

Ares V: Supporting Space Exploration from LEO to Beyond

American Astronautical Society
Wernher von Braun Memorial Symposium
October 21, 2008

Phil Sumrall

Advanced Planning Manager Ares Projects Office Marshall Space Flight Center, NASA

Agenda

- Introduction
- Designing the Ares V
- The Ares V Timeline
- The new point-of-departure (POD) configuration
- Ares V's unprecedented capability
- Summary

Introduction

- ◆ The NASA Ares Projects Office is developing the launch vehicles to move the United States and humanity beyond low earth orbit
- Ares V is a heavy lift vehicle being designed to send crews to the Moon together with Ares I or to send cargo only in a single launch
- ◆ The Ares V design is evolving and maturing toward an authority-to-proceed milestone in 2011
- ◆ The Ares V vehicle will be considered a national asset, opening new worlds and creating unmatched opportunities for human exploration, science, national security, and space business

Ares V Design Process

ESAS to LCCR Major Events

Original ESAS Capability

- 45.0 mT Lander
- 20.0 mT CEV
- No Loiter in LEO
- 8.4m OML
- 5 SSMEs / 2J2S

CY-06 Budget Trade to Increase

- Ares I / Ares V Commonality
- Ares I: 5 Seg RSRB / J2-X instead of **Air-Start SSME**
- Ares V: 1 J2-X

Detailed Cost Trade of SSME vs RS-68

- ~\$4.25B Life Cycle Cost Savings for
- 5 Engine Core
- Increased Commonality with Ares I Booster
- 30-95 Day LEO Loiter Assessed

IDAC 3 Trade Space

- Lunar Architecture Team 1/2 (LAT) Studies
- Mission Delta V's increased
- Increase Margins From **TLI Only to Earth** through TLI
- Loiter Penalties for 30 **Day Orbit Quantified**

EDS Diameter Change from 8.4m to 10m

- Lunar Architecture Team 1/2 (LAT) Studies
- Lunar /Mars **Systems Benefits**
- Tank Assembly **Tooling** Commonality

Incorporate Ares I **Design Lessons** Learned / **Parameters**

- Core Engine / SRB Trades to Increase **Design Margins**
- Increase Subsystem **Mass Growth** Allowance (MGA)

Recommended Option

- 6 Core Engines
- 5.5 Segment **PBAN**

Updated Capability

- 45.0t Lander
- 20.2t CEV
- ~6t Perf. Margin
- 4 Day LEO Loiter Ares I Common
- MGAs
- HTPB Decision End of FY09

220 Concepts **Evaluated**

320 Concepts **Evaluated**

730 Concepts **Evaluated**

460 Concepts Evaluated

2005

ESAS

Complete

2006

2007

Orion SRR

Ares V MCR

Ares I ATP

Orion ATP

Ares I SRR

Ares I SDR

Key Schedule Milestones

- ♦ MCR Summer 2008
- ◆ ATP Summer 2009
- ◆ PRR Winter 2010
- ◆ SRR Summer 2011
- ◆ SDR Spring 2012
- ◆ PDR Spring 2014
- ◆ CDR Winter 2016
- ♦ First Mission Flight Fall 2018

The New 51.00.48 Point-of-Departure

Gross Lift Off Mass: 3,704.5 mT (8,167.1k lbm)

Integrated Stack Length: 116 m (381 ft)

Payload Adapter

Payload Shroud

Loiter Skirt

Interstage

Solid Rocket Boosters (2)

 Two recoverable 5.5-segment PBAN-fueled, steel-casing boosters (derived from current Ares I first stage)

Earth Departure Stage (EDS)

- One Saturn-derived J-2X LOX/LH₂ engine (expendable)
- 10-m (33-ft) diameter stage
- Aluminum-Lithium (Al-Li) tanks
- Composite structures, Instrument Unit and Interstage
- Primary Ares V avionics system

Core Stage

- Six Delta IV-derived RS-68B LOX/LH₂ engines (expendable)
- 10-m (33-ft) diameter stage

J-2X

- Composite structures
- Aluminum-Lithium (Al-Li) tanks

Engines (6)

RS-68B

EDS Current Design Concept

Expanded View

EDS provides 1.5 kW of power to Altair from launch to TLI

Core Stage Design Concept

Expanded View

Ares V (51.00.48) Solid Rocket Booster (SRB)

Nosecone

Control as Shuttle

Ares V SRB is

Modern
Electronics
Shuttle but optimized for lunar missions

Forward Segment

Same propellant as Shuttle (PBAN)-Optimized for Ares Application

Mass: 794 mT (1.8M lbm)

Thrust: 15.8M N (3.79 M lbf)

Burn Duration: 126 sec

Height: 55 m (180 ft)

Diameter: 3.7 m (12 ft)

Ares V Profile for 1.5 Launch DRM

51.00.48 Point Of Departure (Lunar Sortie)

Event	Time (sec)	Altitude (km)	EDS Engine Cutoff Time = 806.0 sec Sub-Orbital Burn Duration = 502.9 sec Injected Weight = 187.7 mT Orbital Altitude = 240.8 km circ @ 29.0°	
Liftoff	0.0	0.0		
Maximum Dynamic Pressure	78.8	14.4	Oibila	Allitude = 240.6 km clic @ 29.0
SRB Separation	121.6	36.4		
Shroud Separation	295.0	126.9	Core Stage Separation	
Main Engine Cutoff	303.1	133.3	& EDS Ignition	EDS TLI Burn Orbital Altitude = 185.2 km circ @ 29.0°
EDS Ignition	303.1	133.3	Time = 303.1 sec	Burn Duration = 424.9 sec
EDS Engine Cutoff	806.0	243.5		
EDS TLI Burn Duration	424.9	TBD		+
LSAM/CEV Separation	TBD	TBD	#1D	LSAM/CEV Separation
Time Altitude = 3	·1 sec t Ratio = 1.36		Core Impact	CEV Rendez. & Dock w/EDS Time – Assumed Up to 4 Days Orbital Altitude Assumed to Degrade to 185.2 km (100.0 nmi)
LV 51.00.48	. (0,107.11(101)	Splashde	•	

Ares V Delivers 6 Times More Mass to Orbit

Earth

Moon

Hubble in LEO

Current Capabilities can Deliver

- ~ 25,000 kg to Low Earth Orbit
- ~10,000 kg to GTO or L2TO Orbit 5 meter Shroud

Ares V can Deliver

~185,000 kg Initial Mass to Low Earth Orbit ~60,000 kg to L2TO Orbit 10 meter Shroud

L2

1.5 M km from Earth

LEO performance for new Constellation point of departure vehicle (51.00.48) is expected to exceed values shown here. Performance analysis will be updated for the 51.00.48 vehicle.

Ares V Enabling Science Missions

- ◆ JPL D-41883 "Ares V Application to Solar System Exploration": "In summary, there appears to be a wide range of science missions that could be launched by Ares V that would not be possible otherwise."
- NASA/CP-2008/214588, Workshop Report on Astronomy Enabled by Ares V: "The large fairing and lift capabilities of the Ares V opens up new design concepts, e.g. large monolithic mirrors that reduce complexity and have no risk of deployment."

Space Telescope Mission	Current Space Telescope Designs (scaled to 8m)	Low Cost / High Margin Space Telescope
Payload	6,400kg (LW Optics eg Hubble)	23,000kg (Ground Based Optics)
Spacecraft	4,000kg	12,500kg
Fuel	600kg	2,100kg
Total	11,000kg	37,600kg

NASA Sponsored Study on Ares V Science Missions (Aerospace Corp 2008)

Summary

- Key elements of Ares V are under development as a part of Ares I and the Air Force RS-68
- ◆ Ares V Point of Departure (POD) vehicle has ~ 40% more payload capability than Saturn V to TLI
- ◆ In conjunction with Ares I, Ares V closes the lunar architecture with 6 MT of margin to TLI
- Ares V design and development will begin in 2011
- Ares V completed its Mission Concept Review (MCR) in June of this year and is proceeding into Phase A
- Industry involvement in Ares V Phase I will support element definition to assure robust system level requirements leading to element prime contract awards in Phase II