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“Jet Measurements for Development of Jet Noise Prediction Tools” 
James Bridges, NASA Glenn Research Center 
 
The primary focus of my presentation is the development of the jet noise prediction code JeNo 
with most examples coming from the experimental work that drove the theoretical development 
and validation. JeNo is a statistical jet noise prediction code, based upon the Lilley acoustic 
analogy. Our approach uses time-average 2-D or 3-D mean and turbulent statistics of the flow as 
input. The output is source distributions and spectral directivity. 
 
NASA has been investing in development of statistical jet noise prediction tools because these 
seem to fit the middle ground that allows enough flexibility and fidelity for jet noise source 
diagnostics while having reasonable computational requirements. These tools rely on Reynolds-
averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) solutions as input for 
computing far-field spectral directivity using an acoustic analogy. There are many ways acoustic 
analogies can be created, each with a series of assumptions and models, many often taken 
unknowingly. And the resulting prediction can be easily reverse-engineered by altering the 
models contained within. However, only an approach which is mathematically sound, with 
assumptions validated and modeled quantities checked against direct measurement will give 
consistently correct answers. Many quantities are modeled in acoustic analogies precisely because 
they have been impossible to measure or calculate, making this requirement a difficult task. 
 
The NASA team has spent considerable effort identifying all the assumptions and models used to 
take the Navier-Stokes equations to the point of a statistical calculation via an acoustic analogy 
very similar to that proposed by Lilley. Assumptions have been identified and experiments have 
been developed to test these assumptions. In some cases this has resulted in assumptions being 
changed. Beginning with the CFD used as input to the acoustic analogy, models for turbulence 
closure used in RANS CFD codes have been explored and compared against measurements of 
mean and rms velocity statistics over a range of jet speeds and temperatures. Models for flow 
parameters used in the acoustic analogy, most notably the space-time correlations of velocity, 
have been compared against direct measurements, and modified to better fit the observed data. 
These measurements have been extremely challenging for hot, high speed jets, and represent a 
sizeable investment in instrumentation development. As an intermediate check that the analysis is 
predicting the physics intended, phased arrays have been employed to measure source 
distributions for a wide range of jet cases. And finally, careful far-field spectral directivity 
measurements have been taken for final validation of the prediction code. Examples of each of 
these experimental efforts will be presented. 
 
The main result of these efforts is a noise prediction code, named JeNo, which is in mid-
development. JeNo is able to consistently predict spectral directivity, including aft angle 
directivity, for subsonic cold jets of most geometries. Current development on JeNo is focused on 
extending its capability to hot jets, requiring inclusion of a previously neglected second source 
associated with thermal fluctuations. A secondary result of the intensive experimentation is the 
archiving of various flow statistics applicable to other acoustic analogies and to development of 
time-resolved prediction methods. These will be of lasting value as we look ahead at future 
challenges to the aeroacoustic experimentalist. 
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Outline

• Acoustic analogies and statistical prediction methods
• Assumptions and models in statistical jet noise codes
• Statistical quantities required
• Advanced instrumentation used
• Tests and results

– Flow diagnostics
– Acoustic diagnostics
– Overall validation
– Flight tests

• Prediction code status
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Acoustic Analogies

• Classic exercise of applied mathematics
• Rearrange Navier-Stokes equations of motion as 

inhomogeneous wave equation to apply familiar methods of 
linear acoustics.
– Need not be simple wave equation to be useful.
– Many derivations/choices of variables (‘analogies’) possible.

• Ugly RHS to be treated as ‘equivalent source’
– Up to here equations are exact--no need for ‘insight’

• Massive simplification/modeling done to RHS to make problem 
tractable.
– Here’s where the analyst needs experimental insight and data!
– Statistical quantities which fall out are very difficult to measure!
– This is where choice of analogy important.
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Representative Derivation
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Flow field:

Wave operator form:
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Representative Derivation, cont’d

  

p2(K x , K y ,ω) = G*( K x , K y −
K
ξ /2,ω)G(K x , K y +

K
ξ /2,ω)∫∫ S(K y ,

K
ξ ,τ )eiωτ dτ d

K
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Sijkl (
K y ,

K 
ξ ,τ ) = ui u j (K y −

K 
ξ /2,t) uk ul (K y +

K 
ξ /2,t + τ )(K y )

G(K x , K y +
K 
ξ /2,ω) is the Green's function for L.

Far-field spectral directivity:

For cold jets, the key quantity for modeling the source is the fourth 
order correlation matrix Sijkl.

Assuming a compact source,

Model S, solve for the Green’s function, and integrate. Simple!

  p
2(K x , K y ,ω) = | G |2 ( K x , K y ,ω)∫∫ S(K y ,

K
ξ ,ω) d

K
ξ 
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Key Assumptions/Models to be Checked

• Compact source assumption
• Model of fourth-order two-point space-time correlation of velocity
• Quasi-normal approximation
• Turbulence anisotropy model
• Time- and lengthscales models
• Accuracy of RANS CFD turbulence models
• Assumption of negligible enthalpic source
• Effect of heat on all above
• Effect of compressibility on all above
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Experimental Technology

• Facilities
• Flow Diagnostics
• Acoustic Diagnostics
• High-Fidelity Simulated Flight
• Flight Tests

CFD

PIV
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Glenn AeroAcoustics Propulsion Lab  (AAPL)
Small Hot Jet Acoustic Rig (SHJAR)

Low-cost operation for basic 
jet noise experiments

– 3m arc microphone array, 45°-
165° coverage

• 200Hz cutoff
• 50dB background

– Single stream jet
• 2.5 kg/s up to 860K
• 1–7 NPR
• Mj, Tj/Tamb ±0.2%

– Acoustically clean for 0.25 < M 
< 2 with 50mm nozzle

– Full seeding capability for flow 
diagnostics.

– Ambient conditions monitored 
to within 0.2K, 1%RH

– Typical nozzle 25mm–75mm
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Flow+Sound Database Conditions
(Augmented Tanna Matrix)

AFAPL-tr-76-65 (Lockheed-Georgia)
“The influence of temperature on shock-free supersonic jet noise”, JSV 39 1975
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Glenn AeroAcoustics Propulsion Lab  
(AAPL) Nozzle Acoustic Test Rig (NATR)

High-fidelity assessment of exhaust 
systems in flight with diagnostics
– 20m radius anechoic dome
– 14m arc microphone array, 45°-165°

coverage.
– Dual flow engine simulator

• Core stream 9 kg/s up to 850K
• Fan stream 12 kg/s up to 390K 

– Flight simulation 0 < M < 0.4
– 200mm typical nozzle diameter
– Full seeding capability for flow 

diagnostics.
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Flow Diagnostics

• Particle Image Velocimetry
– Field of view
– Seeding
– Resolution
– Stereo
– Streamwise, Cross-stream

U

u’

CFD

PIV

SFNT2000

Bridges & Wernet, “Turbulence measurements of separate flow 
nozzles with mixing enhancement features,” AIAA 2002-2484
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Dual PIV System Schematic Layout

CPU

PS2PS1
PS1 PS2

21

Combustor

Muffler Seed injection

Screens
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Dual PIV for Space-Time Correlations

Bridges and Wernet “Measurements of the 
Aeroacoustic Sound Source in Hot Jets”
AIAA 2003-3130:
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Cross-stream Stereo PIV

Bridges & Wernet, “Cross-Stream PIV Measurements of Jets 
with Internal Lobed Mixers,” AIAA 2004-2896 (2004).
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Acoustic Diagnostics
Near-Field Emission Array*

RRC Polar Correlation Array

Internal Mode Propagation Array*
3D Phased Array*

1D Phased Array

2D Array at GE Engine Stand
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Validating Source Models

• Model of fourth-order two-point space-time correlation of velocity
– Quasi-normal approximation
– Turbulence anisotropy model
– Model of second-order two-point space-time correlation of velocity

• Time- and lengthscales models
• Compact source assumption
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Model of fourth-order two-point space-time 
correlation of velocity

• Quantity of interest is

• The fourth order space-time tensor is often approximated by

to use second-order correlations which can be derived from simple 
turbulence models, such as those of Batchelor:

• Questions:
– Is the quasi-normal approximation valid?
– Are the second-order correlation models for Rij valid?
– What are the model coefficients (lengthscale L and timescale T)?
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ξ /2,t) uk ul (Ky +
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Quasi-normal approximation

• Compare <uuu’u’> to <uu> <u’u’>

•Approximation not 
valid except near ξ=0.

•Must remove <uu> 
from each first!
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Axisymmetric Turbulence Model for Second 
Order Correlations

• An axisymmetric turbulence model can be constructed which has an exponential 
core with two lengthscale parameters K1, K2

• We choose single-power exponent form because of superior fit to data:

˜ R 11 ˜ R 22

ξ1ξ1

e
−πξ2

K1
2

e
−πξ
K1

e
−πξ2

K1
2

e
−πξ
K1

Q1 = −
u1

2

2
e

−π ξ1
2

K1
2 +

ξ2
2 +ξ3

2

K2
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

; Δ =
K2
K1



10th CEAS-ASC Workshop—Oct 2006 21

National Aeronautics and Space Administration

www.nasa.gov

Space-Time Correlations of Velocity Dataset

• Data acquired at 5 axial 
locations

– x/Dj = 2, 6, 10, 16, 22
• Data processed for 9 radial 

locations
– y/Dj = 0, ±0.25, ±0.5, ±0.75, 

±1
• Data acquired at 6 space-

time separations, anticipating 
convection velocities.

• Dataset yields Ruu, Rvv, Ruv 
for ξ1/Dj, ξ2/Dj, τU/Dj

• Can be mined for turbulence 
models, convection velocity, 
lengthscales, and 
timescales.
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Interpolated 2nd order, space-time correlation

Significance of ripples in tails?
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Extracting Temporal Correlations

• Mining the Ruu(ξ,τ) for ξ2 = 0, at different ξ1 produces ‘standard’
(hot-wire) temporal correlations.

• Ma = 0.9 shown at x/Dj = 6, y/Dj = 0.5 for Tj/T∞ = 0.84.

• Timescale τ0 derived from fitting peaks of Ruu to exp(-τ/τ0)

τU/D

Ru
u

0 2 4

0

0.5

1

ξ/D=0
ξ/D=0.2
ξ/D=0.4
ξ/D=0.6
ξ/D=0.8
ξ/D=1.0
ξ/D=1.5
ξ/D=2.0
ξ/D=3.0

Ma=0.9, Ts/T∞=.084 x/D=6, y/D=0.5
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Extracting Spatial Correlations—Axial

• Mining Ruu(ξ,τ) for ξ2 = 0, at different τ produces spatial 
correlations.

• Ma = 0.9 shown at x/Dj = 6, y/Dj = 0.5 for Tj/T∞ = 0.84.

• Lengthscale Luu,x obtained by integrating Ruu(ξ1; ξ2=0, τ=0) 
over ξ1

ξ1/D

R
uu

n

-2 0 2 4 6

0

0.5

1 τ U/D=0.0
τ U/D=0.27
τ U/D=0.68
τ U/D=1.36
τ U/D=2.73
τ U/D=6.81

Ma=0.9, TTr=1.0 x/D=6, y/D=0.5
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Parameters of Two-Point Correlation Models

• Lengthscales, timescales
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Compact Source Assumption

• Integral Lengthscale Luux, proportional to length of significant 
correlation: roughly factor of 5.

• Wavelength to correlation length λ/L ~ τ/(5Luux M)

Ruu
Rvv

ξ1

Luux = Ruudξ∫ = 0.2

Lvvx = Rvv dξ∫ = 0.1
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Source Compactness Estimation

• Wavelength to correlation length λ/L ~ τ/(5Luux M)
• M=0.9, cold
� λ/L in the range of 2 is not a compact source!
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Validating Propagation

• Understanding impact of jet asymmetry
• When can integrands be simplified to produce 2.5-D approach?
• Measure azimuthal variation of sound field for jet plumes with 

various low-order azimuthal features.
• Used SMC-series chevron nozzles

– SMC002 (4 chevrons)
– SMC004 (5 chevrons)
– SMC001 (6 chevrons)

• Tested over range of subsonic cold conditions, 0.5 < Ma < 0.9
• Azimuthal variations accomplished by rotation of nozzle on rig. 

f=0° is along chevron tip.
• Plots of DSPL = SPL(f)-SPL(0°).
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Setpoint 7 (Ma=0.9), SMC002 (4 chevrons)
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Setpoint 7 (Ma=0.9), SMC004 (5 chevrons)
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Setpoint 7 (Ma=0.9), SMC001 (6 chevrons)
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1D Phased Array

• One-dimensional, nonlinearly spaced phased array
• 8–24 flush mount microphones 

St

X/D

Ma=0.7

Ma=0.7

•Lee & Bridges, “Phased-array Measurements of Single Flow Hot Jets,” AIAA 2005-2842 
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Jet Noise Understanding
Mapping 3D Acoustic Source Density

• GRC/SHJAR February 
2004

• 80 microphone array
• Better point reponse 

function than 
Dougherty/Honeywell 
array.

• Results from 
conventional 
beamforming 
confusing--apparent 
sources located outside 
the jet at low 
frequencies!
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Jet Noise Source Density— Phased Array

Prediction Phased Array

M=0.9, cold, 90° observer

• Convolve predicted source distribution through phased array 
‘filter’ for apples-apples comparison of acoustic source strength.
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Validating RANS CFD

• Mean velocities, temperatures
• TKE, dissipation
• Range of M, T, geometries
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Baseline Data for CFD/CAA validation—
Flow Stats

• Objective: Turbulent flow statistics for RANS validation
0

3

0 1 2
Vjet/Camb

Have all statistics needed for jet noise

U/Uj

V/Uj

TKE/Uj
2

v2/u2

L11/Dj

L11/ L12

τ1Uj /Dj

τ2/τ1
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Baseline Data for CFD/CAA validation—
Turbulent Kinetic Energy

0

3

0 2Vjet /C amb

Dataset shows impact of temperature, 
compressibility on turbulence statistics.
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WIND; Variable Diffusion k−ε

DATA

WIND; SST

DATA

Turbulent Kinetic EnergyMa=0.9, cold

Evaluating RANS Turbulence Models for Jets

• Big problem for turbulence models in jets is that instabilities 
which drive turbulence change from 2D shear layer modes to 3D 
columnar modes. 

• Models must be aware of geometry.
• Variable Diffusion k-eps model is one attempt.

Potential core length  critical!
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Final Validation of Spectral Directivity
• Rig Dependence
• Error analysis

– Uncertainty in measuring atmospheric conditions which feed the 
calculation of atmospheric attenuation
• ~0.1dB, given the measurement uncertainty of 0.5K, 2% relative 

humidity
– Uncertainty in setpoint

• 0.17dB by holding 0.5% tolerance on the jet velocity 
– Uncertainty in spectral estimation 

• 0.33dB at low third-octave bands (St < 0.05). 
– Uncertainty in pistonphone calibrator B&K 4220

• 0.15dB
– Microphone holder reflection

• 0.2dB from autocorrelation measurements
• But repeatable to within 0.2dB!
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Jet Noise Spectral Directivity

Polar angles from pilot POV!
90°, 150° representative
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Baseline Data for CFD/CAA validation —
Far-field Acoustics

• Objective: Verified far-field jet noise database, independent of 
facility

• Note dependence on far-field condition!

φ=90° φ=150°

Frequency (Strouhal) Frequency (Strouhal)

X/D
X/D

X/D

Mj=0.9, cold, normalized, lossless

Far-field invariant r/D>50

8

100

8

100
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Effects of Scale, Upstream Nozzle 
Geometry

• SHJAR rig noise 
documented,
– Well below this data.

• Variations found due to 
nozzle details.
– Reynolds number 

dependence
– State of turbulence in exit 

boundary layer!
– Contraction ratio
– Contraction rate
– Length of contraction
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Comparison w/ Tanna Data for Hot Jets

150°

90°

150°

90°

150°

90°

Vj/camb=0.5
150°

90°

150°

90°

150°

90°

Vj/camb=0.9

All data: third-octave, lossless, r/Dj=40

Tratio=0.86 Tratio=1.76 Tratio=2.27

Tanna

SHJAR
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Flight Tests
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Chevron benefit comparison—PNL

NATR Learjet

Nice agreement model to full scale!
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Chevron benefit comparison—SPL at peak 
PNL

NATR Learjet

Passable recognition of spectral benefit.
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Problem with Freejet Correction in Small Scale
Source Distribution Assumption

Issues with projecting to flight at angles near jet axis.
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MGBK: A Lilley-Based Analogy
• Lighthill’s original analogy cast equations as simple wave 

equation
• Lilley proposed accounting for convective character of source 

into wave operator.
• In 1976, Mani-Gliebe-Balsa created a jet noise prediction code 

which used this approach (MGB)
– Many assumptions regarding parallel flow, source compactness.
– Many models of turbulent quantities, such as space-time correlation

matrix
– Analytic asymptotic solution to Green’s function for solution.
– Critical mean and turbulence info from semi-analytical model for 

round jet.
• In 1989, Khavaran and Krejsa (NASA Glenn) picked up the 

MGB code and began by substituting CFD solutions for mean 
and turbulence fields for the semi-analytical solution used 
before.
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MGBK to JeNo: What Changed?
• Realistic two-point space-time correlation model.

• Accounting for non-compact sources.

• Accurate refraction by adjoint Green’s function.

--- f =Gaussian
f : Exponential

Measurements, Bridges et al.
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Good prediction 
of cold jet noise 
spectra at 90°

…and at aft 
angles!

JeNoMGBK

Ma=0.9 cold
(Tanna SP7)

JeNo v1.0

• Validate all assumptions and models in acoustic analogy code.
• Result: Improvements in prediction code so substantial it 

warrants a new name—JeNo
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JeNo v1.0 Status—Nov 2005
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Summary

• Experimental Diagnostics have played critical role
– understanding jet noise physics,
– guiding prediction code development,
– checking assumptions
– feeding model development
– giving insight into noise reduction concepts

• Future Challenges
– Temperature spectra for statistical models
– Initial condition specification for LES
– Refraction, Diffraction, Impingement


