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This paper's main purpose is to detail issues and lessons learned regarding designing, 
integrating, and implementing Fault Detection Isolation and Recovery (FDIR) for 
Constellation Exploration Program (CxP) Ground Operations at Kennedy Space Center 
(KSC). 

I. Introduction 

Part of the overall implementation of National Aeronautics and Space Administration's (NASA's) Constellation 
Exploration Program (CxP), Fault Detection Isolation and Recovery (FDIR) is being implemented in three main 

components of the program (Ares, Orion, and Ground Operations/Processing). While not initially part of the design 
baseline for the CxP Ground Operations, NASA felt that FDIR is important enough to develop, that NASA's 
Exploration Systems Mission Directorate's (ESMD's) Exploration Technology Development Program (ETDP) 
initiated a task for it under their Integrated System Health Management (lSHM) research area. This task, referred to 
as the FDIR project, is a multi-year multi-center effort. The primary purpose of the FDIR project is to develop a 
prototype and pathway upon which Fault Detection and Isolation (FDI) may be transitioned into the Ground 
Operations baseline. While not discussed in this paper, additional details of how this FDIR project fits into the 
overall NASA structure is available in Ref. I. 

II. Fault Isolation Tool 
Currently, Qualtech Systems Inc (QSI) Commercial off the Shelf (COTS) software products Testability 

Engineering and Maintenance System (TEAMS) Designer and TEAMS RDS/RT are being utilized in the 
implementation of FDI within the FDIR project. The TEAMS Designer COTS software product is being utilized to 
model the system with Functional Fault Models (FFMs). A limited set of systems in Ground Operations are being 
modeled by the FDIR project, and the entire Ares Launch Vehicle is being modeled under the Functional Fault 
Analysis (FFA) project at Marshall Space Flight Center (MSFC). Integration of the Ares FFMs and the Ground 
Processing FFMs is being done under the FDIR project also utilizing the TEAMS Designer COTS software product. 
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The TEAMS tool was chosen for this ETDP FDIR project based on commonality with Orion and the Ares 
Launch vehicle. Both of these CxP elements chose TEAMS based on a CxP initial concept development reporr 
entitled "Diagnostic Technology Evaluation Report for On-Board Crew Launch Vehicle" that was performed by 
NASA Ames Research Center (ARC). This report evaluated the state of art practice in embedded fault detection and 
diagnosis technologies for Crew Launch Vehicle (CLV) requirements development. 

After creating the FFMs in the TEAMS Designer COTS software, the modeler can utilize various reporting and 
analysis tools within the TEAMS Designer COTS software to verify the functionality of the model. The TEAMS 
Designer COTS software contains a TEAMS-RT Analysis Tool and Design for Testability (OFT) feedback which 
gives the modeler the opportunity to inject failure modes and failed test results into the model to test its functionality 
and do limited validation. 

Ultimately, the TEAMS Designer COTS software outputs a Dependency-Matrix (D-Matrix) that maps failure 
effect propagation paths from failure modes identified in the FFMs to observable points, or test points, in the system. 
The TEAMS RDSIRT COTS software then uses the D-Matrix in real-time to determine which modules in the model 
are bad, suspect, or unknown, based on test results that are passed to it. In order for the TEAMS RDS/RT COTS 
software product to function correctly, custom software must be developed for interfacing to the CxP Ground 
Operations Launch Control System (LCS) and implementation of tests for resultant passage to the TEAMS RDSIRT 
COTS software. 

III. Anomaly Detection Tool 
Currently, the ARC developed Inductive Monitoring System (IMS) has been chosen as the anomaly detection 

tool. IMS uses a data-driven machine learning technique that automatically extracts system parameter relationships 
and interactions from archived nominal system data producing a monitoring capability quickly for almost any 
system for which archived nominal data is available. IMS does not require knowledge engineers or modelers to 
capture precise details of system operation. It only requires archived nominal data. Lacking that, IMS can learn the 
relationship based on the parameter values from a high-fidelity simulator, with the accuracy of the simulator 
determining the accuracy of learned monitoring capability 

IMS has two phases: training and monitoring. Training is done off-line and monitoring can be done on-line (real­
time monitoring) or off-line (post-flight analysis). The goal during the training phase is to learn how the system 
normally behaves. The input to the learning algorithm is a data set representing nominal system operation. 

The goal of the monitoring step is to determine if the system is behaving differently than during operations when 
training data was collected. The monitoring step extracts the relevant parameters from the incoming real-time 
system data, normalizes and weights them, as was done during training, and then compares the incoming vector to 
the clusters generated during training. It outputs similarity scores, the distance between the vector and the nearest 
cluster for the vector as a whole (a composite score) and a distance from the nearest cluster for each parameter 
separately. These distances represent the deviation of the current operation from nominal operations as defined by 
the training set - a measure of how "out of family" the behavior is. More detailed info on IMS is available in Ref. 3. 

IV. Issues & Lessons Learned 
The following section outlines issues that based are on our experience. We feel that should be considered, were 

encountered, or were significant lessons learned so far, during development of FDIR for this project. 

A. Architecture 
FDIR is intended and designed to be integrated with Ground Operations to automate fault detection and isolation 

during maintenance and checkout, as well as launch countdown activities of ground and launch vehicle systems. In 
addition, the FDIR architecture will support the integration of several ISHM capabilities or tools. This not only 
entails the design of an appropriate internal architecture, but also an external architecture/interface that is capable of 
integrating into the desired operational command and control system. 

The FDIR project team evaluated numerous architectural alternatives in determining what they feel is the 
optimum architectural solution for FDIR's internal architecture. While sometimes design is done for designs sake, 
one of our overriding concerns was for future sustaining engineering. This is with not only within the internal FDIR 
architecture but also in how it is integrated with LCS. For more details on the architecture see Ref. I 
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B. Tool Selection 
While this project's tools were basically pre-detennined, a number of observations have been experienced that 

should help in evaJuating and/or selection of additional tools. The first of these is to understand how a tool works 
during design time versus run time. On some tools, features are not consistent between the development tool and its 
corresponding run-time environment. In addition, there has been significant progress in COTS FDIRJISHM tools 
during the past decade. Some of this progress has involved complete recoding of tools and/or new developments. 
While there can be IT ARJExport issues, some of these tools are from foreign corporations. Considering the impact 
of an integrated FDIR capability on a command and control system, this evaluation and selection of tools should not 
be underestimated. However, having an architecture that supports multiple tools will ease the impact of adding or 
changing tools. 

C. Model Development 
For the TEAMS tool suite that was chosen, FFMs were developed for a target system. Due to their complexity 

and failure history, cryogenic systems were targeted for initial development in the FDIR prototype. In particular, we 
have designated the initial subsystems for prototype integrations to be the Ground Liquid Hydrogen (LH2) 
subsystem and the Ares Upper Stage LH2 Main Propulsion Subsystem (MPS). Having an architecture that supports 
distributed models can be beneficial; however one needs to ensure that modeling conventions and model Interface 
Control Documents (ICDs) are done at an early stage of development. This will not only help ensure a smooth 
integration of the models but will also be beneficial when expanding the scope of the models. An example of this is 
provided in Ref. 4. Finally, having a standardized approach to model development will ensure that models are 
similar in nature when developed by different modelers. 

Additional details of the functional fault modeling approach that we utilized, and satisfies the TEAMS toolset, is 
presented in Ref. 5 at this conference. 

D. Simulation Capability for Testing 
Once the FFMs have been developed and transitioned to run-time, testing must occur with some type of real­

time data. For this project's purpose, since CxP elements are in development, data and/or simulations were not 
available. It is for this reason, that we had chosen elements of Shuttle's LH2 GSE to model. By doing this we were 
able to retrieve data for actual shuttle operations and with slight modifications create faults for playback to FDIR. 
While not actual CxP data, this process reduces the risk associated with not having that data or simulations of it 
available. 

E. Integration 
The integration of FDIR to the LCS command and control system was handled in Section A, Architecture. 

Model integration was handled in Section C, Model Development. This section is primarily concerned with the 
FDIR internal integration after data acquisition. This requires custom software that interfaces CxP LCS and 
implementation of tests for resultant passage to the TEAMS RDS/RT COTS software and is generically referred to 
as "wrapper code". This wrapper code must be tailored to the telemetry, TEAMS model, and GUI with which it 
interfaces, but this results in code that is application specific and requires re-work each time the telemetry, model or 
GUI changes. Previous wrapper code applications required heavy involvement of TEAMS modeler(s) in the 
development process which necessitated a special skill mix to get the TEAMS model operating in real-time. A 
WrapperD application was developed with the intent of isolating the interface functions from one another so they 
can easily be tailored for other environments and mitigating the dependency of the WrapperD code on the intricacies 
of the TEAMS model to limit the modeler's involvement in wrapper code development. 

In particular, the WrapperD application perfonns the tasks required for TEAMS RDSIRT COTS software to use 
the D-Matrix through the TEAMS APls. These tasks include: 

I) Parsing the incoming telemetry stream, 
2) Perfonning logical tests based on the current telemetry data, 
3) Passing the results of the logical tests to TEAMS RDS through the TEAMS API, 
4) Requesting the "bad", "suspect", and "unknown" diagnoses from TEAMS RDS through the TEAMS API, and 
5) Communicating infonnation that is required by a Graphical User Interface (GUI) to display the telemetry, test 

results, and diagnosis to the user. 
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Each of these five tasks is as independent as possible. This is done to facilitate re-use of the code in other real­
time systems. In addition, some of the code in the WrapperD application is auto-generated to make it re-usable 
regardless of the content of the TEAMS model. 

F. Performance 
It is imperative that preliminary perfonnance testing be done as early in the development process as possible. 

The results of this testing can impact not only tool selection but also architecture decisions. If at all possible, the 
breaking points of implemented software should be found in order to obtain worst case scenarios. These worst case 
scenarios can help decide if overall real-time perfonnance requirements can be met. Additional perfonnance details, 
that we obtained of the TEAMS real-time software is available in Ref. 6. 

V. Future Stuff 
While we did limited playback of shuttle data for testing, we are planning on developing a low fidelity 

simulation capability for CxP Ground Ops LH2. This is done in order to do higher fidelity testing and risk reduction 
for continued development of FOIR. Of course, all of this work is dependent on what' direction NASA will take in 
the next decade of space exploration. The prototype demonstrations that have we have held so far have been hugely 
successful and highly regarded. We can only hope that this type of activity will continue in the future. 

VI. Conclusion 
While some of the work perfonned on this project is highly dependent on the LCS command and control system. 

A significant amount of the design is internal to the FOIR project and not dependent on outside entities. The 
following are the major technical issues and lessons learned from the FDIR work that we have perfonned so far: 

internal Architecture - Should support multiple tools and the addition of tools throughout the lifecycle of the 
product. 

External Architecture - While the interfaces are customized to a specific system for data acquisition and output, 
remember that sustaining engineering is a significant cost during the lifecycle of a command and control system 
with integrated FOIR. 

Tool Selection - Understand the difference in a tool's design/development features and its run time features and 
plan accordingly during development. Assess current tools and available tools. Look not only commercially, but 
also internal, to your organization, at industry, at academia and government institutions. 

Modeling - Choice of an initial target system that demonstrates benefits is paramount for continued funding. 
Define conventions and lCDs early to enhance the capability of adding model scope. Develop a standardized 
process, as much as possible, for model development. 

SimulationfTesting - There should be a plan in place to provide for testing with some type of simulation or 
playback. This data should resemble the ultimate operational conditions as close as possible in order to provide risk 
reduction for the overall project. 

internal integration - Utilize reusable or auto-generated code wherever possible for internal FOIR integration 
wherever possible. This will help reduce lifecycle costs. 

Performance - Preliminary perfonnance testing should be perfonned as early as possible to ensure that real-time 
perfonnance requirements can be met. 
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FDIRTaskjProject Background 

• Primary purpose of the FDIR project is to develop a prototype 
and pathway upon which Fault Detection and Isolation (FDI) 
may be transitioned into the Ground Operations baseline 

• Integrated within Launch Control System (LCS) 

- Ground Ops Custom Command & Control System 

• Fault Isolation Tool 

• Anomaly Detection Tool 
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Fault Isolation Tool 

• Qualtech Systems Inc (QSI) Commercial off the Shelf (COTS) software products 
• Testability Engineering and Maintenance System (TEAMS) Designer 

• TEAMS RDS/RT 

• Commonality with Orion and the Ares Launch vehicle FDIR tool selections 
• "Diagnostic Technology Evaluation Report for On-Board Crew Launch Vehicle" by NASA Ames Research Center (ARC) 

• TEAMS Designer 
• Functional Fault Models (FFMs) model the system 

• Verify the functionality of the model with reporting and analysis tools 

• TEAMS-RT Analysis Tool and Design for Testability (DFT) feedback 

• Inject failure modes and failed test results into the model to test its functionality and do limited validation 

• Dependency-Matrix (D-Matrix) 
• Designer to RT Data Product 

• Maps failure effect propagation paths 

• From failure modes identified in the FFMs to observable points, or test points, in the system 

• TEAMS RDS/RT COTS 
• Uses the D-Matrix in real-time to determine which modules in the model are bad, suspect, or unknown, based on test results that are 

passed to it. 

• In order for the TEAMS RDS/RT COTS software product to function correctly, custom software must be developed for interfacing to the 
CxP Ground Operations Launch Control System (LCS) and implementation of tests for resultant passage to the TEAMS RDS/RT COTS 
software. 



Anomaly Detection Tool 

• Inductive Monitoring System (IMS) - Ames Research Center developed 

• Data-Driven Machine Learning Technique 
• Automatically extracts system parameter relationships and intera.ctions fromarchived nominal system data 

• Does notrequire knowledge engineers or modelers to capture precise details·of system operation 

• Learn relationships based on the parameter values from a high-fidelity simulator 

• -IMS has two phases: 
• Training 

• Off-line 

• Goal during the training phase is to learn how the system normally behaves. 

.• Input to the learning algorithm is a data set representing nominal system operation 

• Monitoring 
• On-line (real-time monitoring) or off-line (post-flight analysis) 

• Goal of the monitoring step is to determine if the system is behaving differently than during operations when training 
data was collected 

• Monitoring extracts the relevant parameters from the incoming real-time system data, normalizes and weights them, as 
was done during training 

• Compares the incoming vector to the clusters generated during training 

• Outputs similarity stores, the dist~nce between the vector and the nearest cluster for the vector as a whole (a composite 
score) and a distance from the nearest cluster for each parameter separately 

• Distances represent the deviation of the current operation from nominal operations as defined by the training set - a 
measure of how "out of family" the behavior is 
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Issues & Lessons Learned 

• Tool Selection 
• pre-determined 

• design time versus run time 

• features are not consistent between the development tool and its corresponding run-time environment. 

• significant progress in COTS FDIR/ISHM tools during the past decade 

• complete recoding of tools and/or new developments. 

• foreign corporations. 

• Model Development - Target system. 
• Due to their complexity and failure history, cryogenic systems were targeted for initial development in the FDIR 

prototype. 

• Ground Liquid Hydrogen (LH2) subsystem and the 

• Ares Upper Stage LH2 Main Propulsion Subsystem (MPS). Having an architecture that supports 

• distributed models can be beneficial; however one needs to ensure that 

• modeling conventions and model Interface Control Documents (ICDs) 

• standardized approach to model development 

• Simulation Capability for Testing 
• testing must occur with some type of real-time data. 

• elements of Shuttle's LH2 GSE to model. 

• data for actual shuttle operations and with 

• slight modifications create faults for playback to FDIR 

• reduces the risk 



Issues & Lessons Learned 

• Internal Integration 
• Custom software that interfaces LCS and implementation of tests 

• Referred to as "wrapper code" 

• Tailored to the telemetry, TEAMS model, and GUI 

• WrapperD application developed to isolate interface functions from one another 

• Easily tailored for other environments 

• Mitigate the dependency of the WrapperD code on the intricacies of the TEAMS model 

• Goal to limit the modeler's involvement in wrapper code development . 

• WrapperD application performs the tasks required for TEAMS RDS/RT COTS software to use the D-Matrix through the TEAMS 
APls These tasks include: 

• 1) Parsing the incoming telemetry stream, 

• 2) Performing logical tests based on the current telemetry data, 

• 3) Passing the results of the logical tests to TEAMS RDS through the TEAMS API, 

• 4) Requesting the "bad", "suspect", and "unknown" diagnoses from TEAMS RDS through the TEAMS API, and 

• 5) Communicating information that is required by a Graphical User Interface (GUI) to display the telemetry, test results, and diagnosis 
to the user. 

• Re-use of the code in other real-time systems. 

• Auto-generated to make it re-usable regardless of the content of the TEAMS model. 

• Preliminary Performance Testing 
• Early in the development 

• Tool selection 

• Architecture decisions 

• Worst case scenarios 



Future Work 

• Limited playback of shuttle data for testing 
• Low fidelity simulation capability for CxP Ground Ops 

LH2. 

• Risk reduction for continued development of FDIR. 

• Dependent on what direction NASA will take in the 
next decade of space exploration. 

• Continue prototype demonstrations 
• Hugely successful 
• High Iy rega rded 

• Hope that this type of activity will continue in the 
future. 



Conclusion 

Major technical issues and lessons learned from the FDIR work that we have performed so far 

• Internal Architecture - Should support multiple tools and the addition of tools throughout the lifE~cycie of the product. 

• External Architecture - While the interfaces are customized to a specific system for data acquisition and output, remember that sustaining 
engineering is a significant cost during the lifecycle of a command and control system with integrated FDIR. 

• Tool Selection - Understand the difference in a tool's design/development features and its run time features and plan accordingly during 
development. Assess current tools and available tools. Look not only commercially, but also internal, to your organization, at industry, at academia 
and government institutions. 

• Modeling - Choice of an initial target system that demonstrates benefits is paramount for continued funding. Define conventions and ICDs early to 
enhance the capability of adding model scope. Develop a standardized process, as much as possible, for model development. 

• Simulation/Testing - There should be a plan in place to provide for testing with some type of simulation or playback. This data should resemble the 
ultimate operational conditions as close as possible in order to provide risk reduction for the overall project. 

• Internal Integration - Utilize reusable or auto-generated code wherever possible for internal FDIR integration wherever possible. This will help 
reduce lifecycle costs. 

• Performance - Preliminary performance testing should be performed as early as possible to ensure that real-time performance requirements can be 
met. 
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