Abstract: NASA has conducted a series of mission studies over the past 25 years examining the eventual exploration of the surface of Mars by humans. The latest version of this evolutionary series of design reference missions/architectures - Design Reference Architecture 5 or DRA-5 – was completed in 2007. This paper examines the implications of including a human mission to explore the moons of Mars and teleoperate robots in various locations, but not to land the human crews on Mars, as an element of this reference architecture. Such a mission has been proposed several times during this same 25 year evolution leading up to the completion of DRA-5 primarily as a mission of testing the in-space vehicles and operations while surface vehicles and landers are under development. But such a precursor or test mission has never been explicitly included as an element of this Architecture. This paper will first summarize the key features of the DRA-5 to provide context for the remainder of the assessment. This will include a description of the in-space vehicles that would be the subject of a shake-down test during the Mars orbital mission. A decision tree will be used to illustrate the factors that will be analyzed, and the sequence in which they will be addressed, for this assessment. The factors that will be analyzed include the type of interplanetary transfer orbit (opposition class versus conjunction class), the type of parking orbit (circular versus elliptical), and the type of propulsion technology (high thrust chemical versus nuclear thermal rocket). The manner in which each of these factors impacts an individual mission will be described. In addition to the direct impact of these factors, additional considerations impacting crew health and overall programmatic outcomes will be discussed. Numerical results for each of the factors in the decision tree will be grouped with derived qualitative impacts from crew health and programmatic consideration. These quantitative and qualitative results will be summarized in a pros/cons table as a summary for this analysis.
A PHOBOS-DEIMOS MISSION AS AN ELEMENT OF THE NASA MARS DESIGN REFERENCE ARCHITECTURE 5.0

Stephen J. Hoffman, Ph.D.
Science Applications International Corporation

March 14 - 16, 2011
Progressive Expansion of Capabilities and Distance – Lunar First Example

1. Near-Earth Space
 • Lunar fly-by, lunar orbit, EM L-Points
 • Heavy lift launch
 • Crew support for 20 days (Orion)
 • Deep-space propulsion (Orion)
 • Radiation protection

2. Lunar Missions
 • Near-Earth Space (1) plus:
 • Landing systems
 • Nuclear power
 • In-situ resource utilization
 • Surface habitat
 • Surface electric rover
 • Surface EVA mobility
 • Supportability & maintenance

3. Deep Space
 • Near-Earth Space (1) plus:
 • Crew support for 360 days (habitat)
 • Radiation protection (habitat)
 • Closed-loop life support (habitat)
 • Deep space propulsion (tbd)
 • Cryogenic fluid management
 • Supportability & maintenance

4. Mars Missions
 • Lunar (2) & Deep Space (3) plus:
 • Mars entry & landing systems
 • Partial-gravity countermeasures
Mars Design Reference Mission Evolution and Purpose

♦ Exploration mission planners maintain “Reference Mission” or “Reference Architecture”

♦ Represents current “best” strategy for human missions

♦ Mars Design Reference Architecture 5.0 is not a formal plan, but provides a vision and context to tie current systems and technology developments to potential future missions

♦ Also serves as benchmark against which alternative approaches can be measured

♦ Updated as we learn

DRA 5.0 available at: http://www.nasa.gov/exploration/library/esmd_documents.html
Update NASA’s human Mars mission reference architecture, that defines:

- Long term goals and objectives for human exploration missions
- Flight and surface systems for human missions and supporting infrastructure
- An operational concept for human and robotic exploration of Mars
- Key challenges including risk and cost drivers

Assess strategic linkages between lunar and Mars strategies

Develop an understanding of methods for reducing the cost/risk of human Mars missions through

- Identification of key risks
- Investment in research, technology
- Establishing linkages with other exploration human and robotic plans

Agency-wide effort with key HQ Steering Group guidance and concurrence on key decision packages and recommendations
Top-level Trade Tree

Mission Type

- Conjunction Class Long Surface Stay
- Opposition Class Short Surface Stay
- Special Case 1-year Round-trip

Cargo Deployment

- Pre-Deploy
- All-up

Mars Capture Method

- Aerocapture
- Propulsive

Mars Ascent Propellant

- ISRU
- No ISRU

Interplanetary Propulsion (no hybrids in Phase 1)

- NTR
- Electric
- Chemical

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Decision Package 1 Long vs Short

Human Exploration Of Mars
Total Interplanetary Propulsion Requirements

Opposition Class Missions
(Short-Stay)
Propulsive Delta-V

Conjunction Class Mission
(Long-Stay)
Propulsive Delta-V

Variability of Total Mission Delta-V
Opposition Class Missions with 30-Days at Mars

Variability of Total Mission Delta-V
Conjunction Class Missions with 210-Day Transits

Note: Optimized trajectories assuming 407 km circular LEO departure orbit, propulsive capture at Mars into a Mars 1-Sol orbit of 250 km x 33,793 km. 30 sols stat at Mars. Direct entry at Earth with an entry speed limit of 13 km/s.

Note: Optimized trajectories assuming 407 km circular LEO departure orbit, propulsive capture at Mars into a Mars 1-Sol orbit of 250 km x 33,793 km. 210 day transits to and from Mars. Direct entry at Earth with an entry speed limit of 13 km/s.
Mars Design Reference Architecture 5.0 Mission Profile
NTR Reference Shown

Crew: ~180 days back to Earth

~500 days on Mars

Crew: Jettison drop tank after trans-Mars injection ~180 days out to Mars

In-Situ propellant production for Ascent Vehicle

Aerocapture / Entry, Descent & Land Ascent Vehicle

Aerocapture Habitat Lander into Mars Orbit

Cargo: ~350 days to Mars

4 Ares-V Cargo Launches

Cargo Vehicles

Crew: Ascent to high Mars orbit

4 Ares-V Cargo Launches

Ares-I Crew Launch

Crew: Prepare for Trans-Earth Injection

Crew: Use Orion to transfer to Habitat Lander; then EDL on Mars

5 In-Situ propellant production for Ascent Vehicle

9 Crew: Use Orion to transfer to Habitat Lander; then EDL on Mars

8 Crew: Jettison drop tank after trans-Mars injection ~180 days out to Mars

3 Ares-V Cargo Launches

Crew Transfer Vehicle

10 Crew: Ascent to high Mars orbit

11 Crew: Prepare for Trans-Earth Injection

12 Crew: Ascent to high Mars orbit

13 Crew: ~180 days back to Earth

Orion direct Earth return

~26 months

~30 months

~30 months

~30 months
Design Reference Architecture 5.0
NTR & Chemical/Aerocapture Vehicles

NTR Crew Vehicle Elements
- Saddle Truss & LH2 Drop Tank
- PVAs
- Common “Core” Propulsion Stage
- Short Saddle Truss, 2nd Docking Port, and Jettisonable Food Container

NTR Cargo Vehicle Elements
- AC / EDL Aeroshell (10 m D x 30 m L) with Interior Payload
- Common “Core” Propulsion Stage

Chemical Crew Vehicle Elements
- MOI/TEI Module for TEI (1)
- MOI/TEI Module for MOI (1)
- TransHab Module, Orion CEV/SM
- Common TMI Module (3)

Chemical / Aerocapture Cargo Vehicle Configuration
- MOI/TEI Module for MOI (1)
- Common TMI Module (2)

Total NTR Mass ~ 800 t (7-9 launches)
Total Chem/AC Mass ~ 1,200 t (9-12 launches)
Phobos Mission Trade Tree

Mission Type
- Conjunction Class Long Surface Stay
 - Pre-Deploy
 - All-up

Cargo (SEV) Deployment
- Pre-Deploy
- All-up

Mars Capture Method
- Aerocapture
- Propulsive

Phobos Exploration
- Direct
- SEV Excursion

Interplanetary Propulsion (no hybrids in Phase 1)
- NTR
- Electric
- Chemical

NTR- Nuclear Thermal Rocket
Electric= Solar or Nuclear Electric Propulsion

Human Exploration Of Mars
- Opposition Class Short Surface Stay
 - Pre-Deploy
 - All-up

(Cargo only) (Crew options)

March 14, 2011
Phobos and Mars Orbit Science Activities and Benefits

Phobos field work and samples ⇒ Origin and Evolution of Phobos ⇒ Solar system formation, Earth and Mars primordial surface inventory

Recover Mars material deposited on Phobos ⇒ Preserved History of early Mars (that was not preserved on Mars itself)

Mars rovers tele-operation and samples ⇒ Mars biological history and human landing site certification

Search for accessible water ice ⇒ Potential for refueling in Mars orbit
Human Mars Orbit / Phobos Mission
(Chemical Propulsion Option)

1. Ares-I Crew Launch
2. Ares-V Cargo Launches (@120 t)
3. Crew: ~250 days out to Mars
4. Propulsive Capture Crew Transfer Vehicle into Mars Orbit
5. ~40 sols at Mars
6. Collect robotically launched surface samples
7. Phobos exploration and survey
8. Crew: Prepare for Trans-Earth Injection
9. Venus flyby on return leg of mission
10. Crew: ~360 days back to Earth
11. Orion direct Earth return

~ 20 – 25 months (opportunity dependent)
Phobos Mission Activity Flow

0 10 20 30
Sols in Mars Orbit

- Crew arrival at Mars
- Initial orbital operations and rendezvous with Phobos

- Teleoperate surface robots at candidate landing sites
- Launch selected samples from candidate sites
- Collect orbiting samples for return to Earth

- In situ science on Phobos
- Search for Mars origin rocks
- Collect samples for return to Earth

- Crew prepares for Mars departure
- Conduct preliminary analysis of gathered data and samples during return journey
Orbit Phasing to Rendezvous with Phobos

1. Capture into Mars orbit (Inclination set by declination of arrival asymptote)

2. Raise capture orbit periapse to match Phobos orbit radius

3. Lower orbit inclination to match Phobos orbit

4. Circularize at Phobos orbit radius

Capture orbit: 250 km altitude by 1 Sol period
IMLEO Results for Phobos Mission

All Chemical (LOX/LH2) In-Space Propulsion

Nuclear Thermal Rocket (NTR) In-Space Propulsion

Note: Optimized trajectories assuming 407 km circular LEO departure orbit, propulsive capture at Mars into a Mars 1-Sol orbit of 250 km x 33,793 km. 30 sols stay at Mars. Direct entry at Earth with an entry speed limit of 13 km/s.
System Requirements Comparison: DRA 5.0 compared to Phobos Mission

<table>
<thead>
<tr>
<th>Propulsion Type</th>
<th>DRA 5.0</th>
<th>Phobos Mission (SEV Excursion)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear Thermal Rocket</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical (LOX/LH2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Note: 120 MT payload for each SLS is assumed)
Phobos Mission Contribution to Retire Key Driving Requirements (KDR) & Challenges for Design Reference Architecture 5.0

- **Ground Ops**
 - 7+ launches per mission
 - 30 day launch centers (300 day launch campaign)
 - Processing of nuclear systems
 - Ares-V launch vehicle configuration
 - Production and storage of cryogenics and helium

- **Ares-V**
 - 10-m dia x 30 m total length launch shroud
 - Dual use shroud (EDL)
 - 125+ t to LEO
 - Launch to higher inclinations
 - EDS evolution to long-duration (option)

- **Cross-cutting**
 - Automated Rendezvous & Docking (in Earth orbit)
 - Cryogenic fluid management (H₂, O₂)
 - Commonality & lowest level maintenance & repair
 - Long-term system operation (300-1200 days)
 - Low-Earth Orbit loiter for 300+ days
 - Planetary protection
 - Dust mitigation

- **Mobility and Exploration**
 - 100+ km roving range
 - 10+ m depth access
 - Light-weight, dexterous, maintainable EVA
 - In-situ laboratory analysis capabilities

- **Human Health & Support**
 - Support humans in space for 900 days
 - Radiation protection & forecasting
 - Zero-g countermeasures
 - Closed-loop life support (air & water)

- **In-Space Transportation**
 - ~50 t roundtrip (LEO to Mars orbit return)
 - 110 – 125 t to Trans-Mars Injection
 - Assembly via docking only
 - ISRU compatible lander propulsion (oxygen)
 - Integrated transportation flight experience
 - Advanced Inter-planetary Propulsion

- **Aeroassist**
 - 40-50 t payload to the surface
 - Aerocapture + EDL for cargo
 - Abort-to-Mars surface
 - 12 km/s Earth return speed

- **Surface Related**
 - Auto-deployment and checkout of systems 30+ kWe continuous power
 - Reliable back-up power system

- **ISRU**
 - Extraction, storage and use of consumables from the Martian atmosphere
 - Production of 24 t of oxygen for ascent
 - Production of life support oxygen (2 t) and water (3.5 t)

- **Phobos mission solution exceeds DRA5 need**
 - Must be solved for Phobos mission
 - Not required for Phobos mission
 - Must be partially solved for Phobos mission
Phobos Mission: Additional Observations

- An excursion by an SEV-type vehicle is probably required to keep IMLEO in a reasonable range.

- A split mission approach (i.e., SEV and excursion stage launched separately to Mars orbit) marginally improves IMLEO; probably a programmatic decision to use this approach.

- Total flight time vary between 598 and 672 days with less than 30 days available for Phobos exploration.

- Crew health issues are problematic
 - Certification of a viable approach for almost 700 days of micro gravity
 - Enhanced SPE radiation hazard potential due to trajectory passage close to Sun (inside orbit of Venus)
Knowledge / Experience / Confidence

Earth/ISS

- Critical long-duration performance data of both hardware and operational concepts
- Validation of gravity-sensitive phenomena & technologies
- Venue for long-duration system testing including crew interaction with hardware, software, and operational procedures
- Simulation of operational concepts
- Long-term exposure of systems to the space environment

Moon

- Demonstration and use of Mars prototype systems (habitation, power, ISRU, mobility, etc.) to enhance lunar capabilities while improving confidence in future Mars systems
- Surface exploration scenarios and techniques
- Commonality and lowest level maintenance and repair concepts and technologies
- Long-term exposure of systems to the deep-space environment including radiation and dust
- Long-term “dry run” rehearsals and “what if” scenarios for future human Mars missions

Near Earth

- Demonstration of support of humans in deep-space for long durations (180+ days)
- Advanced technology demonstrations applicable to future human missions (propulsion, cryogenic fluid management, closed life support, radiation protection, etc.)
- Demonstration dry-run of humans to Mars orbit and back transportation (propulsion, habitation, crew support, Earth entry)

Mars via Robotics

- Gathering environmental data of Mars (dust composition, thermal, radiation, terrain, hazards, etc.)
- Demonstration of landing large payloads on Mars
- Advanced technology demonstrations applicable to future human missions
- Dust mitigation techniques
- Large-scale unmanned cargo missions which land prior to the human mission can certify human landing vehicles
Backup
Long-surface Stay + Forward Deployment

- Mars mission elements pre-deployed to Mars prior to crew departure from Earth
 - Surface habitat and surface exploration gear
 - Mars ascent vehicle
- Conjunction class missions (long-stay) with fast interplanetary transits
- Successive missions provide functional overlap of mission assets
Cargo Vehicles
Surface Habitat & Descent / Ascent Vehicle

NTR Vehicle (each)
- Common “core” propulsion stage with 3 - 25 klbf NTR engines (Isp ~900 s)
- Total Mass: 238.1 t

Surface Habitat (SHAB)
- Pre-deployed to Mars orbit
- Transports 6 crew from Mars orbit to surface
- Supports the crew for up to 550 days on the surface of Mars
- Ares V shroud used as Mars entry aeroshell
- Descent stage capable of landing ~40 t
- Advanced technologies assumed (composites, O2/CH4 propulsion, closed life support, etc)
- Lander Mass: 64.2 t
- Lander + Aeroshell: 107.0 t

Descent Ascent Vehicle (DAV)
- Pre-deployed to the surface of Mars
- Utilizes locally produced propellants (oxygen) from Mars atmosphere, methane transported from Earth
- Transports 6 crew from the surface of Mars to high-Mars orbit
- Ares V shroud used as Mars entry aeroshell
- Descent stage capable of landing ~40 t
- Advanced technologies assumed (composites, O2/CH4 propulsion, etc)
- Lander Mass: 63.7 t
- Lander + Aeroshell: 106.6 t

LEO Operations
- NTR stage & payload elements are delivered to LEO and assembled via autonomous rendezvous & docking
Crew Vehicle
Mars Transit Vehicle (MTV)

NTR Vehicle
- Common “core” propulsion stage with 3 - 25 klbf NTR engines (Isp ~900 s)
- Core stage propellant loading augmented with “in-line” LH2 tank for TMI maneuver
- Total Mass: 283.4 t

Transit Habitat & Orion Entry Vehicle
- Transports 6 crew round trip from LEO to high-Mars orbit and return
- Supports 6 crew for 400 days (plus 550 contingency days in Mars orbit)
- Crew direct entry in Orion at 12 km/s
- Advanced technologies assumed (composites, inflatables, closed life support, etc)
- Transit Habitat Mass: 41.3 t
- Orion: 10.0 t

LEO Operations
- NTR stage & payload elements are delivered to LEO and assembled via autonomous rendezvous & docking