in 12 dimensions.

Having tested this optimization method, we replaced A502, which may be considered
a low-fidelity analysis for many applications, with the Euler code CART3D. We than ran
the two-fidelity expected improvement method, with no initial samples, for 40 iterations (40
high fidelity analyses) with CART3D as the high fidelity method. A comparison of the best
designs found is shown in Fig. 7.2. For purposes of comparison they are plotted against the
solution based on classic linear theory (Sears-Haack bodies). Table. 7.1 shows the drag of
the bodies in Fig. 7.2 computed by each method.

(a) Maximum radius (b) Total enclosed volume

Figure 7.2. Radius distributions of optimized bodies found using the multifidelity expected
improvement method with A502 or CART3D as the high-fidelity method and the area rule
as the low-fidelity method.

Body Constraint Area Rule D/q∞ A502 D/q∞ CART3D D/q∞
Sears-Haack Max radius 7.75157 6.9815 6.9354

Optimum found with A502 Max radius 7.8765 6.8536 6.88532
Optimum found with CART3D Max radius 7.83137 6.89041 6.87266

Sears-Haack Volume 7.18718 6.84677 6.58922
Optimum found with A502 Volume 7.24348 6.78318 6.64468

Optimum found with CART3D Volume 7.30531 6.95656 6.58878

Table 7.1. Drag of the bodies shown in Fig. 7.2 computed with CART3D, A502, and the
area rule method.

We then applied the adaptive multipoint search method, described in Chapter 6, to
this problem and compared it with expected improvement and µ − kσ with k cyclically
varied. Fig. 7.3a plots the improvement in drag against the number of high-fidelity function
evaluations for a single run of each method, and it would appear that all the methods
perform similarly. However, Fig. 7.3b plots the improvement in drag against iteration,
which is representative of clock time assuming high fidelity analyses can be done in parallel,

56

which shows the reduction in overall time that the mulitpoint search method is capable of
achieving.

(a) (b)

Figure 7.3. Comparison of adaptive multipoint search, expected improvement and µ − kσ
with k cyclically varied for minimization of wave drag with fixed maximum radius. Note the
range of the y − axis, which was selected so the differences in performance are clear even
with the small variation in drag.

57

8 Drag Minimization of a Wing-Body
Configuration

In this chapter the multifidelity, multiobjective optimization approach described in Chap-
ter 6 is applied to the optimization of a wing-body configuration based on a supersonic
business jet. The baseline design is described by Wintzer and Sturdza [28] and is shown in
Fig. 8.1. According to Wintzer and Sturdza [28], this design was optimized using analyses
for conceptual design of aircraft. The aircraft was required to satisfy several operational
requirements including cruise performance, low-speed performance, stability and control,
cabin geometry restrictions, payload requirements, and others. The design variables defined
the overall planform geometry and a few sectional properties of the fuselage and wings.

Figure 8.1. Baseline planform for supersonic wing-body, Wintzer and Sturdza [28].

8.1 Problem Definition

The procedure followed by Wintzer and Sturdza [28] to arrive at this baseline design as-
sumed optimal sectional geometry for the wing and fuselage. We now attempt to find good
values for these parameters: we tune these sectional properties to optimize cruise aerody-
namics. At the same time, there are several crucial constraints from other disciplines such
as structures and stability and control, that we ignore in this aerodynamic optimization
but were incorporated in the original design problem. In an attempt to minimize the effect
of our modifications on these other disciplines, we fix the planform geometry and impose
constraints on the fuselage and wing. In particular, we stipulate that the volume of the fuel
tanks in the wing and fuselage (shown by the red patches in Fig. 8.1) should be at least
as large as that of the baseline design. In general, we would expect these constraints to be
tight, because increasing the thickness of the wing or the volume of the fuselage will result in
higher drag. With these constraints in place, one could envision our optimization as being
part of a multidisciplinary approach, albeit one that we do not explicitly describe here.

Our design variables include the fuselage radii at seven axial stations (Akima spline used
to loft the fuselage), the wing thickness and camber at three stations, and the wing twist

58

at two sections. The wing planform is held fixed. These design variables are depicted in
Fig 8.2.

(a)

Fixed parameter Value
Wing reference area (ft2) 1007
Aspect ratio 3.0
Taper ratio 0.15
Quarter-chord sweep (deg) 57.4
Chord extension span 0.45
Leading-edge extension 0.49
Trailing-edge extension 0.38
Fuselage length (ft) 135

(b)

Weights and flight conditions Value
Max. takeoff weight (lb) 84700
Weight at initial cruise (lb) 77036
Total fuel weight (lb) 40404
Mach number 1.7
Altitude (ft) 45,000

(c)

Design variable Min. Nominal Max.
Root t/c 1% 2 % 5%
Break t/c 1% 2.8 % 6%
Tip t/c 1% 4.0 % 6%
Root camber/c 0 0 2%
Break camber/c 0 0 3%
Tip camber/c 0 0 3%
Break twist (deg) -2 0 10
Tip twist (deg) -2 0 10
Fuselage radius 1 (ft) 0.675 1.585 2.025
Fuselage radius 2 (ft) 2.500 2.746 3.375
Fuselage radius 3 (ft) 3.510 3.510 4.725
Fuselage radius 4 (ft) 3.510 3.510 4.725
Fuselage radius 5 (ft) 2.025 2.735 3.375
Fuselage radius 6 (ft) 2.025 1.910 3.375
Fuselage radius 7 (ft) 0.675 1.089 2.025

Table 8.1. Design variables and bounds for supersonic wing-body. (a) shows values for a
few fixed parameters that define planform geometry, while (b) shows design variables and
bounds for our aerodynamic optimization problem. Note: as defined, a positive value of
twist indicates washout.

The objective is to minimize the drag of the wing-body configuration, subject to con-
straints on the volume of fuel that can be accommodated in the wing and the fuselage. These
values are constrained to be no less than those for the baseline design. The optimization
problem can now be stated as

minimize CD,
w.r.t design variables ~x,
subject to wing fuel volume Vw(~x) >= baseline value wreq,

fuselage fuel volume Vf (~x) >= baseline value freq,
~xmin ≤ ~x ≤ ~xmax.

(8.1)

Using a linear exterior penalty method, we convert this inequality-constrained problem to
a bound-constrained one as follows.

minimize CD + 0.1 max(0, freq − Vf (~x)) + 0.3 max(0, wreq − Vw(~x)),
w.r.t design variables ~x,
subject to ~xmin ≤ ~x ≤ ~xmax.

(8.2)

59

8.2 Analysis

Inviscid aerodynamic analysis is performed using the multifidelity drag method described in
Sec. 2.3.1 with CART3D as the high-fidelity method and A502 as the low-fidelity method.
For our configurations, the surface geometry is described using slightly less than 900,000
triangles. This results in a total of about 1.7 million cells. The paneling used to represent
aircraft geometry for A502 is fairly coarse, with 10 spanwise panels, 10 chordwise panels,
4 meridian panels along each half of the fuselage, and 10 panels along the fuselage length.
Parasite drag is estimated using the total wetted area of the configuration. The weight
of the aircraft is held fixed, and includes the weight of tails, nacelles, and so on, from the
baseline configuration. These other components, however, are not used in the drag estimate.
Because of this the analysis method from Sec. 2.3.1 was slightly modified to only perform CL
matching (the effect was that each routine, A502 or CART3D, was run three times instead
of five times per function call).

For both high- and low-fidelity analyses, the fuel volume computation is fairly straight-
forward: we assume the fuselage tank to be of circular cross section, and occupying a certain
allowable fraction (0.9) of the fuselage volume at each station. The wing tank is situated in
the main wing box, occupying a fraction of the wing’s chordwise extent. Again, the cross-
section is assumed to match that of the wing, with a given fraction (0.8) being available for
fuel.

The total time taken for a high-fidelity analysis was about 30 minutes, when run over 12
cores across 3 nodes of a computer cluster running Rocks Linux on Intel hardware @2.0GHz,
with 12.0 GB of RAM per node. On the same computer, the low-fidelity analysis runs on a
single node in about 4 seconds. In order to speed up the design process, the large number
of low-fidelity evaluations required by the auxiliary optimizer (a genetic algorithm), were
evaluated in parallel. The auxiliary optimizer NSGA-II was allowed 400 generations of a
100-member population. The total time required for a single auxiliary optimization was
about 4 hours, justifying the evaluation of up to 8–10 high-fidelity evaluations per auxiliary
optimization.

8.3 Multifidelity Design Procedure

As with the analytic test problems, we model the difference between the high-fidelity and
low-fidelity values of the drag coefficient CD. This is done using a Kriging model with a
squared exponential covariance function that guarantees smooth predictors. The process
begins by optimizing the low-fidelity analysis alone. A few of the best designs from that
process are used to ‘seed’ the difference model for the multifidelity procedure. The difference
model is calibrated using maximum likelihood (ML-II), and this calibration is performed
after every auxiliary optimization. This means that, at every iteration of the multifidelity
design procedure, not only is the correction model improved by adding new data, but it is
also recalibrated, further improving its accuracy.

Type-I objectives of mean prediction and standard deviation are used to perform the
multiobjective optimization. The auxiliary optimizer used is NSGA-II, using a population
size of 100 and 400 generations. At the end of each auxiliary optimization, we allow up
to ten high-fidelity evaluations, based on a relative uncertainty threshold of 0.25. Every
iteration must include at least one low-risk sample, and this sample is selected by sorting
the pareto front in increasing order of uncertainty, and selecting the design one-tenth of the
way down this sorted set.

60

8.4 Results

For the given planform, the lift-coefficient required for lift at the given flight conditions to
equal weight is CLtrim

= 0.1227. We perform CL-matching within both the high- and low-
fidelity analysis, and for the baseline, this yields a total drag coefficient of CD = 0.014836
at an angle of attack of 3.05◦. Some details of the Cartesian mesh used in the analysis
are shown in Fig. 8.3. For the same configuration, the low-fidelity analysis predicts a drag-
coefficient of CD = 0.1554. A comparison between the pressure distributions computed
by the two fidelities at five spanwise stations is shown in Fig. 8.4. We see that CART3D
captures shocks that are present on the outboard sections, whereas A502 does not.

CART3D Mesh for Supersonic Wing-Body

Figure 8.3. Details of CART3D mesh for wing-body analysis. Baseline Cp shown.

61

(a) (b)

(c) (d)

(e)

Figure 8.4. Cp cuts, baseline configuration. We can see that there are shocks on the outboard
cuts, and while these are captured by CART3D, they are not by A502.

The sample budget used was 10 initial high-fidelity samples, followed by 30 further sam-
ples during optimization. We show the progress of the multifidelity optimization algorithm
in three ways in Fig. 8.5. First, we plot high-fidelity drag values against the number of high-
fidelity function evaluations. Since multiple high-fidelity evaluations are performed during
every iteration, we also plot high-fidelity drag values against the total time elapsed in hours.
This shows the time taken for auxiliary optimizations based on the corrected low-fidelity
model, as well as that taken for high-fidelity evaluations. Finally, we plot the predicted

62

values of the low-fidelity model, along with the 3-sigma error bars in that prediction. First,
we display the baseline and optimized values for the design variables, objective function and
constraints.

Parameter Baseline Optimized
Root t/c 2.0% 3.4%
Break t/c 2.8% 1.0%
Tip t/c 4.0% 1.2%
Root camber/c 0 0.16%
Break camber/c 0 0.78%
Tip camber/c 0 0.52%
Break twist (deg) 0 1.40
Tip twist (deg) 0 6.36
Fuselage radius 1 (ft) 1.585 1.591
Fuselage radius 2 (ft) 2.746 2.594
Fuselage radius 3 (ft) 3.510 3.510
Fuselage radius 4 (ft) 3.510 3.510
Fuselage radius 5 (ft) 2.375 2.631
Fuselage radius 6 (ft) 1.910 2.266
Fuselage radius 7 (ft) 1.089 1.360
Cruise CD (CART3D) 0.01484 0.01383
Fuselage fuel volume margin (cu. ft.) 0 32.4
Wing fuel volume margin (cu. ft.) 0 0

Table 8.2. Baseline and optimized design variables for supersonic wing-body. We see that
the break thickness is essentially at its lower bound. The sections have a small amount of
camber, but the break and tip sections are severely washed out to move the lift inboard.
Note that positive twist indicates washout. The fuselage radii show a mild ’coke-bottle’
effect due to area-ruling, most clearly seen in the figures on the following pages.

63

(a) (b)

(c)

Figure 8.5. Iteration history for supersonic wing-body optimization.

64

(a) Baseline, top surface (b) Optimized, top surface

(c) Baseline, bottom surface (d) Optimized, bottom surface

Figure 8.6. Surface pressure distributions for baseline and optimized configurations.

65

(a) Baseline, top surface (b) Optimized, top surface

(c) Baseline, bottom surface (d) Optimized, bottom surface

Figure 8.7. Mach number distributions for baseline and optimized configurations.

66

(a)

(b)

Figure 8.8. Near-field Mach number variation for supersonic wing-body over a cut plane
defined by the plane of symmetry y = 0.

67

(a) Baseline

(b) Optimized

Figure 8.9. Near-field Mach number variation over inboard cut plane.

68

(a) Baseline

(b) Optimized

Figure 8.10. Near-field Mach number variation over outboard cut plane.

69

(a) (b)

(c) (d)

(e)

Figure 8.11. Cp cuts, optimized configuration. We see that the previous suction peaks on
the outboard sections are eliminated, and with them the shocks that caused high drag.

70

(a)

(b)

Figure 8.12. Spanwise lift distributions for supersonic wing-body, computed using CART3D.
We see that the optimized configuration has moved the lift significantly inboard, to reduce
the wave drag due to lift on the outboard sections, where there are shocks. This is also
reflected in the reduced Cl values over the outboard sections.

8.5 Discussion

In this section, we presented a multifidelity aerodynamic optimization problem for a super-
sonic wing-body configuration based on a conceptual design by Wintzer and Sturdza [28].
That study used simple conceptual design tools to analyze multiple disciplines including
aerodynamics, structures, propulsion, stability and control, etc. In contrast, we attempted

71

(a)

(b)

Figure 8.2. Design variables for supersonic wing-body. (a) shows the fuselage parametriza-
tion using radii at seven stations, while (b) shows the wing parametrization using three
thicknesses, three cambers, and two twists. Lines and text in red denote fixed values.

72

multifidelity optimization of the aerodynamics alone, with simplistic constraints on the fuel
volume required in the wings and fuselage. We presented this as a believable surrogate for
a subspace optimization in a multidisciplinary optimization framework, without specifying
that framework in its entirety. Therefore, any results must be interpreted cautiously.

For instance, the current optimized value of a 1% thickness at the break section will
clearly lead to an unacceptably large weight penalty. The use of a reasonable structural
model will increase the thicknesses at the break and tip sections to more reasonable values.
The optimization of cruise aerodynamics alone restricted our choice of design variables.
Including low-speed constraints will permit meaningful modification of planform geometry.

From Fig. 8.5(c), we observe that the true values are often outside the 3-sigma intervals,
indicating that the model needs recalibration. This indicates that it is not advisable to use
this possibly erroneous error estimate in termination criteria. We also see that the corrected
model progressively improves as the algorithm progresses.

Also note that the low-fidelity model in this case was reasonably accurate: it provided a
reduction of tens of drag counts, whereas the use of the high-fidelity model yielded less than
one drag count of further improvement. A promising next step would be to solve this problem
in two stages, using A502 and CART3D as multiple high-fidelity models. Nevertheless, even
in the current restrictive setting, this example demonstrates a viable algorithm for the use
of multifidelity models in optimization.

73

9 High-Fidelity-Gradient-Free Local
Optimization
This chapter presents a summary of the provably convergent unconstrained high-fidelity-
gradient-free multifidelity optimization algorithm presented at the 6th Multidisciplinary
Design Optimization Specialist Conference, Ref. [29]. The method uses a Bayesian model
calibration to create a surrogate model of the high-fidelity function from a low-fidelity func-
tion. The calibration is done by interpolating the error between the high- and low-fidelity
functions with a Gaussian process. When appropriately distributed spatial calibration points
are used, the low-fidelity function and radial basis function interpolation generate a fully
linear model. This condition is sufficient to prove convergence in a trust-region framework.
In the case when there are multiple lower-fidelity models, the predictions of all calibrated
lower-fidelity models can be combined with a maximum likelihood estimator constructed us-
ing Kriging variance estimates from the radial basis function models. This procedure allows
for flexibility in sampling lower-fidelity functions, does not alter the convergence proof of the
optimization algorithm, and is shown to be robust to poor low-fidelity information. The al-
gorithm is compared with an unconstrained single-fidelity quasi-Newton algorithm and two
first-order consistent multifidelity trust-region algorithms. For simple functions the quasi-
Newton algorithm uses slightly fewer high-fidelity function evaluations; however, for more
complex supersonic airfoil design problems it uses significantly more. In all cases tested,
our radial basis function calibration approach uses fewer high-fidelity function evaluations
when compared with first-order consistent trust-region schemes.

9.1 Motivation

There are several different multifidelity optimization strategies that optimize a high-fidelity
function using a lower-fidelity surrogate. One class of approaches uses trust regions. These
methods are provably convergent to a local optimum of the high-fidelity function, if at the
center of the trust region the low-fidelity function value and derivative are scaled or shifted
to be equal to the high-fidelity function and gradient[30, 31, 32]. Another multifidelity
approach is to combine a pattern-search with conformal space mapping, where the least
squares difference between a low-fidelity function and high-fidelity function is minimized at a
collection of points by mapping the low-fidelity design space to the high-fidelity design space.
This method is also provably convergent to an optimum of the high-fidelity function[33]. A
third general approach is Efficient Global Optimization (EGO) developed by Jones et al [2].
In this method, a Bayesian uncertainty approach is used to find regions in the design space
with a high likelihood of having an optimal solution. EGO uses a combination of a regression
model and an uncertainty estimate based on distance from known points as a way to find
better points. An improvement to Jones’ approach is to use model calibration techniques
to model the difference or quotient between a high- and low-fidelity function as opposed to
modeling the high-fidelity function itself. In this way, a low-fidelity model can increase the
efficiency of finding an optimum of a high-fidelity function in situations where using only
a regression surface requires a considerable number of function evaluations for calibration
[34, 35, 36]. These model calibration techniques are generally based on heuristic methods
and are not provably convergent to an optimum of the high-fidelity function.

In this chapter, we present a provably convergent multifidelity optimization algorithm
based on model calibration. The first-order-consistent trust-region methods mentioned

74

above can be thought of as employing model calibration; however, the calibration is only
local and temporary, since sample points from previous iterations are not re-used. The chal-
lenge we address here is to produce a surrogate model that captures local function behavior
sufficiently well to prove convergence, while capturing global function behavior to speed
convergence. Carter proved that a trust-region algorithm is convergent provided the error
between the gradient of the function and the gradient of surrogate model is bounded by a
constant times the gradient of the function [37]. Oeuvray showed that a radial basis function
interpolation satisfies this criterion from Carter, provided the interpolation points satisfy
certain conditions [38]. Conn et al. then showed that both the error between a function
and a smooth interpolation model as well as the error between the function’s derivative and
the interpolation model’s derivative can be bounded by appropriately selecting interpolation
points [39]. Conn et al. also proved that any interpolation model that can locally be made
fully linear (defined in the next section) can be used in a provably convergent trust-region
framework [40]. Wild et al. then developed an algorithm to produce fully linear radial basis
function interpolation models and showed that his method could be used within Conn’s
provably convergent optimization framework [41, 42, 43].

The method in this chapter combines the provably convergent optimization frameworks
of Wild et al. and Conn et al. with Bayesian model calibration ideas to result in a provably
convergent multifidelity optimization approach that does not require high-fidelity gradient
information. Section 9.2 provides an overview of the derivative-free trust-region algorithm
using fully linear models proposed by Conn et al. [40]. Section 9.3 discusses the approach
of Wild et al. [41] to build a fully linear model using RBF functions, and presents our
extension to the case of multifidelity model calibration. Section 9.4 provides an overview
of the computational implementation of the method and suggests a way to incorporate the
method of generating fully linear models from Wild et al. [43] with flexible Bayesian model
calibration techniques. Section 9.5 demonstrates the multifidelity optimization algorithm
on an analytical example and a supersonic airfoil design problem. Section 9.6 then develops
the extension of our approach to the case when there are multiple lower-fidelity models.

9.2 Trust-Region-Based Multifidelity Optimization

We consider a setting where we have two (or more) models that represent the physical system
of interest: a high-fidelity function that accurately estimates system metrics of interest but is
expensive to evaluate, and a low-fidelity function with lower accuracy but cheaper evaluation
cost. We define our high-fidelity function as fhigh(x) and our low-fidelity function as flow(x),
where x ∈ Rn is the vector of n design variables. Our goal is to solve the unconstrained
optimization problem

min
x∈Rn

fhigh(x), (9.1)

using information from evaluations of flow(x) to reduce the required number of evaluations
of fhigh(x).

We use the derivative-free trust-region algorithm of Conn et al. [40] to solve (9.1). From
an initial design vector x0, the trust-region method generates a sequence of design vectors
that each reduce the high-fidelity function value, where we denote xk to be this design vector
on the kth trust-region iteration. Following the general Bayesian calibration approach in
Ref. [35], we define ek(x) to be a model of the error between the high- and low-fidelity
functions on the kth trust-region iteration, and we construct a surrogate model mk(x) for
fhigh(x) as

mk(x) = flow(x) + ek(x). (9.2)

75

We define the trust region at iteration k, Bk, to be the region centered at xk with size ∆k,

Bk = {x : ‖x− xk‖ ≤ ∆k}, (9.3)

where any norm can be used, provided there exist constants c1 and c2 such that

‖ · ‖2 ≤ c1‖ · ‖ and ‖ · ‖ ≤ c2‖ · ‖2. (9.4)

If the high-fidelity function fhigh(x) and the surrogate models mk(x) satisfy certain
conditions, this framework provides a guarantee of convergence to a local minimum of the
high-fidelity function fhigh(x). Specifically, the convergence proof requires that the high-
fidelity function fhigh(x) be (i) continuously differentiable, (ii) have a Lipschitz continuous
derivative, and (iii) be bounded from below within a region of a relaxed level-set, L(x0),
defined as

L(x0) = {x ∈ Rn : fhigh(x) ≤ fhigh(x0)} (9.5)

B(xk) = {x ∈ Rn : ‖x− xk‖ ≤ ∆max} (9.6)

L(x0) = L(x0)
⋃

xk∈L(x0)

B(xk), (9.7)

where ∆max is the maximum allowable trust-region size. The relaxed level-set is required
because the trust-region algorithm may attempt to evaluate the high-fidelity function at
points outside of the level set at x0. The convergence proof further requires that the surro-
gate models mk(x) are fully linear, where the following definition of a fully linear model is
from Conn et al. [40]:

Definition 1. Let a function fhigh(x) : Rn → R that satisfies the conditions (i)–(iii)
above, be given. A set of model functions M = {m : Rn → R,m ∈ C1} is called a fully
linear class of models if the following occur:

There exist positive constants κf , κg and κblg such that for any x ∈ L(x0) and ∆k ∈
(0,∆max] there exists a model function mk(x) in M with Lipschitz continuous gradient
and corresponding Lipschitz constant bounded by kblg, and such that the error between the
gradient of the model and the gradient of the function satisfies

‖∇fhigh(x)−∇mk(x)‖ ≤ κg∆k ∀x ∈ Bk (9.8)

and the error between the model and the function satisfies

|fhigh(x)−mk(x)| ≤ κf∆2
k ∀x ∈ Bk. (9.9)

Such a model mk(x) is called fully linear on Bk [40].

At iteration k, the trust-region algorithm solves the subproblem

min
sk

mk(xk + sk) (9.10)

s.t. ‖sk‖ ≤ ∆k

to determine the trust-region step sk. The steps found in the trust-region subproblem
must satisfy a sufficient decrease condition. At iteration k, we require that the model
mk(x) have a finite upper bound on the 2-norm of its Hessian matrix evaluated at xk:
‖Hk(xk)‖ ≤ κbhm < ∞. This bound on the Hessian may be viewed as a bound on the
Lipschitz constant of the gradient of mk(xk) [40]. The sufficient decrease condition requires
the step to satisfy the fraction of Cauchy decrease. As given in Ref. [40] and Ref. [42], this
requires that for some constant, κFCD ∈ (0, 1), the step sk satisfies

mk(xk)−mk(xk + sk) ≥ κFCD
2
‖∇mk(xk)‖min

[
‖∇mk(xk)‖

κbhm
,
‖∇mk(xk)‖2
‖∇mk(xk)‖

∆k

]
. (9.11)

76

The high-fidelity function fhigh is then evaluated at the new point, xk + sk. We compare
the actual improvement in the function value with the improvement predicted by the model
by defining

ρk =
fhigh(xk)− fhigh(xk + sk)

mk(xk)−mk(xk + sk)
. (9.12)

The trial point is accepted or rejected according to

xk+1 =

{
xk + sk if ρk > 0

xk otherwise.
(9.13)

If the step is accepted, then the trust region is updated to be centered on the new iterate
xk+1. The size of the trust region, ∆k, must now be updated based on the quality of the
surrogate model prediction. The size of the trust region is increased if the surrogate model
predicts the change in the function value well and the trust region is contracted if the model
predicts the function change poorly. Specifically, we update the trust region size using

∆k+1 =

{
min{γ1∆k,∆max} if ρk ≥ η
γ0∆k if ρk < η,

(9.14)

where 0 < η < 1, 0 < γ0 < 1, and γ1 > 1.
A new fully linear model, mk+1(x), is then built using the radial basis function interpo-

lation approach described in the next section. That surrogate model will be fully linear on
a region Bk+1 having center xk+1 and size ∆k+1.

To check for algorithm termination, the gradient of the model is computed at xk+1. If
‖∇mk+1(xk+1)‖ > ε for a small ε, the trust-region algorithm will continue to iterate, solving
the next subproblem on the new trust region, Bk+1, with the updated model, mk+1(x).
However, if ‖∇mk+1(xk+1)‖ ≤ ε, we need to confirm that the algorithm has reached a
stationary point of fhigh(x). If gradients of the high-fidelity function are available, one
could evaluate if ‖∇fhigh(xk+1)‖ ≤ ε directly. In the general derivative-free case, we use the
condition in Eq. 9.8, and show that if ∆k+1 → 0 then ‖∇fhigh(xk+1)−∇mk+1(xk+1)‖ → 0.
In practice we achieve this by updating the model to be fully linear on a trust region with size
some fraction, 0 < α < 1, of ∆k+1. This process continues until either ‖∇mk+1(xk+1)‖ > ε,
in which case the trust-region algorithm will continue with the updated model and updated
∆k+1, or ∆k+1 ≤ ε2, for a small ε2, which terminates the algorithm. This process of checking
for convergence is referred to as the criticality check in Conn et al [40].

9.3 Interpolation-Based Multifidelity Models

In this section we discuss a method of creating surrogate models that satisfy the conditions
for provable convergence presented in Section 9.2. This section first presents an overview
of the radial basis function (RBF) interpolation approach of Wild et al.[41], where the
interpolation points are chosen so that the resulting model is fully linear. Next, we present
an extension of this approach to the case of multifidelity models.

Define dj to be the jth point in the set of designs at which the high-fidelity and low-
fidelity functions have been sampled. Define yi to be the vector from the current iterate
(i.e., center of the current trust region), xk, to any sample point inside or within the vicinity
of the current trust region, di, that is selected to be an interpolation point. Also define Y
to be the set of the zero vector and all of the vectors yi. This notation is shown graphically
in Figure 9.1.

77

Figure 9.1. Graphical representation of the notation used to define points and vectors in
and around the trust region.

The RBF interpolation is defined so that by construction the surrogate model is equal
to the high-fidelity function at all interpolation points. That is, the error between the high-
and low-fidelity functions is interpolated exactly for all points defined by the vectors within
Y,

ek(xk + yi) = fhigh(xk + yi)− flow(xk + yi) ∀yi ∈ Y. (9.15)

The RBF interpolation has the form

ek(x) =

|Y|∑
i=1

λiφ (‖x− xk − yi‖) +

n+1∑
i=1

νiπi(x− xk), (9.16)

where φ is any positive definite, twice continuously differentiable RBF with φ′(0) = 0, and
the second term in (9.16) represents a linear tail, where πi denotes the ith component of the
vector Π(x−xk) = [1 (x−xk)]T . The coefficients λi and νi represent the RBF interpolation,
and are found by the QR-factorization technique of Wild et al [41]. In order for the model
to be fully linear, the RBF coefficients λi and νi must be bounded in magnitude. This is
achieved by using the interpolation point selection method in Wild et al [41]. The process
can be summarized as follows. First, the existing high-fidelity sample points, dj , in the
vicinity of the trust region are tested for affine independence. If fewer than n + 1 affinely
independent points are found, additional high-fidelity function evaluations are required to
generate them. Second, we test all other points dj at which the high-fidelity function value
is known, by measuring the impact of their addition as interpolation points on the RBF
coefficients λi and νi. Those points that ensure the RBF coefficients remain bounded are
used as additional interpolation points to update the model. Wild proved that this RBF
interpolation model construction algorithm produces a fully linear model for a function
satisfying conditions (i) and (ii) above [42].

In order for Wild’s interpolation approach to be applicable in our Bayesian calibration
setting, we require that the error function defined by fhigh(x)− flow(x) satisfies conditions
(i) and (ii) above. Condition (i), that the function is continuously differentiable, is satisfied
if both fhigh(x) and flow(x) are continuously differentiable. To establish condition (ii), that
the derivative of fhigh(x)− flow(x) is Lipschitz continuous, we require that both ∇fhigh(x)
and ∇flow(x) be Lipschitz continuous in the relaxed level set defined in Eq. (9.7). For the

78

high-fidelity function we require

‖∇fhigh(x1)−∇fhigh(x2)‖
‖x1 − x2‖

≤ κhigh ∀x1,x2 ∈ L(x0), (9.17)

and for the low-fidelity function,

‖∇flow(x1)−∇flow(x2)‖
‖x1 − x2‖

≤ κlow ∀x1,x2 ∈ L(x0), (9.18)

with Lipschitz constants κhigh and κlow, respectively. Since the difference between any two
functions with Lipschitz continuous first derivatives is also Lipschitz continuous, we obtain

‖∇[fhigh(x1)− flow(x1)]−∇[fhigh(x2)− flow(x2)]‖
‖x1 − x2‖

≤ κhigh + κlow ∀x1,x2 ∈ L(x0),(9.19)

where the Lipschitz constant of the difference is bounded by κhigh + κlow. Accordingly, the
convergence proof for the trust-region algorithm used in Conn et al. [40] holds, and this
multifidelity algorithm is provably convergent to an optimum of the high-fidelity function.

9.4 Numerical Implementation of Algorithms

This section presents an overview of the numerical implementation of the multifidelity op-
timization algorithm and suggests a manner in which the method of Wild et al. [43] to
generate fully linear models can be used in a flexible Bayesian calibration setting. The first
subsection, Section 9.4.1, implements the the trust region based optimization algorithm pre-
sented in Section 9.2. Whenever creation of a new fully linear model is needed, the method
discussed in Section 9.3 is implemented using the algorithm presented in Section 9.4.2.

9.4.1 Trust Region Implementation

Algorithm 4 provides an overview of the numerical implementation of the trust-region op-
timization method presented in Section 9.2. For each trust-region iteration, the algorithm
guarantees that a step is found that satisfies the fraction of Cauchy decrease, Eq. 9.11. The
algorithm only samples the high-fidelity function when necessary for convergence, and it
stores all high-fidelity function evaluations in a database so that design points are never re-
evaluated. Whenever an updated surrogate model is needed, the model generation method
described in the following subsection creates a surrogate model using this database of high-
fidelity function evaluations together with new high-fidelity evaluations when necessary. The
parameters of the trust-region optimization algorithm were defined in Section 9.2, while rec-
ommended values and sensitivity of results to those values will be presented in Section 9.5.

9.4.2 Fully Linear Bayesian Calibration Models

Algorithm 5 presents the numerical implementation of the method to generate fully linear
surrogate models, allowing for a Bayesian maximum likelihood estimate of the RBF correla-
tion length. The RBF models used in Bayesian model calibration have a length scale param-
eter that provides flexibility. For instance, in the Gaussian RBF model, φ(r) = e−r

2/ξ2 , the
parameter ξ is a variable length scale that can alter the shape of the correlation structure.
If the interpolation errors are assumed to have a Gaussian distribution, then a maximum
likelihood estimate can be used to estimate the value of ξ that best represents the data [3, 4].
Therefore, our process to generate a fully linear surrogate model uses the method of Wild et

79

Algorithm 4: Trust-Region Algorithm for Iteration k
1: Solve the trust-region subproblem using nonlinear programming techniques to find the sk that solves,

min
sk

mk(xk + sk)

s.t. ‖sk‖ ≤ ∆k.

1a: If the subproblem solution fails to satisfy the fraction of Cauchy decrease, Eq. 9.11, the
simple line search from Conn et al. is used [40].

2: If fhigh(xk + sk) has not been evaluated previously, evaluate the high-fidelity function at that point.
2a: Store fhigh(xk + sk) in database.

3: Compute the ratio of actual improvement to predicted improvement,

ρk =
fhigh(xk)− fhigh(xk + sk)

mk(xk)−mk(xk + sk)
.

4: Accept or reject the trial point according to ρk,

xk+1 =

{
xk + sk if ρk > 0

xk otherwise.

5: Update the trust region size according to ρk,

∆k+1 =

{
min{γ1∆k,∆max} if ρk ≥ η
γ0∆k if ρk < η.

5: Create a new model mk+1(x) that is fully linear on {x : ‖x− xk+1‖ ≤ ∆k+1} using Algorithm 5.
6: Check for convergence: if ‖∇mk+1(xk+1)‖ > ε, algorithm is not converged—go to step 1. Otherwise,

6a: While ‖∇mk+1(xk+1)‖ ≤ ε and ∆k+1 > ε2,
6b: Reduce the trust region size, α∆k+1 → ∆k+1.
6c: Update model mk+1(x) to be fully linear on {x : ‖x−xk+1‖ ≤ ∆k+1} using Algorithm 9.2.

80

al. [41] on a set of candidate length scales, ξi ∈ {ξ1, . . . , ξn}. A fully linear model is con-
structed for each candidate length scale, and the likelihood of each length scale is computed.
The trust region algorithm then uses the surrogate model constructed with ξ∗, where ξ∗ is
chosen as the value of ξ corresponding to the maximum likelihood. This maximum likeli-
hood approach can improve the model calibration, and also provides flexibility in selecting
sample points in the extension to the case when there are multiple lower-fidelity models (as
will be discussed in Section 9.6).

Algorithm 5: Create Fully Linear Models Allowing Maximum Likelihood Correlation Lengths
1: Compute the likelihood for all RBF correlation lengths, ξi ∈ {ξ1, . . . , ξn} with steps 2-5.
2: Generate a set of n+ 1 affinely independent points in the vicinity of the trust region:

2a: Set y1 = 0, and add y1 to the set of calibration vectors Y.
2b: Randomly select any high-fidelity sample point, d2, within the current trust region and add

the vector y2 = d2 − xk to Y.
2c: For all unused high-fidelity sample points within the current trust region, add the vector

y = dj − xk to Y if the projection of y onto the nullspace of the span of the vectors in the
current Y is greater than θ1∆k, 0 < θ1 < 1.

2d: If fewer than n + 1 vectors are in calibration set, repeat step 2c allowing a larger search
region of size θ3∆k, θ3 > 1.

2e: While fewer than n+ 1 vectors are in Y,
2f: Evaluate the high-fidelity function at a point within the nullspace of the span of the

vectors in Y and add y = d− xk to Y.
2g: Store the results of all high-fidelity function evaluations in the database.

3: Consider the remaining unused high-fidelity sample points within a region centered at the current
iterate with size θ4∆k, θ4 > 1. Add points so that the total number of interpolation points does not
exceed pmax, the RBF coefficients remain bounded, and the surrogate model is fully linear (using,
for example, the AddPoints algorithm of Wild et al. [43]).

4: Compute the RBF coefficients using the QR factorization technique of Wild et al. [41].
5: If only n + 1 vectors are in the calibration set, Y, assign the likelihood of the current correlation

length, ξi, to −∞. Otherwise compute the likelihood of the RBF interpolation using standard
methods[3, 4].

6: Select the ξi with the maximum likelihood.
6a: If the maximum likelihood is −∞ choose the largest ξi. This model corresponds to a linear

regression of the high-fidelity function at the calibration points included in Y, but still satisfies
conditions for convergence.

7: Return the set of calibration vectors Y, RBF coefficients, and updated database of high-fidelity
function evaluations.

9.5 Multifidelity Optimization Examples

This section demonstrates the multifidelity optimization scheme for two examples. The first
is an analytical example considering the Rosenbrock function and the second is a supersonic
airfoil design problem.

9.5.1 Rosenbrock Function

The first example multifidelity optimization example is the Rosenbrock function,

min
x∈R2

fhigh(x) =
(
x2 − x2

1

)2
+ (1− x1)

2
. (9.20)

The minimum of the Rosenbrock function is at x∗ = (1, 1) and f(x∗) = 0. Table 9.2
presents the number of high-fidelity function evaluations required to optimize the Rosen-
brock function using a variety of low-fidelity functions. All of the low-fidelity functions
have a different minimum than the Rosenbrock function, with the exception of the case
when the low-fidelity function is set equal to the Rosenbrock function, corresponding to a

81

perfect low-fidelity function. Convergence results are presented for the case when the low-
fidelity function is parabolic, flow(x) = x2

1 + x2
2, in Figure 9.2(a), and a surface plot of the

Rosenbrock function and this low-fidelity function is shown in Figure 9.2(b). For all of the
examples in this section the optimization parameters used are given in Table 9.1 and are
discussed in the remainder of this subsection.

Parameter Description value

φ(r) RBF Correlation e−r
2/ξ2

ξ RBF spatial correlation length See Table 9.2
∆0 Initial trust region size max[10, ‖x0‖∞]
∆max Maximum trust region size 103∆0

ε, ε2 Termination tolerances 5× 10−4

γ0 Trust region contraction ratio 0.5
γ1 Trust region expansion ratio 2
η Trust region expansion criterion 0.2
α Trust region contraction ratio used in convergence check 0.9
κFCD Fraction of Cauchy decrease requirement 10−4

pmax Maximum number of calibration points 50
θ1 Minimum projection into null-space of calibration vectors 10−3

θ2 RBF coefficient conditioning parameter 10−4

θ3 Expanded trust-region size to find basis, θ3∆k 10
θ4 Maximum calibration region size, θ4∆k 10
δx Finite difference step size 10−6

Table 9.1. Optimization parameters used in the Rosenbrock function demonstration.

We use a Gaussian RBF, φ(r) = e−r
2/ξ2 , to build the RBF error interpolation and two

methods of selecting the spatial correlation length, ξ. The first method is to fix a value
of ξ, and the second approach is based on Kriging methods, which assume interpolation
errors are normally distributed and maximize the likelihood that the RBF surface predicts
the function [3, 4]. To save computation time, the maximum likelihood correlation length
is estimated by examining 10 correlation lengths between 0.1 and 5.1, and the correlation
length that has the maximum likelihood is chosen. If all correlation lengths have the same
likelihood, the maximum correlation length is used. The results in Table 9.2 show that the
correlation length has a moderate impact on the convergence rate of the method. For this
problem, using either ξ = 2 or ξ∗, the correlation length that maximizes the likelihood at
each trust-region iteration, leads to the best result.

The results in Table 9.2 show that using a multifidelity framework can reduce the number
of high-fidelity function calls. As a baseline, the average number of function calls for a
quasi-Newton method directly optimizing the Rosenbrock function is 69. The Bayesian
calibration approach uses between 5 and 180 high-fidelity function evaluations depending on
the quality of the low-fidelity model. The worst case, 180 high-fidelity function evaluations,
corresponds to not having a lower-fidelity model and simply approximating the function
with a RBF interpolation. The best case, 5 high-fidelity evaluations, corresponds to the case
when the low-fidelity function exactly models the high-fidelity function. With a moderately
good low-fidelity function (e.g., a 4th degree polynomial), the multifidelity method performs
similarly to the quasi-Newton method. Clearly the performance of this method compared to
conventional optimization methods depends considerably on the quality of the low-fidelity
function used. However, when this method is compared with other multifidelity methods
such as the first-order consistent trust-region approaches of Alexandrov et al.[32], it uses
fewer high-fidelity function evaluations. Results for two first-order consistent trust-region
methods are presented in Table 9.2 along with the results of the Bayesian calibration method.

82

Low-Fidelity Function ξ = 1 ξ = 2 ξ = 3 ξ = 5 ξ∗ Mult.-Corr. add-Corr.
flow(x) = 0 148 107 177 223 178 289 503
flow(x) = x2

1 + x2
2 129 77 106 203 76 312 401

flow(x) = x4
1 + x2

2 74 74 73 87 65 171 289
flow(x) = fhigh(x) 5 5 5 5 7 7 6
flow(x) = −x2

1 − x2
2 195 130 132 250 100 352 fail

Table 9.2. Table of average number of function evaluations required to minimize the Rosen-
brock function, Eq. 9.20, from a random initial point on x1, x2 ∈ [−5, 5]. Results for a
selection of Gaussian radial bases function spatial parameters, ξ, are shown. ξ∗ corresponds
to optimizing the spatial parameter according to a maximum likelihood criteria [4]. Also
included are the number of function evaluations required using first-order consistent trust
region methods with a multiplicative correction and an additive correction. For a standard
quasi-Newton method the average number of function evaluations is 69.

The first uses a multiplicative correction defined in Ref. [32], while the second uses an
additive correction. The first-order consistent methods require n + 1 high-fidelity function
evaluations to estimate the high-fidelity gradient at each xk.

For this simple high-fidelity function, the first-order consistent trust-region methods and
the quasi-Newton method require less than half the wall-clock time that the Bayesian cal-
ibration method requires. Building the RBF models requires multiple matrix inversions,
each of which requires O(pmax(pmax + n + 1)3) operations, where n is the number of de-
sign variables and pmax is the user-set maximum number of calibration points allowed in a
model. Accordingly, the Bayesian calibration method is only recommended for high-fidelity
functions that are expensive compared to the cost of repeatedly solving for RBF coefficients.

As with any optimization algorithms, tuning parameters can affect performance sig-
nificantly; however, the best choices for these tuning parameters can be highly problem
dependent. A sensitivity study measured the impact of algorithm parameters on the num-
ber of high-fidelity function evaluations for the Rosenbrock example using flow(x) = x2

1 +x2
2

as the low-fidelity function (Figure 9.2). For all of these tests, one parameter is varied and
the remainder are all set to the values in Table 9.1. The conclusions drawn are based on the
average of at least ten runs with random initial conditions on the interval x1, x2 ∈ [−5, 5].
While these conclusions may provide general useful guidance for setting algorithm parame-
ters, similar sensitivity studies are recommended for application to other problems.

The parameter η is the trust region expansion criterion, where the trust region expands
if ρk ≥ η and contracts otherwise. The sensitivity results show that lower values of η have
the fewest high-fidelity function calls, and any value 0 ≤ η ≤ 0.2 performs well. For the
trust region expansion ratio, γ1, the best results are at γ1 ≈ 2, and high-fidelity function
evaluations increase substantially for other values. Similarly, for the contraction ratio, γ0,
the best results are observed at γ0 ≈ 0.5, with a large increase in high-fidelity function
evaluations otherwise. For the fraction of Cauchy decrease, κFCD, the results show the
number of high-fidelity evaluations is fairly insensitive to any value 0 < κFCD < 10−2.
Similarly, for the trust-region contraction ratio used in the algorithm convergence check, α,
the number of high-fidelity function evaluations is insensitive to any value 0.5 < α < 0.95.

The method of Wild et al. to generate fully linear models requires four tuning parameters,
θ1, θ2, θ3, and θ4[41, 43]. The parameter θ1 (0 < θ1 < 1) determines the acceptable
points when finding the affinely independent basis in the vicinity of the trust region in
Algorithm 5. As θ1 increases, the calibration points added to the basis must have a larger
projection into the null-space of the current basis, and therefore fewer points are admitted
to the basis. We find for the Rosenbrock example that the fewest function evaluations
occurs with θ1 ≈ 10−3; however, for any value of θ1 within two orders of magnitude of

83

(a) Convergence plot.

(b) Parabolic low-fidelity function and the Rosenbrock function.

Figure 9.2. Rosenbrock function and a similar low-fidelity model.

84

this value, the number of function evaluations increases by less than 50%. The second
parameter, θ2 (0 < θ2 < 1), is used in the AddPoints algorithm of Wild et al. [43] to
ensure that the RBF coefficients remain bounded when adding additional calibration points.
The number of allowable calibration points increases as θ2 decreases to zero; however, the
matrix used to compute the RBF coefficients also becomes more ill-conditioned. For our
problem, we find that θ2 ≈ 10−4 enables a large number of calibration points while providing
acceptable matrix conditioning. The two other parameters, θ3 and θ4, used in the calibration
point selection algorithm, are significant to the algorithm’s performance. The parameter θ3

(θ3 > 1) is used if n+1 affinely independent previous high-fidelity sample points do not exist
within the current trust region. If fewer than n+1 points are found, the calibration algorithm
allows a search region of increased size {x : ‖x−xk‖ ≤ θ3∆k} in order to find n+ 1 affinely
independent points prior to evaluating the high-fidelity function in additional locations.
The results show that the number of function calls is insensitive to θ3 for 1 < θ3 ≤ 10, with
θ3 ≈ 3 yielding the best results. The parameter θ4 (θ4 > 1) represents the balance between
global and local model calibration, as it determines how far points can be from the current
iterate, xk, and still be included in the RBF interpolation. Points that lie within a region
{x : ‖x − xk‖ ≤ θ4∆k} are all candidates to be added to the interpolation. Calibration
points outside of the trust region will affect the shape of the model within the trust region,
but the solution to the subproblem must lie within the current trust region. The results of
our analysis show that θ4 ≈ 10 is the best value, with the number of high-fidelity function
calls increasing substantially if θ4 < 5 or θ4 > 15.

9.5.2 Supersonic Airfoil Optimization

As an engineering example, the supersonic airfoil problem presented in Section 2.1 is used
to demonstrate how the algorithm performance scales with the number of design variables.
The optimization will seek to find the angle of attack and set of surface splines points to
minimize drag at Mach 1.5. The upper and lower surfaces will each have the same number of
spline points. In this test case, the linear supersonic panel method is used as the low-fidelity
function and shock-expansion theory is used as the high-fidelity function. For supersonic
flow, a zero thickness airfoil will have the minimum drag, so the airfoil must be constrained
to have a thickness to chord ratio greater than 5%. This is accomplished by adding a penalty
function, so that if the maximum thickness of the airfoil is less than 5%, the penalty term
1000(t/c− 0.05)2 is added to the drag. A similar penalty is added if the thickness anywhere
on the airfoil is less than zero.

The optimization parameters used by this method are the same as in Table 9.1, with the
exception that the RBF correlation length is either ξ = 2 or optimized at each iteration.
A consecutive step size of less than 5 × 10−6 is an additional termination criteria for all
of the multifidelity methods compared. The number of high-fidelity function evaluations
required to optimize the airfoil for each of the methods using a different number of design
variables is presented in Figure 9.3. The airfoil optimization shows that both the first-order
consistent methods and the RBF calibration method perform significantly better than the
quasi-Newton method. This is largely because the multifidelity methods have a significant
advantage over the single fidelity methods in that the physics-based low-fidelity model is a
reasonable representation of the high-fidelity model. However, the RBF calibration approach
uses less than half the number of function evaluations than the multiplicative-correction
approach. In addition, the additive correction outperforms the multiplicative correction for
this problem, but the RBF calibration outperformed it. The method of maximizing the
likelihood of the RBF calibration performs slightly better than just using a fixed correlation
length.

As a second test case, the panel method is used as a low-fidelity function to minimize
the drag of an airfoil with Cart3D as the high-fidelity function. Cart3D has an adjoint-

85

Figure 9.3. Number of shock-expansion theory evaluations required to minimize the drag of
a supersonic airfoil verse the number of parameters. The low-fidelity model is the supersonic
panel method.

based mesh refinement, which ensures the error caused by the discretization is less than a
tolerance. Accordingly, the drag computed by Cart3D is not Lipschitz continuous because
there is finite precision and a finite difference estimate of the derivative only measures
numerical noise. However, in the calibration algorithm the trust region radius converges
to zero, which forces a small step size and this is a supplemental termination criteria. So
the method is not provably convergent in this case, but it still does converge to the correct
solution. On average, the airfoil parameterized with 11 variables requires 88 high-fidelity
(Cart3D) function evaluations. A comparison of the optimum airfoils from the panel method,
shock-expansion theory, and Cart3D is presented in Figure 9.4.

Figure 9.4. Minimum drag airfoils from each of the three analysis models. The panel method
airfoil is generated by a quasi-Newton method, but the shock-expansion and Cart3D airfoils
are generated with this RBF calibration method using the panel method as a low-fidelity
model.

86

9.6 Combining Multiple Fidelity Levels

This section addresses how the radial basis function interpolation technique can be extended
to optimize a function when there are multiple lower-fidelity functions. For instance, consider
the case when our goal is to find the x∗ that minimizes fhigh(x), and there exists two or
more lower-fidelity functions, an intermediate-fidelity, fmed(x), and a low-fidelity, flow(x).
The typical approach to solve this problem is to nest the lower-fidelity function; that is, to
use the intermediate fidelity function as the low-fidelity model of the high-fidelity function,
and to use the lowest-fidelity function as the low-fidelity model of the intermediate-fidelity
function. To do this, two calibration models are needed,

fhigh(x) ≈ fmed(x) + emed(x) (9.21)

fmed(x) ≈ flow(x) + elow(x). (9.22)

In the nested approach, the high-fidelity optimization is performed on the approximate
high-fidelity function, which is the medium-fidelity function plus the calibration model emed.
However, to determine the steps in that optimization, another optimization is performed on
a lower-fidelity model. This low-fidelity optimization is performed on the model

m(x) ≈ flow(x) + elow(x) + emed(x), (9.23)

but only the low-fidelity calibration model elow is adjusted.
A problem with the nested approach is that on the low-fidelity optimization, a con-

strained optimization that uses model calibration techniques must be performed due to the
trust region at the higher level. Moreover, this method likely requires a considerable reduc-
tion in the resources required to run each of the lower-fidelity models. The reason for this is
that in order to take one step in the high-fidelity space, an optimization is required on the
medium-fidelity function. However, for each step in medium-fidelity space, an optimization
is required on the lower-fidelity function. So, if an optimization routine requires 50 function
evaluations to converge, then for one high-fidelity step, 50 intermediate-fidelity evaluations
will be required, and 2,500 lower-fidelity evaluations will be required. If the number of
optimization iterations is of the same order at each level, then there will be an exponential
scaling in the number of function evaluations required between fidelity levels.

An alternative to nesting multiple lower-fidelity functions is to use a maximum likelihood
estimator to estimate the high-fidelity function. Since the multifidelity optimization method
discussed in this chapter uses radial basis function interpolants, a variance estimate of the
interpolation error can be created using standard Gaussian process techniques [3, 4]. In the
case of multiple fidelity levels, the calibration of fhigh(x) ≈ flow(x)+e(x) is modified so that
the error model, e(x) is treated as the mean of a Gaussian process, and the error model also
includes a variance model. In this case, the error model, normally distributed with mean
µ(x) and variance σ2(x), is written as N

(
µ(x), σ2(x)

)
. In the case of multiple lower-fidelity

functions there are multiple estimates of the high-fidelity function, for example,

fhigh(x) ≈ fmed(x) +N
(
µmed(x), σ2

med(x)
)

(9.24)

fhigh(x) ≈ flow(x) +N
(
µlow(x), σ2

low(x)
)
. (9.25)

From these two or more models, a maximum likelihood estimate of the high-fidelity function
weights each prediction according to a function of the variance estimates. The high-fidelity
maximum likelihood estimate has a mean fest, given by

fest(x) = (fmed(x) + µmed(x))

[
σ2

low(x)

σ2
low(x) + σ2

med(x)

]
+ (flow(x) + µlow(x))

[
σ2

med(x)

σ2
low(x) + σ2

med(x)

]
(9.26)

87

The estimate of the high-fidelity function also has a variance, σ2
est, which is less than either

of the variances of the lower-fidelity models since

1

σ2
est(x)

=
1

σ2
low(x)

+
1

σ2
med(x)

. (9.27)

A schematic of the behavior of this maximum likelihood estimate is shown in Figure 9.5.
In the first case with two similar models, the combined estimate has a similar mean with a
reduced variance. In the second case with two dissimilar estimates, the combined estimate
has the average mean of the two models again with lower variance. In the third case when
one model has a considerably smaller variance than the other model, the combined estimate
has a similar mean and slightly reduced variance than the model with the lower variance.
Accordingly, the maximum likelihood estimate is the best probabilistic guess of the high-
fidelity function at a non-calibrated point.

Figure 9.5. Behavior of the combined maximum likelihood estimate given the behavior of
the individual estimates.

This method provides flexibility while still being provably convergent to a high-fidelity
optimum using our multifidelity optimization approach. The requirements for convergence
are that the surrogate model upon which the optimization is performed be smooth and
exactly interpolate the function at the necessary calibration points. Using this maximum
likelihood estimator, only one of the lower-fidelity functions needs to be sampled at the
calibration points because at a calibration point an individual Gaussian process model has
zero variance. Accordingly, at that calibration point the model is known to be correct, so
that prediction is trusted implicitly and the other lower-fidelity information is not used.
Also, with a smooth Gaussian process covariance function, the variance estimate will be
a smooth function. This makes the model of the high-fidelity function, fest(x), a smooth
model that satisfies the optimization algorithm requirements for convergence to a high-
fidelity optimum. Therefore, the user may choose any method of selecting which lower-
fidelity models are calibrated at a required calibration point, as only one needs to be. For
example, the calibration procedure could choose a ratio, such as one intermediate-fidelity
update for every three low-fidelity updates, or simply update both the intermediate-fidelity
and low-fidelity models each time a new calibration point is needed.

Optimization results show that the nesting approach suffers from poor scaling between
fidelity levels and that the maximum likelihood approach speeds convergence of our mul-
tifidelity optimization method even if the lowest-fidelity function is a poor representation
of the high-fidelity function. In all examples presented, the calibration strategy employed
for the maximum likelihood method is to update all lower-fidelity models whenever the
optimization method requires a new calibration point.

88

The first example is an optimization of the Rosenbrock function with two parabolic
lower-fidelity functions. The number of required function evaluations for each fidelity level
is presented in Table 9.3. Using the maximum likelihood approach, the number of high-
fidelity function evaluations has been reduced by 34%, and the number of combined lower-
fidelity evaluations has been reduced by 27%. However, combining the multiple lower-fidelity
functions through nesting leads to a large increase in the number of function evaluations at
each level.

Method (x2 − x2
1)2 + (1− x1)2 (x1 − 1)2 + x2

2 x2
1 + x2

2

Two-Fidelities 87 0 6975
Max. Likelihood 57 2533 2533
Nested 137 4880 50455

Table 9.3. Number of function calls required to optimize the Rosenbrock function using
multiple lower-fidelity functions. The maximum likelihood approach requires the least high-
fidelity function evaluations to converge and the nested approach the most.

The second example is to optimize a supersonic airfoil for minimum drag with respect to
an Euler code, Cart3D. Two lower-fidelity methods are used: shock-expansion theory and
a panel method. These results also show that the maximum likelihood approach converges
faster and with fewer calibration points than the original multifidelity method using only
the panel method. The nesting approach failed to converge as the step size required in the
intermediate-fidelity optimization became too small. The likely cause of this is that the
adjoint-based mesh refinement used in Cart3D allows numerical oscillations in the output
functional at a level that is still significant in the optimization, and this makes the necessary
calibration surface non-smooth. The lack of smoothness violates the convergence criteria of
this method.

Method Cart3D Shock-expansion Panel Method
Two-Fidelities 88 0 47679
Max. Likelihood 66 23297 23297
Nested 66* 7920* 167644*

Table 9.4. Number of function calls required to optimize an airfoil for minimum drag using
the Euler equations (Cart3D) with multiple lower-fidelity models. An asterisk indicates that
solution was not converged due to numerical limitations.

The final example demonstrates that the maximum likelihood approach can still benefit
from a poor low-fidelity model. The results in Table 9.5 are for minimizing the drag of a
supersonic airfoil using shock-expansion theory, with the panel method as an intermediate-
fidelity function; however, unlike the preceding example, the lowest-fidelity model is quite
poor and uses the panel method only on the camberline of the airfoil. Using this method,
any symmetric airfoil at zero angle of attack has no drag and many of the predicted trends
are incorrect compared to the panel method or shock-expansion theory. The optimization
results show an important benefit of this maximum likelihood approach: even adding this
additional bad information, the number of high-fidelity function calls has been reduced by
33%, and the number of intermediate-fidelity function calls has decreased by 31%. An
additional point of note is the magnitude to which the nested approach suffers by adding
poor low-fidelity information. In most test problems, the nested optimization was terminated
due to an exceptionally large number of function evaluations. The results presented are the
minimum number of function evaluations the nested approach required to converge.

89

Method Shock-expansion Panel Method Camberline
Two-Fidelities 126 43665 0
Max. Likelihood 84 30057 30057
Nested 212* 59217* 342916*

Table 9.5. Number of function calls required to optimize an airfoil for minimum drag
using shock-expansion theory with multiple lower-fidelity models. An asterisk indicates
a minimum number of function evaluations as opposed to an average value from random
starting points.

9.7 Summary

The method discussed in this chapter is a provably convergent multifidelity optimization
method that does not require computation of derivatives of the high-fidelity function. The
optimization results show that this method reduces the number of high-fidelity function
calls required to find a local minimum compared with other state-of-the-art methods. The
method creates surrogate models that retain accurate local behavior while also capturing
some global behavior of the high-fidelity function. However, a downfall of the method is that
the overhead increases dramatically with the number of design variables and the number of
calibration points used to build the radial basis function model. Accordingly, this approach
is only recommended for high-fidelity functions that require a considerable wall-clock time.
This chapter has also shown that a multifidelity optimization method based on a maximum
likelihood estimator is an effective way of combining many fidelity levels to optimize a high-
fidelity function. The maximum likelihood estimator permits flexible sampling strategies
among the low-fidelity models and is robust with respect to poor low-fidelity estimates.

90

10 High-Fidelity-Gradient-Free
Constrained Optimization
This chapter will extend the unconstrained local optimization multifidelity optimization
method presented in Chapter 9 to address constrained multifidelity optimization problems.
The method presented is a summary of the method that will be presented at the 13th

AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference [44]. The algorithm
minimizes a high-fidelity objective function subject to a high-fidelity constraint and other
simple constraints. The algorithm never computes the gradient of a high-fidelity function;
however, it demonstrates convergence using sensitivity information from the calibrated low-
fidelity models, which are constructed to have negligible error in a neighborhood around the
solution. The method is demonstrated for aerodynamic shape optimization using the airfoil
design problem in Section 2.1 and shows an 80% reduction in the number of high-fidelity
analyses compared with a single-fidelity sequential quadratic programming formulation and
a similar number of high-fidelity analyses compared with a multifidelity trust-region algo-
rithm that estimates the high-fidelity gradient using finite differences.

10.1 Motivation

A powerful technique commonly used for solving constrained multifidelity optimization prob-
lems is trust-region model management, where at all design iterates the gradients of low-
fidelity objective function and constraints are either scaled or shifted such that they match
the value and gradient of their high-fidelity counterpart [31, 32]. This technique is provably
convergent to a locally optimal high-fidelity design and in practice provides a 2–3 fold reduc-
tion in the number of high-fidelity function calls [31]. However, it is common in engineering
design problems that the gradient of a high-fidelity function is unavailable and estimating
the gradient is unreliable or too expensive. In these cases, multifidelity methods such as
Efficient Global Optimization (EGO) [1] or Surrogate Management Framework (SMF) [45]
can be used. In EGO a Gaussian process regression model is fit to the high-fidelity objec-
tive function. The mean of the Gaussian process interpolates the value of the high-fidelity
function, whereas, the mean square error of the Gaussian process models the uncertainty
in the high-fidelity function value. This error is zero at all locations where the value of the
high-fidelity function is known and increases with distance away from sample points. Opti-
mization is then performed on the Gaussian process model, and the high-fidelity function is
sampled at locations likely to reduce to the value of the function over the current observed
minimum. This technique works well in practice, can be made globally convergent [1], can
be used in a multifidelity setting using Bayesian model calibration methods[34, 35, 36], and
does not require a high-fidelity derivative estimate. However, the method may be globally
biased and attempt to explore the entire design space as opposed to simply reducing the
objective function. In addition, the method has been shown to be sensitive to both the ini-
tial high-fidelity samples [2] and to the exact metric of selecting points likely to improve the
high-fidelity function value [46]; moreover, methods to handle constraints are still somewhat
heuristic [1, 18, 46]. SMF is a derivative-free pattern-search method augmented with a pre-
diction of a locally optimal design from a surrogate model. The underlying pattern-search
method ensures convergence, so a broad range of surrogate models are allowable. Of specific
interest is conformal space mapping where a low-fidelity function is calibrated to the high-
fidelity function at locations where the value is known [33]. In SMF, constraints may be

91

handled directly on the surrogate models either with gradient information or with penalties,
and for the gradient-free high-fidelity pattern-search can be handled with an augmented
Lagrangian[47, 48, 49], exact penalty method[50], or constraint filtering[51].

In many cases, sensitivity information is very useful and can accelerate convergence of
a derivative-based optimization method towards a local optimum. Accordingly, for multifi-
delity optimization of a function where the gradient is known, trust-region model manage-
ment is likely the best method to find a locally optimal design. However, if high-fidelity
gradient information is unknown, trust-region model management requires finite differences
to produce a surrogate model that satisfies first-order requirements at each design iterate.
Finite differences may not always be a viable choice due to noise in the function evalua-
tions, number of design variables, design locations where the objective function fails to exist,
or simply computational requirements. In these situations gradient-free multifidelity tech-
niques such as EGO or SMF could be considered, since they converge quickly if the model
calibration methods are robust. This chapter discusses the question: can a low-fidelity sur-
rogate model be calibrated in a sufficiently robust manner as to use low-fidelity sensitivity
information to optimize a high-fidelity system with a limited number of high-fidelity evalua-
tions? The answer to this question requires finding a surrogate modeling technique that can
capture enough high-fidelity behavior to prove convergence to a high-fidelity optimum, using
as few high-fidelity function evaluations as a finite difference based calibration approach.

Creating a fully linear model is one possible surrogate modeling technique to ensure low-
fidelity sensitivity information predicts high-fidelity sensitivities well. A fully linear model,
formally defined in the next section, establishes Lipschitz-type error bounds between the
high-fidelity function and the surrogate model. This ensures that the error between the
high-fidelity gradient and surrogate model gradient is locally bounded without ever cal-
culating the high-fidelity gradient. Conn et al. showed polynomial interpolation models
can be made fully linear, provided the interpolating set satisfied certain geometric require-
ments [39], and further developed an unconstrained gradient-free optimization technique
using fully linear models [40, 52]. Wild et al. demonstrated that a radial basis function
interpolation could satisfy the requirements for a fully linear model and be used in Conn’s
derivative-free optimization framework [41, 42, 43]. March and Willcox generalized this
method to the cases with arbitrary low-fidelity functions or multiple low-fidelity functions
using Bayesian model calibration methods typically associated with EGO [29]. This chapter
demonstrates how fully linear models can be used for constrained optimization of compu-
tationally expensive functions when their derivatives are not available. The constraints are
partitioned into constraints with and without available derivatives. The constraints without
available derivatives are approximated with multifidelity methods; whereas the other con-
straints are handled either implicitly with a penalty method or explicitly. Two constrained
multifidelity methods are presented, the first optimizes a high-fidelity objective function
subject to constraints with available derivatives. The second formulation optimizes a high-
fidelity objective function subject to high-fidelity constraints and constraints with available
derivatives.

Section 10.2 of this chapter presents the derivative-free method to optimize a high-
fidelity objective function subject to constraints with available derivatives. Fully linear
surrogate models of the objective function are minimized within a trust-region setting until
convergence to a high-fidelity optimum is demonstrated. Section 10.3 presents a technique
for minimizing a high-fidelity objective function subject to both constraints with available
derivatives and computationally expensive constraints with unavailable derivatives. This
algorithm finds a feasible point using the first formulation to reduce the value of the high-
fidelity constraint subject to the constraints with available derivatives. After a feasible
point is found, the high-fidelity objective is minimized using fully linear surrogate models
for both the high-fidelity objective and high-fidelity constraint. Only points that maintain
feasibility are accepted. Section 10.4 presents an aerodynamic shape optimization problem to

92

demonstrate the proposed multifidelity optimization techniques and compares the number of
high-fidelity function evaluations with other methods. The summar in Section 10.5 discusses
extensions of the method to the cases when there are multiple lower-fidelity models or when
constraints are hard (when the objective function fails to exist if the constraints are violated).

10.2 Constrained Optimization of a Multifidelity Ob-
jective Function

We consider a setting where we have two (or more) models that represent the physical sys-
tem of interest: a high-fidelity function that accurately estimates system metrics of interest
but is expensive to evaluate, and a low-fidelity function with lower accuracy but cheaper
evaluation cost. We define our high-fidelity function as fhigh(x) and our low-fidelity function
as flow(x), where x ∈ Rn is the vector of n design variables. Our goal is to solve a con-
strained optimization problem without ever directly computing or estimating the gradient of
the high-fidelity function, but generating sensitivity information from the low-fidelity func-
tion to reduce the required number of high-fidelity evaluations. The minimization problem
considered is to minimize the high-fidelity objective function subject to equality constraints,
h(x), and inequality constraints g(x),

min
x∈Rn

fhigh(x) (10.1)

s.t. h(x) = 0

g(x) ≤ 0,

where we assume gradient information from h(x) and g(x) is available or can be estimated
accurately. To establish convergence it is necessary to assume that all of the functions
in Eq. 10.1 and the low-fidelity models are twice continuously differentiable, are Lipschitz
continuous, and have Lipschitz continuous first-derivatives. In addition we will assume
that the solution to Eq. 10.1, x∗, is feasible and is a regular point (satisfies strict linear
independent constraint qualification).

10.2.1 Trust-region Model Management

From an initial design vector x0, the trust-region method generates a sequence of design
vectors that each reduce a merit function consisting of the high-fidelity function value and
penalized constraint violation, where we denote xk to be this design vector on the kth trust-
region iteration. Following the general Bayesian calibration approach in Ref. [35], we define
ek(x) to be a model of the error between the high- and low-fidelity functions on the kth
trust-region iteration, and we construct a surrogate model mk(x) for fhigh(x) as

mk(x) = flow(x) + ek(x). (10.2)

We define the trust region at iteration k, Bk, to be the region centered at xk with size ∆k,

Bk = {x : ‖x− xk‖ ≤ ∆k}, (10.3)

where any norm can be used, provided there exist constants c1 and c2 such that

‖ · ‖2 ≤ c1‖ · ‖ and ‖ · ‖ ≤ c2‖ · ‖2. (10.4)

To solve the constrained optimization problem presented in Eq. 10.1 we define a merit
function, Φ(xk, σk), where σk is a parameter that must go to infinity as the iteration number
k goes to infinity and serves to increase the penalty placed on the constraint violation. We

93

also must assume that the merit function and the trust-region iterates satisfy the following
four properties. First, the merit function with the initial penalty, σ0, must be bounded from
below within a relaxed level-set, L(x0, σ0), defined as

L(x0, σ0) = {x ∈ Rn : Φ(x, σ0) ≤ Φ(x0, σ0)} (10.5)

B(xk) = {x ∈ Rn : ‖x− xk‖ ≤ ∆max} (10.6)

L(x0, σ0) = L(x0, σ0)
⋃

xk∈L(x0,σ0)

B(xk), (10.7)

where ∆max is the maximum allowable trust-region size and the relaxed level-set is required
because the trust-region algorithm may attempt to evaluate the high-fidelity function at
points outside of the level set at x0. Second, the level sets of Φ(xk, σk > σ0) must be
contained within L(x0, σ0). Third, L(x0, σ0) must be a compact set, and fourth, all design
iterates xk must remain within L(x0, σ0).

Although other merit functions are possible, we restrict our attention to merit functions
based on quadratic penalty functions because it is trivial to show that they are bounded
from below if the objective function obtains a finite global minimum. The merit function
used in this method is the objective function plus the scaled sum-squares of the constraint
violation, where g+(x) are the values of the violated inequality constraints,

Φ(x, σk) = fhigh(x) +
σk
2

h(x)Th(x) +
σk
2

g+(x)Tg+(x). (10.8)

The parameter σk is a penalty weight, which must go to +∞ as the iteration k goes to
+∞. Note that when using a quadratic penalty function for constrained optimization, the
sequence of iterates generated, {xk}, can either terminate at a feasible regular point at which
the Karush-Kuhn-Tucker (KKT) conditions are satisfied, or at a point that minimizes the
squared norm of the constraint violation, h(x)Th(x) + g+(x)Tg+(x) [53, 54]. Accordingly,
we assume that the iterates generated by minimizing the merit function are such that the
sequence {xk} always remains within L(x0, σ0) and terminates at a limit point, x∗ that is
both regular and feasible.

We now define a surrogate merit function, Φ̂(x, σk), which replaces the objective function
with a surrogate model of the expensive objective function.

Φ̂(x, σk) = mk(x) +
σk
2

h(x)Th(x) +
σk
2

g+(x)Tg+(x). (10.9)

Optimization is performed on this function, and updates to the trust-region are based on
how changes in this surrogate merit function compare with changes in the original merit
function, Φ(x, σk).

We further require that the surrogate models mk(x) are fully linear, where the following
definition of a fully linear model is from Conn et al.:

Definition 1. Let a function fhigh(x) : Rn → R that is continuously differentiable and
has a Lipschitz continuous derivative, be given. A set of model functions M = {m : Rn →
R,m ∈ C1} is called a fully linear class of models if the following occur:

There exist positive constants κf , κg and κblg such that for any x ∈ L(x0, σ0) and ∆k ∈
(0,∆max] there exists a model function mk(x) in M with Lipschitz continuous gradient
and corresponding Lipschitz constant bounded by kblg, and such that the error between the
gradient of the model and the gradient of the function satisfies

‖∇fhigh(x)−∇mk(x)‖ ≤ κg∆k ∀x ∈ Bk (10.10)

and the error between the model and the function satisfies

|fhigh(x)−mk(x)| ≤ κf∆2
k ∀x ∈ Bk. (10.11)

94

Such a model mk(x) is called fully linear on Bk [40].

10.2.2 Trust-region Subproblem

At each trust-region iteration a point likely to decrease the merit function is found by solving
one of two minimization problems on the fully linear model for a step sk, on a trust region
of size ∆k:

min
sk∈Rn

mk(xk + sk) (10.12)

s.t. h(xk + sk) = 0

g(xk + sk) ≤ 0

‖sk‖ ≤ ∆k,

or

min
sk∈Rn

Φ̂k(xk + sk, σk) (10.13)

s.t. ‖sk‖ ≤ ∆k.

Ideally the first trust-region subproblem, Eq. 10.12, will be used for optimization; however,
typical nonlinear programming techniques do not allow a user to specify which constraints
must be satisfied, so if some of the constraints are violated it may not be possible to reduce
the value of the merit function and guarantee that the trust-region constraint is satisfied.
Accordingly, when the current iterate is infeasible, the second trust-region subproblem,
Eq. 10.13, must be used. A problem with this subproblem is that the norm of the objective
function Hessian grows without bound due to the penalty increasing to infinity. Therefore,
a fundamental assumption in trust-region algorithms, that the subproblem have a bounded
norm for the Hessian, can become violated. So, the algorithm must be structured in a way
that once the design iterate is “close” to feasible, the subproblem in Eq. 10.12 must be used,
since the Hessian of this subproblem remains bounded.

We require that for whichever trust-region subproblem is used, the subproblem must be
solved such that the 2-norm of the first-order optimality conditions is less than a constant τk.
This requirement is stated as ‖∇xLk‖ ≤ τk, where Lk is the Lagrangian for the trust-region
subproblem used. There are two requirements for τk. First τk < ε, where ε is the desired
termination tolerance for the optimization problem in Eq. 10.1. Second, τk must decrease to
zero as the number of iterations goes to infinity. Accordingly, we define τk = min [βε, c∆k],
with a constant β ∈ (0, 1) to satisfy the overall tolerance criteria, and a constant c ∈ (a, 1)
multiplying ∆k to assure that τk goes to zero. The constant a will be defined as part of a
sufficient decrease condition that forces the size of the trust-region to decrease to zero in
the next section.

10.2.3 Trust-region Updating

Without using the high-fidelity function gradient, the trust-region update scheme must
ensure the size of the trust-region decreases to zero to establish convergence. To do this,
we use a requirement similar to the fraction of Cauchy decrease requirement in an the
unconstrained trust-region formulation, see for example Ref. [40]. We require that the
improvement in our merit function is at least a small constant a, 0 < a ≤ ε, multiplying ∆k,

Φ̂(xk, σk)− Φ̂(xk + sk, σk) ≥ a∆k. (10.14)

The sufficient decrease condition is enforced through the trust region update parameter,
ρk. The update parameter is the ratio of the actual reduction in the merit function to the

95

predicted reduction in the merit function unless the sufficient decrease condition is not met,

ρk =

{
0 Φ̂(xk, σk)− Φ̂(xk + sk, σk) < a∆k
Φ(xk,σk)−Φ(xk+sk,σk)

Φ̂(xk,σk)−Φ̂(xk+sk,σk)
otherwise.

(10.15)

The size of the trust region, ∆k, must now be updated based on the quality of the surrogate
model prediction. The size of the trust region is increased if the surrogate model predicts
the change in the function value well, kept constant if the prediction is fair, and the trust
region is contracted if the model predicts the change poorly. Specifically, we update the
trust region size using

∆k+1 =

min{γ1∆k,∆max} if η1 ≤ ρk ≤ η2,

γ0∆k if ρk ≤ η0,

∆k otherwise,

(10.16)

where 0 < η0 < η1 < 1 < η2, 0 < γ0 < 1, and γ1 > 1. Regardless of whether or not a
sufficient decrease has been found, the trust-region location will be updated if the trial point
has decreased the value of the merit function,

xk+1 =

{
xk + sk if Φ(xk, σk) > Φ(xk + sk, σk)

xk otherwise.
(10.17)

A new surrogate model, mk+1(x), is then built such that it is fully linear on a region Bk+1

having center xk+1 and size ∆k+1. The new fully linear model is constructed using the
procedure of Wild et al. [41] with the calibration technique of March and Willcox [29].

10.2.4 Termination

For termination, we must establish that the first-order KKT conditions,

‖∇fhigh(xk) +A(xk)Tλ(xk)‖ ≤ ε, (10.18)

‖
[
h(xk),g+(xk)

]
‖ ≤ ε (10.19)

are satisfied at xk, where A(xk) is defined to be the Jacobian of all active constraints at
that point,

A(xk) =
[
∇h(xk),∇g+(xk)

]T
. (10.20)

The constraint violation criteria, Eq. 10.19, can be evaluated directly. However, the first-
order condition, Eq. 10.18, cannot be verified directly in the derivative-free case because the
gradient ∇fhigh(xk) is unknown. Therefore, we must use the property of a fully linear model
given in Eq. 10.10, which shows that as ∆k → 0, then ‖∇fhigh(x) − ∇mk(x)‖ → 0. We
know that when the constraint violation termination condition is satisfied the trust-region
problem in Eq. 10.12 can be solved. Therefore if the trust-region constraint is inactive, we
know that

‖∇m(xk) +A(xk)T λ̂(xk)‖ ≤ min [βε, c∆k] , (10.21)

where λ̂ are the appropriate Lagrange multipliers computed using the surrogate model as
opposed to the high-fidelity function. Therefore a ∆k sufficiently small, for example ∆k ≤ ε2
for a small constant ε2 is sufficient to show ‖∇fhigh(x) − ∇mk(x)‖ ≈ 0, ‖λ̂ − λ‖ ≈ 0, and

‖∇fhigh(xk) +A(xk)T λ̂(xk)‖ ≤ ε.

96

10.2.5 Convergence Discussion

To demonstrate convergence of this algorithm we must first show that the trust-region
subproblem that handles the constraints explicitly, Eq. 10.12, can be solved in a finite
number of iterations, secondly that the size of the trust-region must go to zero, and finally
that the algorithm cannot stop before the KKT conditions are satisfied for the original
optimization problem, Eq. 10.1. To demonstrate that the trust-region subproblem handling
the constraints directly can be solved we must show that a feasible point (or point feasible
to within numerical tolerance) must exist within a trust region that will be encountered by
solving the surrogate penalty trust-region subproblem, Eq. 10.13.

We begin by establishing a bound on the constraint violation in terms of the penalty
parameter σk. We use the definition of A+(x) from Conn et al. [55],

A+(x) = A(x)T (A(x)A(x)T)−1, (10.22)

so that least square Lagrange multipliers λ which approximate,

∇fhigh(x) +A(x)Tλ = 0, (10.23)

can be found by the matrix-vector product,

λ(x) = −A+(x)T∇fhigh(x). (10.24)

Given the assumption that minimizing a quadratic penalty function terminates at a point
that is both feasible and regular, Conn et al. shows that if the objective function is used
exactly, then there exists an iteration k after which all A+(xk) will exist, be bounded such
that ‖A+(xk)‖ ≤ κ1 for a positive constant κ1, and converge to A+(x∗) [55]. Conn et
al. then establishes the bound for the constraint violation,

‖
[
h(xk)T g+(xk)T

]
‖ ≤ κ1ωk + ‖λ(x∗)‖+ κ2‖xk − x∗‖

σk
, (10.25)

where κ2 is a positive constant and ‖∇Φ(xk, σk)‖ = ‖∇fhigh(xk)+σkA(xk)T
[
h(xk)T g+(xk)T

]T ‖ ≤
ωk, for a convergence tolerance ωk[55]. Using the surrogate model, for any solution to
Eq. 10.13 where the trust-region is an inactive constraint, we have that, ‖∇Φ̂(xk, σk)‖ =

‖∇mk(xk) +σkA(xk)T
[
h(xk)T g+(xk)T

]T ‖ ≤ τk. Accordingly, when the trust-region con-
straint is inactive, using the definitions of τk and a fully linear model we have that,

‖
[
h(xk)T g+(xk)T

]
‖ ≤ κ1(c+ κg)∆k + ‖λ(x∗)‖+ κ2‖xk − x∗‖

σk
. (10.26)

Now, using the fact that all xk lie within the compact set L(x0, σ0), and that x∗ is a regular
point we can say that there exists a finite constant that bounds the numerator. Therefore by
increasing the penalty parameter σk to infinity we may force the constraint violation to zero.
Moreover, if we examine the constraint violation bound of Eq. 10.26 further, we see that the
bound has the form κ3∆k/σk+κ4/σk, with κ3, κ4 being arbitrary positive constants. It will
be shown shortly that {∆k} converges to zero, therefore we must have that {σk} increases
to infinity strictly faster than {∆k} converges to zero, or that the series σk∆k diverges, in
order to mitigate the term κ4/σk. This criteria is enforced by construction and ensures that
an iteration k exists such that a feasible point will reside in the interior of a trust region of
size ∆k and the subproblem using the constraints explicitly, Eq. 10.12, can be solved.

We now use our sufficient decrease condition, that ρk = 0 unless Φ̂(xk, σk) − Φ̂(xk +
sk, σk) ≥ a∆k, to establish the proposition,

lim
k→+∞

∆k = 0. (10.27)

97

From the sufficient decrease condition, we know that the trust region size decreases unless
the change in the merit function Φ(xk, σk) − Φ(xk + sk, σk) ≥ η0a∆k. Therefore we must
show that the total number of times in which the size of the trust region is kept constant or
increased must be bounded. To demonstrate this, we have assumed a priori that the merit
function is bounded from below and also that the trust-region algorithm remains within a
level-set of the function from where it initiated. Let us now consider the merit function
written in an alternate form,

Φ(xk, σk) = fhigh(xk) +
σk
2
‖
[
h(xk),g+(xk)

]
‖2. (10.28)

From Eq. 10.26 we know that if σk is large enough such that the bound on the constraint
violation is less than unity, then we have established that at each subsequent iteration,

‖
[
h(xk)T g+(xk)T

]
‖2 ≤

[
κ1(c+ κg)∆k + ‖λ∗‖+ κ2‖xk − x∗‖

σk

]2

. (10.29)

Now combining Eqs. 10.28 and 10.29, we can show that at an iteration k an upper bound
in the total remaining change in the merit function is

fhigh(xk)− min
x∈L(x0,σ0)

fhigh(x) +
[κ1(c+ κg)∆k + ‖λ(x∗)‖+ κ2‖xk − x∗‖]2

σk
. (10.30)

Given that that ∆k is always bounded from above by ∆max, ‖λ(x∗)‖ is bounded because x∗

is a regular point, and ‖xk − x∗‖ is bounded because we’ve assumed L(x0, σ0) is a compact
set. Therefore, if the series {1/σk} has a finite sum, then the total improvement in the merit
function is finite. Accordingly, the sum of the series {∆k} must be finite, and ∆k → 0 as
k →∞.

We have currently placed two restrictions on the series {σk}, that it grow faster than
1/∆k and that {1/σk} has a finite sum. A third restriction comes from the fact that we may
not grow σk arbitrarily quickly for two reasons, first the solution xk+1 can move significantly
far from xk such as to cause problems in the trust region framework and secondly, the error
between the surrogate model and high-fidelity function may cause arbitrarily poor estimates
for xk+1. To place a conservative upper bound on the growth rate for the series {σk} we
compare the value of the merit function at a point Φ(xk+p, σk) with its linearized prediction
based on Φ(xk, σk). From the mean value theorem, we know there exists a t ∈ (0, 1) such
that,

Φ(xk + p, σk) = Φ(xk, σk) +∇Φ(xk + tp, σk)Tp. (10.31)

We may also create the linearized prediction of Φ(xk + p, σk), Φ̃(xk + p, σk) as,

Φ̃(xk + p, σk) = Φ(xk, σk) +∇Φ(xk, σk)Tp, (10.32)

which provides us the bound,

‖Φ(xk + p, σk)− Φ̃(xk + p, σk)‖ ≤ ‖∇Φ(xk + tp, σk)−∇Φ(xk, σk)‖‖p‖. (10.33)

If κfg is the Lipschitz constant for ∇fhigh(x), κc is the maximum Lipschitz constant for the
constraints, and κcd is the maximum Lipschitz constant for a constraint gradient we can
show that

‖Φ(xk + p, σk)− Φ̃(xk + p, σk)‖ ≤ (10.34)[
κfg + σk

(
κc‖

[
h(xk)T g+(xk)T

]
‖+ κcd‖A(xk)‖‖p‖+ κcκcd‖p‖2

)]
‖p‖2.

98

We have a similar result for Φ̂(x, σk) by replacing κfg with the sum κfg + κg using the
definition of a fully linear model, and by bounding ‖p‖ by ∆k. Therefore, we may show
the error in a linearized prediction of the surrogate model will go to zero provided that
the series {σk∆2

k} converges to zero. {∆k} will converge R-linearly to zero with constant
γ0, therefore {σk} must grow strictly slower than {1/γ2k

0 }. Accordingly, if the penalty
parameter {σk} grows at a rate exceeding both {k} and {1/∆k} then {∆k} will converge to
zero and an iterate xk will exist for a finite k such that the trust-region problem handling
the constraints explicitly will be feasible. In addition, if {σk} grows slower than {1/∆2

k}
then the error between the predicted values of the merit function and the actual values of
the merit function will converge to zero within the trust region. It also suggests that a good
choice for {σk} has the form σk = max

[
ek/10, 1/∆1.1

k

]
.

To demonstrate that the sequence of iterates generated by this algorithm terminates at
a point x∗ where the KKT conditions must be satisfied to within a tolerance of ε, we will
assume for contradiction that the algorithm terminates at a regular and feasible point x∗ at
which the KKT conditions are not satisfied. We have established for these assumptions that
the algorithm will always terminate by solving the trust-region subproblem in Eq. 10.12. If
the KKT conditions are not satisfied, then as the trust-region size decreases to zero the KKT
conditions will not be satisfied for the surrogate model. Therefore, the possible solutions to
Eq. 10.12 are the current iterate or a point on the trust-region boundary. If the solution to
the trust-region subproblem is the current iterate, then ‖∇mk(xk)‖ ≤ βε because the error
between the surrogate model and high-fidelity function will decrease to zero. This shows
that ‖∇fhigh(x)‖ ≤ ε is a necessary contradiction. If the solution to Eq. 10.12 is always on
the trust-region boundary and the trust-region continues to shrink, then the decrease in the
surrogate model value must be less than a∆k. For any sufficiently small trust-region size,
the fully linear model ensures that the error between the surrogate model and high-fidelity
function decreases to zero. Accordingly, for sufficiently small trust-region size, this shows
that ‖∇fhigh(x)‖ ≤ a, and since a < ε then we have established a contradiction and the
KKT conditions are satisfied to a tolerance of ε.

10.2.6 Implementation

The numerical implementation of the multifidelity optimization algorithm, which does not
compute the gradient of the high-fidelity objective function, is presented as Algorithm 6.
A set of possible parameters that may be used in this algorithm are listed in Table 10.1
in Section 10.4. A key element of this algorithm is the logic to switch from the penalty
function trust-region subproblem, Eq. 10.13, to the subproblem that uses the constraints
explicitly, Eq. 10.12. Handling the constraints exactly will generally lead to faster conver-
gence and fewer function evaluations; however, a feasible solution to this subproblem likely
does not exist at early iterations. If either the constraint violation is sufficiently small,
‖
[
h(xk)T g+(xk)T

]
‖ ≤ ε, or the linearized steps, δh, satisfying h(x) + ∇h(x)T δh = 0 for

all equality and inequality constraints are all smaller than the size of the trust region, then
the subproblem with the explicit constraints is attempted. If the optimization fails, then
the penalty function subproblem is solved.

This method may be accelerated with the use of multiple lower-fidelity models. March
and Willcox [29] suggest a multifidelity filtering technique to combine estimates from mul-
tiple low-fidelity functions into a single maximum likelihood estimate of the high-fidelity
function value. That technique will work unmodified within this multifidelity optimization
framework and will likely improve performance.

99

Algorithm 6: Multifidelity Objective Trust-Region Algorithm
1: Update tolerance, τk = min [βε, c∆k].
2: Choose and solve a trust-region subproblem:

2a: If the maximum linearized step to constraint feasibility for all active constraints is smaller
than the current trust region size, ∆k then solve:

min
sk∈Rn

mk(xk + sk)

s.t. h(xk + sk) = 0

g(xk + sk) ≤ 0

‖sk‖ ≤ ∆k,

to convergence tolerance τk.
2b: If 2a is not used or fails to converge to the required tolerance, solve the trust-region sub-

problem:

min
sk∈Rn

Φ̂k(xk + sk, σk)

s.t. ‖sk‖ ≤ ∆k.

to convergence tolerance τk.
3: If fhigh(xk + sk) has not been evaluated previously, evaluate the high-fidelity function at that point.

3a: Store fhigh(xk + sk) in database.

4: Compute the merit function Φ(xk, σk),Φ(xk+sk, σk) and the surrogate merit function, Φ̂(xk+sk, σk).
5: Compute the ratio of actual improvement to predicted improvement,

ρk =

{
0 Φ̂(xk, σk)− Φ̂(xk + sk, σk) < a∆k
Φ(xk,σk)−Φ(xk+sk,σk)

Φ̂(xk,σk)−Φ̂(xk+sk,σk)
otherwise.

6: Update the trust region size according to ρk,

∆k+1 =

min{γ1∆k,∆max} if η1 ≤ ρk ≤ η2

γ0∆k if ρk ≤ η0,

∆k otherwise,

7: Accept or reject the trial point according to improvement in the merit function,

xk+1 =

{
xk + sk Φ(xk, σk)− Φ(xk + sk, σk) > 0

xk otherwise.

8: Create new model mk+1(x) fully linear on {x : ‖x− xk+1‖ ≤ ∆k+1}.
9: Increment the penalty, σk+1 = max

[
ek+1/10, 1/∆1.1

k+1

]
.

10: Check for convergence, if the trust region constraint is inactive, ‖∇mk+1(xk+1)+A(xk+1)T λ̂‖ ≤ βε,
‖ [h(xk),g+(xk)] ‖ ≤ ε, and ∆k ≤ ε2 the algorithm is converged, otherwise go to step 1.

100

10.3 Multifidelity Objective and Constraint Optimiza-
tion

We now consider a more general constrained optimization problem with a computationally
expensive objective function and computationally expensive constraints. We assume for both
the expensive objective and expensive constraints that the gradients are either unavailable,
unreliable or expensive to estimate. Accordingly, we augment the multifidelity optimization
problem in Eq. 10.1 with the high-fidelity constraint, chigh(x) ≤ 0. In addition, we have
a low-fidelity estimate of this constraint, clow(x), which estimates the same metric as the
high-fidelity constraint, but with unknown error. Therefore, our goal is to find the vector
x ∈ Rn of n design variables that solves the nonlinear constrained optimization problem,

min
x∈Rn

fhigh(x) (10.35)

s.t. h(x) = 0

g(x) ≤ 0

chigh(x) ≤ 0,

where h(x) and g(x) represent vectors of inexpensive equality and inequality constraints
with derivatives that are either known or may be estimated cheaply. The same assumptions
for the expensive objective function formulation are made for the functions presented in
this formulation, including that a quadratic penalty function with the new high-fidelity
constraint is bounded from below within an initial expanded level-set. A point of note is
that multiple high-fidelity constraints can be used if an initial point x0 is given that is
feasible with respect to all constraints; however, due to the effort required to construct
approximations of the multiple high-fidelity constraints, it is recommended that all of the
high-fidelity constraints be combined into a single high-fidelity constraint through, as an
example, a discriminant function [56, 57]. This optimization problem will be solved using
the multifidelity optimization method presented in Section 10.2 to find a feasible point, and
then an interior point formulation is presented in Section 10.3.2 to solve the optimization
problem in Eq. 10.35. Convergence of the algorithm is discussed in Section 10.3.3, and the
numerical implementation is presented in Section 10.3.4.

10.3.1 Finding a Feasible Point

This algorithm begins by finding a point that is feasible with respect to all of the constraints
and then minimizes the high-fidelity objective function subject to all of the constraints in
a manner similar to an interior-point method. In order to find an initial feasible point, the
algorithm presented in Section 10.2 iterates on the optimization problem,

min
x∈Rn

chigh(x) (10.36)

s.t. h(x) = 0

g(x) ≤ 0,

until a point that is feasible with respect to Eq. 10.35 is found. If this optimization problem
is unconstrained then the trust-region algorithm of Conn et al. [40] is used with the multifi-
delity calibration method of March and Willcox [29]. The optimization problem in Eq. 10.36
may violate one of the assumptions of the multifidelity objective function method in that
chigh(x) may not be bounded from below. This issue will be addressed in the numerical
implementation of the method in Section 10.3.4.

101

10.3.2 Interior Point Trust-region Method

To minimize the high-fidelity objective function subject to the constraints, this formulation
again uses the general Bayesian calibration approach in Ref. [35] to create fully linear sur-
rogate models for both the high-fidelity objective function and the high-fidelity constraint.
The surrogate model for the objective function is mk(x) as defined in Eq. 10.2. For the
constraint, the surrogate model, m̄k(x), is defined as

m̄k(x) = clow(x) + ēk(x). (10.37)

From the fact that m̄(x) is a fully linear model for chigh(x), we know

‖∇chigh(x)−∇m̄k(x)‖ ≤ κcg∆k ∀x ∈ Bk (10.38)

|chigh(x)− m̄k(x)| ≤ κcf∆2
k ∀x ∈ Bk. (10.39)

In addition, we require that our procedure to construct fully linear models ensures that at
the current design iterate, the fully linear models have the exact value of the function they
are modeling. Accordingly, we have that

fhigh(xk) = mk(xk) (10.40)

chigh(xk) = m̄k(xk). (10.41)

This is required so that every trust-region subproblem is feasible at the initial point xk.
The trust-region subproblem used is to minimize the surrogate high-fidelity objective

function subject to the easy constraints, the surrogate high-fidelity constraint, and the
trust-region constraint,

min
sk∈Rn

mk(xk + sk) (10.42)

s.t. h(xk + sk) =0

g(xk + sk) ≤0

m̄k(xk + sk) ≤max{chigh(xk),−e∆k}
‖sk‖ ≤∆k.

The trust-region subproblem is solved to the same termination tolerance as the multifidelity
objective function formulation, ‖∇xLk‖ ≤ τk, where Lk is the Lagrangian. The surrogate
model constraint does not have zero as a right hand side to account for the fact the algorithm
is looking for interior points. The right hand side, max{chigh(xk),−e∆k}, where e is a
positive constant greater than c used in the definition of τk, assures that the constraint is
initially feasible and that protection of constraint violation decreases to zero as the number
of iterations increase to infinity.

The center of the trust region is updated if a decrease in the objective function is found
at a feasible point,

xk+1 =

{
xk + sk if fhigh(xk) > fhigh(xk + sk) and chigh(xk + sk) ≤ 0

xk otherwise.
(10.43)

The trust-region size update must ensure that the predictions of the surrogate models are
accurate and that the size of the trust region goes to zero in the limit as the number of
iterations goes to infinity. Therefore, we again impose a sufficient decrease condition, that
the change in the objective function is at least a constant, a, multiplying ∆k,

∆k+1 =

{
min{γ1∆k,∆max} if fhigh(xk + sk)− fhigh(xk) ≥ a∆k and chigh(xk + sk) ≤ 0

γ0∆k otherwise.

(10.44)

102

New surrogate models, mk+1(x) and m̄k+1(x), are then built such that they are fully linear
on a region Bk+1 having center xk+1 and size ∆k+1. The new fully linear models are
constructed using the procedure of Wild et al. [41] with the calibration technique of March
and Willcox [29].

Convergence of the algorithm is verified by assuring the KKT conditions are satisfied on
the surrogate models and that the trust-region radius is sufficiently small to establish that
the error between the surrogate model gradients and the high-fidelity function gradients is
sufficiently small.

10.3.3 Multifidelity Objective and Constraints Convergence Dis-
cussion

To demonstrate convergence of this algorithm we must first show that the trust region
size goes to zero and second that the algorithm cannot stop before the KKT conditions
are satisfied for the high-fidelity problem. To establish that the trust region size goes to
zero, we use the assumption that a quadratic penalty function including all of constraints is
bounded from below. This means that the high fidelity objective function must be bounded
from below within the feasible region of Eq. 10.36. We therefore know that from the first
feasible iterate found, the difference between the high-fidelity function at that point and the
value of the high-fidelity function at an optimum of this problem is finite. Since we have
required that the decrease in the objective function is at least a constant a multiplying ∆k

this means the sum of the series {∆k} is bounded, and accordingly

lim
k→+∞

∆k = 0. (10.45)

We now establish that this algorithm must converge to a limit point, x∗, where the KKT
conditions,

‖∇fhigh(xk) +A(xk)Tλ(xk) +∇chigh(xk)λc‖ ≤ ε, (10.46)

‖
[
h(xk),g+(xk)

]
‖ ≤ ε, (10.47)

chigh(xk) ≤ 0, (10.48)

with λc the Lagrange multiplier for the high-fidelity constraint, are satisfied. The constraint
violation criteria, Eq. 10.47 and Eq. 10.48, are established by construction and the use of
Algorithm 6. To establish the first-order condition, Eq. 10.46, we must use the property
of a fully linear model given in Eqs. 10.10 and 10.38, which shows that as ∆k → 0, then
‖∇fhigh(x)−∇mk(x)‖ → 0 and a similar conclusion for the high-fidelity constraint. When
the trust-region subproblem given in Eq. 10.42 has been solved and the trust-region con-
straint is inactive, we know that

‖∇m(xk) +A(xk)T λ̂(xk) +∇m̄(xk)λm̄‖ ≤ min [βε, c∆k] , (10.49)

where λ̂ are the appropriate Lagrange multipliers computed using the surrogate model as
opposed to the high-fidelity function (see Eq. 10.24) and λm̄ is a similar Lagrange multiplier
for the surrogate model of the high-fidelity constraint. Thus we have established that as
∆k → 0, then ‖∇fhigh(x) − ∇mk(x)‖ → 0, ‖∇chigh(x) − ∇m̄k(x)‖ → 0, ‖λ̂ − λ‖ →
0, ‖λc − λm̄‖ → 0, and ‖∇fhigh(xk) + A(xk)T λ̂(xk) + ∇chigh(xk)λm̄‖ ≤ ε. In addition,
if no constraints are active we have only established convergence to a point such that,
‖∇fhigh(x)‖ ≤ a, but this also satisfies the first-order KKT conditions. The other way in
which this algorithm might fail, is that the sequence of iterates could always have chigh(xk+
sk) > 0, in which case the trust region will shrink to zero without making any progress.
However, a necessary contradiction is that the error in the value of a fully linear model

103

decreases with the square of the trust region size. The fact that a margin is kept with respect
to the high-fidelity constraint violation and that the error in the value of the constraint value
prediction decays at a faster rate than the error in the first-order KKT condition shows the
prediction of the constraint surrogate model value will not force the size of the trust-region
to zero before the KKT conditions are satisfied.

10.3.4 Multifidelity Objective and Constraint Implementation

The numerical implementation of this multifidelity optimization algorithm is presented as
Algorithm 7. A set of possible parameters that may be used in this algorithm are listed
in Table 10.1 in Section 10.4. An important implementation issue with this algorithm is
finding the initial feasible point. Algorithm 6 is used to minimize the high-fidelity constraint
value subject to the constraints with available derivatives in order to find a point that is
feasible. However, Algorithm 6 uses a quadratic penalty function to handle the constraints
with available derivatives if the constraints are violated. This requires that the objective
function is bounded from below to assure the penalty method is effective. Accordingly, a
more general problem than Eq. 10.36 to find an initial feasible point is to use,

min
x∈Rn

max{chigh(x) + d, 0}2 (10.50)

s.t. h(x) = 0

g(x) ≤ 0.

The maximization in the objective prevents the need for the high-fidelity constraint to be
bounded from below. The constant d is used to account for the fact that the surrogate model
will have some error in its prediction of chigh(x), so looking for a slightly negative value of
the constraint may save iterations as compared to seeking a value that is exactly zero. For
example, if d is larger than the κcf in Eq. 10.39 and the value of the constraint surrogate
model is more negative than the size of the trust region squared, then we are assured the
actual value of the high-fidelity constraint is negative.

A similar issue is in the solution of Eq. 10.42, where a slightly negative value of the surro-
gate constraint is desired. If this subproblem is solved with an interior point algorithm this
should be satisfied automatically; however, if a sequential quadratic programming method is
used the constraint violation will have a numerical tolerance that is either slightly negative
or slightly positive. It may be necessary to bias the subproblem to look for a value of the
constraint that is more negative than the optimizer constraint violation tolerance to assure
the solution is an interior point.

A final implementation note is that if a high-fidelity constraint has numerical noise or
steep gradients it may be wise to shrink the trust region at a slower rate, increasing γ0. This
will help to ensure that the trust-region does not decrease to zero at a suboptimal point.

10.4 Supersonic Airfoil Design Test Problem

This section presents results of the two multifidelity optimization algorithms on the super-
sonic airfoil design problem presented in Section 2.1. The airfoil design problem has 11
parameters, the angle of attack, 5 spline points on the upper surface and 5 spline points on
the lower surface. The airfoils are constrained such that the minimum thickness-to-chord
ratio is 0.05 and that the thickness everywhere on the airfoil must be positive. In addition,
there are lower and upper bounds for all spline points. Note, that Cart3D has a finite
convergence tolerance so there is some numerical noise in the lift and drag predictions. In
addition, because random airfoils are used as initial conditions, Cart3D may fail to converge,
in which case the results of the panel method are used.

104

Algorithm 7: Multifidelity Objective and Constraint Trust-Region Algorithm
0: Find a feasible design vector using Algorithm 6 to iterate on:

min
x∈Rn

max{chigh(x) + d, 0}2

s.t. h(x) = 0

g(x) ≤ 0.

1: Update tolerance, τk = min [βε, c∆k].
2: Solve the trust-region subproblem:

min
sk∈Rn

mk(xk+ sk)

s.t. h(xk + sk) = 0

g(xk + sk) ≤ 0

m̄k(xk + sk) ≤ min{chigh(xk),−e∆k}
‖sk‖ ≤ ∆k.

3: If fhigh(xk + sk) or chigh(xk + sk) have not been evaluated previously, evaluate the high-fidelity
functions at that point.

3a: Store fhigh(xk + sk) and chigh(xk + sk) in a database.
4: Accept or reject the trial point according to:

xk+1 =

{
xk + sk if fhigh(xk) > fhigh(xk + sk) and chigh(xk + sk) ≤ 0

xk otherwise.

5: Update the trust region size according to:

∆k+1 =

{
min{γ1∆k,∆max} if fhigh(xk + sk)− fhigh(xk) ≥ a∆k and chigh(xk + sk) ≤ 0

γ0∆k otherwise.

6: Create new models mk+1(x) and m̄k+1(x) fully linear on {x : ‖x− xk+1‖ ≤ ∆k+1}.
7: Check for convergence, if the trust region constraint is inactive,
‖∇m(xk) + A(xk)T λ̂(xk) +∇m̄(xk)λm̄‖ ≤ βε, and ∆k ≤ ε2, the algorithm is converged, otherwise
go to step 1.

105

Constant Description Value
a Sufficient decrease constant 1× 10−4

β Overall Convergence tolerance multiplier 1× 10−2

c Convergence tolerance based on trust region size 1× 10−2

d Artificial lower bound for constraint value 1
e Additional conservatism for constraint violation 0.1
ε, ε2 Termination Tolerance 5× 10−4

γ0 Trust region contraction ratio 0.5
γ1 Trust region expansion ratio 2
η0 Trust region contraction criterion 0.25
η1, η2 Trust region expansion criterion 0.75, 2.0
∆0 Initial trust region radius 1
∆max Maximum trust region size 20
σk Penalty parameter max

[
ek/10, 1/∆1.1

k

]
δx Finite difference step 1× 10−5

Table 10.1. List of constants used in the algorithm. All parameters used in constructing
the radial basis function error model are the same is in Chapter 9.

The following sections present results for three optimization examples each using this
airfoil problem to demonstrate the capabilities of the optimization algorithms presented. In
the first example, Section 10.4.1, the airfoil drag will be minimized using the constrained
multifidelity objective function formulation presented in Section 10.2 with only the simple
geometric constraints. In the second example, Section 10.4.2, the airfoil lift to drag ratio
will be maximized subject to a constraint that the drag coefficient is less than 0.01, where
the constraint will be handled with the multifidelity framework presented in Section 10.3.
In the final example, Section 10.4.3, the airfoil lift to drag ratio will be maximized subject
to the constrained drag coefficient and both the objective function and the constraints are
handled with the multifidelity framework presented in Section 10.3. The initial airfoils for
all problems will be randomly generated and likely will not satisfy the constraints.

The three airfoil problems will be solved with four optimization algorithms: Sequential
Quadratic Programming[58] (SQP), a first-order consistent multifidelity trust-region algo-
rithm that uses a sequential quadratic programming formulation and an additive correction[32],
the high-fidelity-gradient-free approach presented in this chapter using a Gaussian radial
basis function and a fixed spatial correlation parameter, exp−r2/ξ2 with ξ = 2, and the
approach presented in this chapter using a maximum likelihood estimate to find an im-
proved correlation length, ξ = ξ∗, for the Gaussian radial basis function[29]. The Gaussian
correlation functions used in these results are all isotropic, meaning they are the same in all
directions. An anisotropic correlation function will likely speed convergence of this algorithm
and reduce sensitivity to the problem scaling. The parameters used for the optimization
algorithm are presented in Table 10.1.

10.4.1 Multifidelity Objective Function Results

This section presents optimization results in terms of the number of function evaluations
required to find the minimum drag for a supersonic airfoil at Mach 1.5 with only geometric
constraints on the design. Two cases are tested, the first uses the shock-expansion method
as the high-fidelity function and the panel method as the low-fidelity function, the second
uses Cart3D as the high-fidelity function and the panel method as the low-fidelity function.
These problems are solved using the multifidelity optimization algorithm for a computa-
tionally expensive objective function and constraints with available derivatives presented in

106

High-Fidelity Low-Fidelity SQP First-Order TR RBF, ξ = 2 RBF, ξ = ξ∗

Shock-Expansion Panel Method 314 (-) 110 (-65%) 73 (-77%) 68 (-78%)
Cart3D Panel Method 359∗(-) 109 (-70%) 80 (-78%) 79 (-78%)

Table 10.2. The average number of high-fidelity function evaluations to minimize the drag
of a supersonic airfoil with only geometric constraints. The asterisk for the Cart3D results
means a significant fraction of the optimizations failed and the average is taken over fewer
samples. The numbers in parentheses indicate the percentage reduction in high-fidelity
function evaluations relative to SQP.

High-Fidelity Low-Fidelity SQP First-Order TR RBF, ξ = 2 RBF, ξ = ξ∗

Shock-Expansion Panel Method 827 (-) 104 (-87%) 104 (-87%) 115 (-86%)
Cart3D Panel Method 909∗(-) 100 (-89%) 103 (-89%) 105 (-88%)

Table 10.3. The average number of high-fidelity constraint evaluations required to maximize
the lift to drag ratio of a supersonic airfoil estimated with a panel method subject to a
multifidelity constraint. The asterisk for the Cart3D results means a significant fraction
of the optimizations failed and the average is taken over fewer samples. The numbers in
parentheses indicate the percentage reduction in high-fidelity function evaluations relative
to SQP.

Section 10.2. The average number of high-fidelity function evaluations required to find a
locally optimal design are presented in Table 10.2, and show that this approach uses ap-
proximately 78% fewer high-fidelity function evaluations than SQP and approximately 30%
fewer function evaluations than the first order consistent trust-region method using finite
difference gradient estimates.

10.4.2 Multifidelity Constraint Results

This section presents optimization results in terms of the number of function evaluations
required to find the maximum lift to drag ratio for a supersonic airfoil at Mach 1.5 subject to
both geometric constraints and the requirement that the drag coefficient is less than 0.01.
The lift to drag ratio is computed with the panel method; however, the drag coefficient
constraint is handled using the multifidelity technique presented in Section 10.3. Two cases
are examined, in the first the shock-expansion method is the high-fidelity constraint and the
panel method is the low-fidelity constraint, in the second case Cart3D is the high-fidelity
constraint and the panel method is the low-fidelity constraint. Table 10.3 presents the
average number of high-fidelity constraint evaluations required to find the optimal design
using SQP, a first-order consistent trust-region algorithm and the techniques developed in
this chapter. A significant decrease in the number of high-fidelity function evaluations is
observed when compared with SQP; however, performance is almost the same as the first-
order consistent trust-region algorithm.

10.4.3 Multifidelity Objective Function and Constraint Results

This section presents optimization results in terms of the number of function evaluations
required to find the maximum lift to drag ratio for a supersonic airfoil at Mach 1.5 subject
to geometric constraints and the requirement that the drag coefficient is less than 0.01.
In this case, both the lift to drag ratio and the drag coefficient constraint are handled
using the multifidelity technique presented in Section 10.3. In the first case, the shock-
expansion method is the high-fidelity analysis used to estimate both metrics of interest
and the panel method is the low-fidelity analysis, in the second case Cart3D is the high-

107

High-Fidelity Low-Fidelity SQP First-Order TR RBF, ξ = 2 RBF, ξ = ξ∗

Objective: Shock-Exp. Panel Method 773 (-) 132 (-83%) 93 (-88%) 90 (-88%)
Constraint: Shock-Exp. Panel Method 773 (-) 132 (-83%) 97 (-87%) 96 (-88%)

High-Fidelity Low-Fidelity SQP First-Order TR RBF, ξ = 2 RBF, ξ = ξ∗

Objective: Cart3D Panel Method 1168∗(-) 97 (-92%) 104 (-91%) 112 (-90%)
Constraint: Cart3D Panel Method 2335∗(-) 97 (-96%) 115 (-95%) 128 (-94%)

Table 10.4. The average number of high-fidelity objective function and high-fidelity con-
straint evaluations to optimize a supersonic airfoil for a maximum lift to drag ratio subject
to a maximum drag constraint. The asterisk for the Cart3D results means a significant frac-
tion of the optimizations failed and the average is taken over fewer samples. The numbers in
parentheses indicate the percentage reduction in high-fidelity function evaluations relative
to SQP.

fidelity analysis and the panel method is the low-fidelity analysis. Table 10.4 presents the
number of function evaluations required to find the optimal design using SQP, a first-order
consistent trust-region algorithm and the techniques developed in this chapter. Again a
significant reduction in the number of high-fidelity function evaluations, both in terms of
the constraint and the objective, are observed compared with SQP, and a similar number of
high-fidelity function evaluations are observed when compared with the first-order consistent
trust region approach using finite differences.

10.5 Summary

This chapter has presented two algorithms for multifidelity constrained optimization of com-
putationally expensive functions when their derivatives are not available. The first method
minimizes a high-fidelity objective function without using its derivative while satisfying con-
straints with available derivatives. The second method minimizes a high-fidelity objective
without using its derivative while satisfying both constraints with available derivatives and
an additional high-fidelity constraint without an available derivative. Both of these methods
support multiple lower-fidelity models through the use of the multifidelity filtering technique
presented in Chapter 9 without any modifications to the methods. The performance of the
methods show a significant reduction in the number of high-fidelity function evaluations
required to optimize a computationally expensive function when an appropriate low-fidelity
function is used compared to a single-fidelity sequential quadratic programming formula-
tion. In addition, this chapter demonstrated that these methods performed similarly to a
first-order consistent trust-region algorithm with gradients estimated using finite-differences.
This shows that these methods provide significant opportunity for optimization of compu-
tationally expensive functions without available gradients.

The behavior of the algorithms presented are slightly atypical of nonlinear programming
methods. Although the algorithms guarantee convergence to a local minimum of the high-
fidelity problem, the local minimum they converge to may not be the one in the immediate
vicinity of the initial iterate. For example, the initial model may completely ignore the
fact that the initial iterate is on a local minimum and move the iterate to a different point
with a lower function value in another region of the design space. In addition, provided the
trust-region subproblems can be solved, this algorithm should still be able to converge to
high-fidelity optima at which the KKT conditions are not satisfied. This situation occurs
when constraint qualification conditions are not satisfied and can cause robustness issues
for nonlinear programming methods. In the algorithms presented, the design vector will
approach a local minimum and the sufficient decrease test for the change in the objective
function value will fail. This causes the size of the trust region to decay to zero around the

108

local minimum even though the KKT conditions are not satisfied.
In the case of hard constraints, or when the objective function fails to exist if the con-

straints are violated, it is still be possible to use the algorithm that approximates both a
high-fidelity objective and constraint. After the initial feasible point is found, no design
iterate will be accepted if the high-fidelity constraint is violated. Therefore the overall flow
of the algorithm is unchanged. What must be changed is the technique to build fully linear
models. In order to build a fully linear model, the objective function must be evaluated at a
set of n+1 points that span Rn. This requirement prohibits equality constraints and means
that strict linear independent constraint qualification must be satisfied everywhere in the
design space (preventing two inequality constraints from mimicking an equality constraint).
If these two additional conditions hold then it will be possible to construct fully linear
models everywhere in the feasible design space and use this algorithm to optimize compu-
tationally expensive functions with hard constraints. Therefore this chapter has presented
a provably convergent multifidelity optimization algorithm that does not require estimating
high-fidelity gradients, enables the use of multiple low-fidelity models, enables optimization
of functions with hard constraints, exhibits robustness to optima at which the KKT condi-
tions are not satisfied, and performs similarly in terms of the number of function evaluations
to finite difference based multifidelity optimization methods.

109

Appendix A ModelCenter Multifidelity
Optimization Installation Instructions
The Optimizer package consists of three major packages: the Matlab optimization code
(methods presented in Chapters 9 and 10, the Matlab/Java API function (located in the
Matlab Optimization directory as “ModelCenterWrapper.m”), and the example Model-
Center project (Rosenbrock.pxc). The example problem can be run from the “Exam-
ple Optimization.m” Matlab file (Contained in the Matlab Opimization Directory). Before
anything will run, you must make sure:

1. The ModelCenter model must be created and saved. The ModelCenter model can
be created using any component supported by ModelCenter (the Rosenbrock example
creates the multi-fidelity function in VBScript).

2. The file “ModelCenterWrapper.m”contains machine specific paths that may need to
be modified.

• The line:

javaaddpath(’c:\Program Files\Phoenix Integration\ModelCenter 9.0’);

will need to be modified such that it points to the correct ModelCenter installation
directory.

• The line:

h.invoke(’loadModel’,’c:\Users\Cory\Desktop\ACDL UROP\Rosenbrock.pxc’);

will need to be modified such that it points to the correct ModelCenter model
file.

• The name of the ModelCenter component will also need to be set in three lines,

h.invoke(’setValue’,[’Model.Rosenbrock.x’,numString], x(i));

h.invoke(’setValue’,’Model.Rosenbrock.fidelity’,fidelity);

f = h.invoke(’getValue’,’Model.Rosenbrock.fnEval’);

in this example, the component name that will need to be altered to run a different
model is “Rosenbrock”.

3. The ModelCenter variables must have specific names (unless the “ModelCenterWrap-
per.m” is modified accordingly). The design variables should be named “x0”,“x1”,...,“x(n-
1)”, The fidelity level must be named “fidelity”. The function value to be passed back
to Matlab must be named “fnEval”. The example model should provide a nice tem-
plate.

Once these updates have been made, the optimizer should now correctly run from the “Ex-
ample Optimization.m” Matlab file. This file takes the “ModelCenterWrapper.m” function
as a function handle (this is similar to the method technique of the Matlab optimization
toolbox routines); the “ModelCenterWrapper.m” function takes in as arguments, (1) an
array of the design variables, (2) a fidelity level (in the example, 1 is used as low-fidelity

110

and 2 as high-fidelity), and (3) an array of parameters (this can be null). This function
then passes these arguments to the ModelCenter model, runs the ModelCenter model, and
returns the ModelCenter function evaluation.

• A readme file is in the Matlab Opimization Directory that describes each of the func-
tions used in the unconstrained optimization.

• The two main files are (two-fidelity) “Example Optimization.m”, and (three-fidelity)
“Example Multi.m”.

111

Bibliography
1. Donald R. Jones. A taxonomy of global optimization methods based on response sur-

faces. Journal of Global Optimization, 21:345–383, 2001.

2. Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimiza-
tion of expensive black-box functions. Journal of Global Optimization, 13:455–492, 1998.

3. C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning. The
MIT Press, 2006.

4. S. Lophaven, H. Nielsen, and J. Sondergaard. Aspects of the Matlab toolbox DACE.
Technical Report IMM-REP-2002-13, Technical University of Denmark, August 2002.

5. M. J. Aftosmis. Solution adaptive cartesian grid methods for aerodynamic flows with
complex geometries. In 28th Computational Fluid Dynamics Lecture Series, von Karman
Institute for Fluid Dynamics, Rhode-Saint-Genése, Belgium, March 3-7 1997. Lecture
Series 1997-02.

6. M. Nemec, M. Aftosmis, and M. Wintzer. Adjoint-based adaptive mesh refinement for
complex geometries. In 46th AIAA Aerospace Sciences Meeting, Reno, NV, January
7-10 2008. AIAA 2008-0725.

7. A. Magnus and M. Epton. Panair: A computer program for predicting subsonic or
supersonic linear potential ows about arbitrary congurations using a higher order panel
method. Technical report, NASA, August 1980. Tech. Rep. CR-3251.

8. H. Akima. A method of univariate interpolation that has the accuracy of a third-
degree polynomial. Association for Computing Machinery Transactions on Mathmatical
Software, 17(3):341–366, 1991.

9. H. Ashley and M. Landahl. Aerodynamics of Wings and Bodies. Addison-Wesley Pub-
lishing Company, Inc., Reading, Massachusetts, 1965.

10. R. J. Mack and N. S. Kuhn. Determination of extrapolation distance with pressure
signatures measured at two to twenty span lengths from two low-boom models. Technical
Report TM-2006-214524, NASA, 2006.

11. PASS SE, Program for Aircraft Synthesis Studies-Supersonic Edition. Desktop Aero-
nautics, Inc., Palo Alto CA, 2002.

12. I. Kroo. An interactive system for aircraft design and optimization. In Proceedings of
the AIAA Aerospace Design Conference, February 1992. AIAA Paper 1992-1192.

13. Li W., Shields E., and Geiselhart K. A mixed-fidelity approach for design of low-boom
supersonic aircraft. In 48th AIAA Aerospace Sciences Meeting and Exhibit, Orlando,
FL, January 2010. AIAA 2010-0845.

14. J. Rodriguez, J. Renaud, and L. Watson. Convergence of trust region augmented la-
grangian methods using variable fidelity approximation data. Structural Optimization,
15:121–156, 1998.

15. R. P. Brent. Algorithms for Minimization Without Derivatives, chapter 3-4. Prentic-
Hall, 1973.

112

16. J. A. Nelder and R. Mead. A simplex method for function minimization. Computer
Journal, 7:308–313, 1965.

17. R. T. Ng and J. Han. Efficient and effective clustering methods for spatial data mining.
In 20th International Conference on Very Large Data Base Conference, Santiago, Chile,
1994.

18. D. Rajnarayan, A. Haas, and I. Kroo. A multifidelity gradient-free optimization method
and application to aerodynamic design. In Proceedings of the 12th AIAA/ISSMO Multi-
disciplinary Analysis and Optimization Conference, Victoria, British Columbia Canada,
September 2008. AIAA Paper 2008-6020.

19. M. Eldred and D. M. Dunlavy. Formulations for surrogate-based optimization with data-
fit, multifidelity and reduced-order models. In Proceedings of the 11th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, 2006. AIAA Paper 2006-7117.

20. Seongim Choi, Juan J. Alonso, Ilan Kroo, and Mathias Wintzer. Multi-fidelity de-
sign optimization of low-boom supersonic business multi-fidelity design optimization of
low-boom supersonic business jets. In Proceedings of the 10th AIAA/ISSMO Multidis-
ciplinary Analysis and Optimization Conference, 2004. AIAA Paper 2004-4371.

21. D. Rajnarayan, D. H. Wolpert, and I. Kroo. Optimization under uncertainty using prob-
ability collectives. In Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis
and Optimization Conference,, Portsmouth, VA, 2006. AIAA Paper 2006-7033.

22. D. Rajnarayan, I. Kroo, and David H. Wolpert. Probability collectives for optimization
of computer simulations. In Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference, Honolulu, HI, 2007. AIAA
Paper 2007-1975.

23. L. C. W. Dixon and G. P. Szegö. The global optimisation problem: An introduction.
Towards Global Optimization, 2:1–15, 1978.

24. Matthias Schonlau, William J. Welch, and Donald R. Jones. Global versus local search
in constrained optimization of global versus local search in constrained optimization of
computer models. Technical Report 83, National Institute of Statistical Sciences, March
1998.

25. J. Mockus, V. Tiesis, and A. Z̆ilinskas. The application of bayesian methods for seeking
the extremum. Towards Global Optimization, 2:117–129, 1978.

26. D. D Cox and S. John. SDO: A statistical method for global optimization. In N. Alexan-
drov and M.Y. Hussaini, editors, Multidisciplinary Optimization: State of the Art, pages
315–329. SIAM Publications, 1997.

27. J. C. Bezdek, R. Ehrlich, and W. Full. Fcm: The fuzzy c-means clustering algorithm.
Computers and Geosciences, 10(2-3):191–203, 1984.

28. Mathias Wintzer and Peter Sturdza. Conceptual design of conventional and oblique wing
configurations for small supersonic aircraft. In Proceedings of the 44th AIAA Aerospace
Sciences Meeting and Exhibit, January 2006. AIAA Paper 2006-930.

29. A. March and K. Willcox. A provably convergent multifidelity optimization algorithm
not requiring high-fidelity gradients. 6th AIAA Multidisciplinary Design Optimization
Specialist Conference, Orlando, FL, 2010. AIAA 2010-2912.

113

30. N.M. Alexandrov, J. Dennis, R.M. Lewis, and V. Torczon. A trust region framework
for managing the use of approximation models in optimization. Technical Report CR-
201745, NASA, October 1997.

31. N.M. Alexandrov, R.M. Lewis, C. Gumbert, L. Green, and P. Newman. Optimization
with variable-fidelity models applied to wing design. Technical Report CR-209826,
NASA, December 1999.

32. N.M. Alexandrov, R.M. Lewis, C. Gumbert, L. Green, and P. Newman. Approxima-
tion and model management in aerodynamic optimization with variable-fidelity models.
AIAA Journal, 38(6):1093–1101, November-December 2001.

33. J. Castro, G. Gray, A. Giunta, and P. Hough. Developing a computationally efficient
dynamic multilevel hybrid optimization scheme using multifidelity model interactions.
Technical Report SAND2005-7498, Sandia, November 2005.

34. M. Kennedy and A. O’Hagan. Bayesian calibration of computer models. Journal of the
Royal Statistical Society, 63(2):425–464, 2001.

35. M. Kennedy and A. O’Hagan. Predicting the output from a complex computer code
when fast approximations are available. Biometrika, 87(1):1–13, 2000.

36. S. Leary, A. Bhaskar, and A. Keane. A knowledge-based approach to response surface
modelling in multifidelity optimization. Journal of Global Optimization, 26:297–319,
2003.

37. R.G. Carter. On the global convergence of trust region algorithms using inexact gradient
information. SIAM Journal of Numerical Analysis, 28(1):251–265, 1991.

38. R. Oeuvray. Trust-Region Methods Based on Radial Basis Functions with Application
to Biomedical Imaging. PhD thesis, Ecole Polytechnique Federale de Lausanne, 2005.

39. A.R. Conn, K. Scheinberg, and L. Vicente. Geometry of interpolation sets in derivative
free optimization. Mathematical Programming, 111(1-2):141–172, 2008.

40. A.R. Conn, K. Scheinberg, and L. Vicente. Global convergence of general derivative-
free trust-region algorithms to first- and second-order critical points. SIAM Journal of
Optimization, 20(1):387–415, 2009.

41. S.M. Wild, R.G. Regis, and C.A. Shoemaker. ORBIT: Optimization by radial basis
function interpolation in trust-regions. SIAM Journal of Scientific Computing, 30(6):
3197–3219, 2008.

42. S.M. Wild. Derivative-Free Optimization Algorithms for Computationally Expensive
Functions. PhD thesis, Cornell University, January 2009.

43. S.M. Wild and C. A. Shoemaker. Global convergence of radial basis function trust-
region algorithms. Technical Report Preprint ANL/MCS-P1580-0209, Mathematics and
Computer Science Division, February 2009.

44. A. March and K. Willcox. Convergent multifidelity optimization using bayesian model
calibration. 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference,
Fort Worth, TX, 2010.

45. A. J. Booker, J. E. Dennis, P. D. Frank, D. B. Serafini, V. Torczon, and M. W. Trosset.
A rigorous framework for optimization of expensive functions by surrogates. Structural
Optimization, 17(1):1–13, February 1999.

114

46. M. J. Sasena, P. Papalambros, and P. Goovaerts. Exploration of metamodeling sampling
criteria for constrained global optimization. Engineering Optimization, 34(3):263–278,
2002.

47. T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by direct search: New per-
spectives on classical and modern methods. SIAM Review, 45(3):385–482, 2003.

48. T. G. Kolda, R. M. Lewis, and V. Torczon. A generating set direct search augmented
lagrangian algorithm for optimization with a combination of general and linear con-
straints. Technical Report SAND2006-5315, Sandia, August 2006.

49. R. M. Lewis and V. Torczon. A direct search approach to nonlinear programming
problems using an augmented lagrangian method with explicit treatment of linear con-
straints. Technical Report WM-CS-2010-01, College of William and Mary Department
of Computer Science, January 2010.

50. G. Liuzzi and S. Lucidi. A derivative-free algorithm for inequality constrained nonlinear
programming via smoothing of an l∞ penalty function. SIAM Journal of Optimization,
20(1):1–29, 2009.

51. C. Audet and J. E. Dennis. A pattern search filter method for nonlinear programming
without derivatives. SIAM Journal of Optimization, 14(4):980–1010, 2004.

52. A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free Op-
timization. MPS/SIAM Series on Optimization. Society for Industrial and Applied
Mathematics, Philadelphia, PA, 2009.

53. J. Nocedal and S.J. Wright. Numerical Optimization, 2nd ed. Springer, 2006.

54. D. P. Bertsekas. Nonlinear Programming, 2nd ed. Athena Scientific, 1999.

55. A.R. Conn, N.I. Gould, and P.L. Toint. Trust-Region Methods. MPS/SIAM Series on
Optimization. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2000.

56. V.L. Rvachev. On the analytical description of some geometric objects. Technical
Report 4, Reports of Ukrainian Academy of Sciences, 1963. (in Russian).

57. P. Y. Papalambros and D. J. Wilde. Principles of Optimal Design 2nd ed. Cambridge
University Press, 2000.

58. MathWorks, Inc. Constrained nonlinear optimization. Optimization Toolbox User’s
Guide, V. 5, 2010.

115

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

2. REPORT TYPE

Contractor Report
 4. TITLE AND SUBTITLE

Multifidelity Analysis and Optimization for Supersonic Design
5a. CONTRACT NUMBER

NNL07AA33C

 6. AUTHOR(S)

Kroo, Ilan; Willcox, Karen; March, Andrew; Haas, Alex; Rajnarayan, Dev;
Kays, Cory

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-2199

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES

Langley Technical Monitor: Natalia Alexandrov

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 64
Availability: NASA CASI (443) 757-5802

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT

Supersonic aircraft design is a computationally expensive optimization problem and multifidelity approaches over a significant
opportunity to reduce design time and computational cost. This report presents tools developed to improve supersonic aircraft
design capabilities including: aerodynamic tools for supersonic aircraft configurations; a systematic way to manage model
uncertainty; and multifidelity model management concepts that incorporate uncertainty. The aerodynamic analysis tools
developed are appropriate for use in a mutltifidelity optimization framework, and include four analysis routines to estimate the
lift and drag of a supersonic airfoil, a multifidelity supersonic drag code that estimates the drag of aircraft configurations with
three different methods: an area rule method, a panel method, and an Euler solver. In addition, five multifidelity optimization
methods are developed, which include local and global methods as well as gradient-based and gradient-free techniques.

15. SUBJECT TERMS

Optimization; Multifidelity; Derivative-free; Multidisciplinary; Supersonic

18. NUMBER
 OF
 PAGES

119

19b. TELEPHONE NUMBER (Include area code)

(443) 757-5802

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

984754.02.07.07.12.04

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/CR-2010-216874

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

12 - 201001-

