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1.0 Introduction  

Accurate predictions of the environment that a spacecraft will encounter when 
entering and passing through a flow field, such as the Earth or Mars atmosphere, at 
hypersonic speeds can be of enormous value to aeronautical designers. Such 
predictions become even more critical when the shape of the craft changes during a 
mission due to extreme surface ablation or unexpected damage. The ability to 
anticipate flow environment changes relative to new craft geometries adds vital data 
to the situation analyses that inform mission command decisions. 

Data-Parallel Line Relaxation (DPLR) code is a computational fluid dynamic (CFD) 
solver that was developed at NASA Ames Research Center to help mission support 
teams generate high-value predictive solutions for hypersonic flow field problems in 
a minimum amount of time using readily available computational resources. 

The DPLR Code Package is an MPI-based, parallel, full three-dimensional Navier-
Stokes CFD solver with generalized models for finite-rate reaction kinetics, thermal 
and chemical non-equilibrium, accurate high-temperature transport coefficients, and 
ionized flow physics incorporated into the code. DPLR also includes a large selection 
of generalized realistic surface boundary conditions and “hooks” to enable efficient 
loose coupling with external thermal protection system (TPS) material response and 
shock layer radiation codes.  

1.1 Acadia - DPLR Code Package Version 4.01.1 

 Note: Each release of the DPLR Code Package has an associated name and 
 number, beginning with Acadia, Version 4.01.1. 
Using the DPLR Code Package to achieve predictive solutions for hypersonic flow 
field problems involves completion of five main tasks: 

1. Creating a structured grid file. 

2. Converting the grid file to a DPLR-readable format with FCONVERT. 

3. Sending the converted grid file to a number of processors for parallel solution 
by DPLR2D or DPLR3D. 

4. Extracting information from the solution needed to create a graphic or data 
presentation of results with POSTFLOW. 

5. Creating graphic or data presentations of the predicted flow environment. 

A more detailed description of each of these tasks is presented in Table 1 below. 

Tasks 3, 4, and 5  (highlighted in Table 1) are completed using applications and 
software utilities distributed in the DPLR Code Package Version 4.01.1. 
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Table 1  Typical Sequence For Calculating Hypersonic Flow  
  Environments with DPLR Code Package 4.01.1 

Task  Description Tool Input Output 

1 Creating a structured, face-
matching (and/or overset-type) 
grid that is likely to contain 
the shock wave created in the 
flow field when the object 
enters at a specified Mach 
number. 

GridGen (or 
similar grid 
generation 
application) 

Geometric coordinates 
for object under study 

plot3D file (serial 
ASCII format) 

2 
(optional) 

Processing plot3D grid file, 
reordered if necessary. 

SUGGAR *plot3D grid file from 
GridGen or similar grid 
generation application 

plot3D grid file & 
domain 
connectivity (.dci) 
file (See Chapter 
8) 

3 Converting the plot3D grid 
file into a DPLR-readable 
format, breaking it first, if 
required by the problem, into a 
number of component blocks. 

FCONVERT * plot 3D file (either 
point-wise or overset) 
* Input file containing 
problem-specific 
information about the 
grid file being converted 

XDR parallel file 
(for use by 
DPLR) 

4 Processing converted grid file 
on a specified number of 
processors to work the 
problem in parallel, 
performing sufficient 
iterations of the calculations to 
reach a solution. 

DPLR2D or 
DPLR3D 

* FCONVERT XDR 
output file 
* Input file containing 
problem-specific 
information about the 
object under study, flow 
environment, and 
solution data 
requirements. 

restart file 
(parallel XDR 
format) 

5 Extracting information from 
the restart file needed to create 
graphic and/or numeric 
representations of the 
predicted flow environment. 

POSTFLOW * restart file 
* Input file containing 
specifications of the data 
required by other 
applications for solution 
presentation(s) or further 
post-processing 

plot3D and/or 
data file(s) 

6 Creating visual representations 
or data report(s) of solution for 
use in further problem 
analyses and outcome 
presentations. 

Tecplot (or 
similar 
graphics 
application) 

* data file and/or 
* plot3D file 

Graphic 
representation of 
predicted flow 
environment 
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1.2 How to Use This Manual 

This manual is intended to be both a user guide and a reference resource.  

If you are new to DPLR, begin by reading Chapters 3, 4, and 5. This will give you the 
information you need to understand the basic functions and elements of the Code 
Package. Next, study Chapter 7 to gain insight on how to use what you have learned 
to run an actual simulation.  

As your command of the software grows, consult Chapters 6, 8 and 9 to deepen your 
understanding of the files types, utilities, and detailed capabilities of the DPLR Code 
Package Version 4.01.1.  

If you are already using an earlier version of DPLR, you may want to begin by 
reading the Release Notes in Section 1.3 below to learn about new features or 
changed elements available in the current version of the code.  

1.3 Release Notes 

A summary of the new features and code changes implemented since the previous 
baslined release – in this case DPLR Code 4.01.0 – can be found in two locations:  

• RELEASENOTES file in the main folder of the code distribution  

• Section 1.4 below 

1.4 New Features 

The Acadia version of the DPLR Code Package contains five major new features: 

• Overset Grid Capability 

• Enhanced Time Accurate and Statistics Cababilities 

• Improved Turbulence Models 

• Pointwise Surface and Integrated Aerodynamic Data Extraction 

• Improved Support of Blowing Wall Boundary Conditions  
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1.4.1 Overset Grid Capability 
DPLR now supports mixed face-matched and overset grid topologies. This capability 
is disabled by default, but can be enabled when the code is compiled if both DiRTLib 
and P3Dlib are present. Overset function is controlled in the Overset Grid 
Implementation section of the DPLR input deck, and requires the domain 
connectivity file generated by SUGGAR in a pre-processing step.  

Chapter 8 in this manual contains a complete discussion of the Overset Capability 
currently available in DPLR. 

1.4.2 Enhanced Time Accurate and Statistics Capabilities 

DPLR now supports dual-time stepping in the Time Accurate & Statistical Options 
section of the DPLR input deck, and POSTFLOW can now post-process mean and 
root mean square (RMS) values in addition to the standard instantaneous values.   

 Note: The calculated mean and RMS values are exact for primitives, and 
 approximate for other derived flow or surface quantities.  

1.4.3 New and Improved Turbulence Models 

The Acadia release of DPLR contains improvements in three non-algebraic 
turbulence models: 

• Menter SST models. The Menter SST models (itmod = 200X) now 
controls omega throughout viscous sublayers more effectively by attempting 
to merge omega with the analytical solution rather than just at the first point, 
thereby making SST less affected by grid density. A new Menter SST model 
(itmod=2004) includes additional compressibility corrections and corrections 
from Coakley, and Catris & Apoix. 

• DES extensions. Detatched Eddy Simulations are hybrid models combining 
RANS (Reynolds Averaged Navier-Stokes) for near-wall modeling with an 
LES-like capability (Large Eddy Simulation) in regions where the flow 
becomes highly separated. DES extensions are now available for Menter SST 
and Spallart-Almars models through the itmod flag in the DPLR Input Deck.  

• New Turbulence Models. The Wilcox 2006 model, preliminary versions of 
the Lag turbulence model, and an SST implementation similar to that in the 
NASA OVERFLOW model (called OSS internally) are now available to users 
for testing, although final implementation is still being evaluated.  

 



Overview 
 

DPLR Code Version 4.01.1 User Manual 1-6 10/27/09  

 

1.4.4 Pointwise Surface and Integrated Aerodynamic Data Extraction 
DPLR can now extract surface data (e.g. pressure, temperature, heat flux, and shear 
stress) at specified surface points for each iteration of the simulation, giving users the 
ability to display transient data for simulations of unsteady flows.  

To use this new feature, locations of the specified points need to be listed in an ASCII 
file (points.list) that is placed in the working directory before beginning the 
simulation. DPLR reads this file only once, at the start of the simulation, extracts the 
data at the nearest surface point to each of the x, y, and z coordinates in the list, then 
places the results of these extractions back into the working directory as a series of 
files named point.point# where the point# is determined by the point order 
specified in the points.list file. 

In addition to pointwise surface data, DPLR 4.01.1 can also extract integrated 
aerodynamic variables for each iteration of the simulation to track progress over time 
for body forces and moments. DPLR places the results of these extractions in a file 
named aero.dat in the working directory. This capability is enabled by the iaero 
flag in the Time Accurate and Statistical Options section of the DPLR input deck. 

1.4.5 Improved Support of Blowing Wall Boundary Conditions 
DPLR now supports blowing wall boundary conditions for any and all species listed 
in the simulation chemistry file, and is limited only by the stability of the chemistry 
model employed.  

 Note:  This “new feature” corrects a problem in the code that previously  
 limited DPLR to supporting blowing wall boundary conditions for only  
 the first species listed in the chemistry file. 
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2.0 Introduction  

 The DPLR Code has been designed to achieve optimal performance on distributed 
memory parallel machines, making the code widely portable to a variety of 
architectures, from laptops, networked desktop workstations, and simple LINUX 
clusters to dedicated supercomputers. 

2.1 System Requirements 

The DPLR Code has been successfully installed and run on the following hardware / 
system software configurations: 
 

Table 2.1 - Supported Hardware/Software Architectures 
 

Architecture Compiler MPI Version 

Xeon 32 bit Intel, Portland, 
Lahey 

MPICH, LAM-MPI, 
MPICH 

Xeon 64 bit Intel, Portland MPICH, LAM-MPI 

Xeon Dual Core Intel MPICH 

Opteron 64 bit Intel, Portland MPICH, LAM-MPI 

Intel (Mac) 32 bit gfortran MPICH 

Altix Intel Open-MPI 

 
Each of these architectures can be specified with the configuration script ‘config’ 
during the installation process described in Section 2.3, although on new systems 
some editing or creation of the makefile.comm and include/machine.h may be 
necessary. 
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2.2 Software  

Two software packages must be installed before DPLR Code can be installed: 
• Fortran 90 - DPLR is written entirely in Fortran 90 running on a 

UNIX/LINUX operating system and thus requires a working f90 compiler on 
the destination machine. 

• Message Passing Interface (MPI) – DPLR Code uses MPI calls to facilitate 
inter-processor communications, so an MPI library must be present in the 
system.  

Although not strictly required for successfully installing DPLR Code, having the 
following software packages on your system will enhance the utility and/or 
performance of the DPLR Code Package: 

• FXDR – fxdr libraries provide a Fortran-based interface to the native XDR 
(external Data Reference) calls on all UNIX/LINUX machines. XDR enables 
the creation of platform-independent binary files, greatly enhancing the 
portability of generated datasets (e.g. restart and grid files). The code can be 
compiled without the fxdr libraries, however in that case, all restart and grid 
files must be written in either ASCII or machine-specific native binary 
format.1 

• TECIO.A – These I/O libraries are used by POSTFLOW to create Tecplot 
binary data files for post-processing output.2 Currently, DPLR can use Tecplot 
360 or Tecplot II libraries. However, ASCII data in Tecplot can always be 
written by POSTFLOW, regardless of TECIO.A availability. 

• LIBGOTO (Basic Linear Algebra Subroutines (BLAS) routines) - DPLR 
makes use of several BLAS routines for matrix-vector and matrix-matrix 
manipulations. Having such libraries on the target machine will result in a 20-
25% performance improvement in the overall runtime of DPLR Code.3 

 

                                                
1 fxdr libraries are freely available at http://meteora.ucsd.edu/~pierce/fxdr_home_page.html 
2 Tecplot® I/O libraries are included with Amtec’s Tecplot® visualization software, and may be available for free at 
http://www.tecplot.com/ 
3 BLAS libraries are generally available from compiler makers as a part of their mathematical libraries for a 
nominal fee. In addition, several freeware sources exist. In particular, for Pentium or AMD architectures a 
freeware distribution called libgoto is available from  http://www.tacc.utexas.edu/resources/software/ 
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2.3 Installing the DPLR Code Package 

 The 4.01.1 version release of the DPLR Code Package consists of two gzipped tar 
files designated as follows: 

• dpcodeV4.01.1.tar.gz – containing four separate executables 
• samplesV4.01.1.tar.gz – containing a set of sample problems, complete 

with grids, input decks, and running instructions. 
 
Step 1:  Unzip the DPLR Code file.  

Action:  At the command line prompt, type: 
    gunzip dpcodeV4-01-1.tar.gz 

Result:  The archived file is renamed dpcodeV4-01-1.tar 

Step 2:  Untar the DPLR Code file. 
Action:  At the command line prompt, type: 

    tar -xvf dpcodeV4-01-1.tar 

Result:  A directory structure is created. (See Section 2.4 for more 
  information on directories and files.)  

Step 3:  Run the config script. 
Action:  At the command line prompt, type: 

    ./config 

Result:  If you are attempting to compile on a system the config  
   script can recognize, a makefile.comm file is generated 
   containing machine-specific information for your system. 
   Otherwise, you will need to modify such a file yourself. 
   Samples based on known MPI and FORTRAN builds can 
   be found in the defs directory. After extracting the  
   archive, a blank makefile.comm is created that includes 
   descriptions of each of the necessary compiler options and 
   paths. 

Step 4:  Create executables files. 
Action:  At the command line prompt, type: 

    make 
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Result:  Assuming there were no problems, all executable files in 
   the package are created. Links to executables dplr2d, 
   dplr3d, fconvert, postflow are located in the bin 
   directory.  

2.4 Directory / File Contents 

The directories and files resulting from untarring the DPLR Code Package contain the 
following components: 

bin/  - links to compiled binaries 

cfdinput/ - physical modeling data files used by DPLR during 
  execution  

cfdlib/ - subroutines common to DPLR2D and DPLR3D 

config* - a configuration script used to set up the makefile for  
 the specific machine architecture 

defs/ - makefile templates for supported machines 

dplib/ - subroutines common to the entire package 

docs/ - information about DPLR Code Package documentation 

dplr2d/ - subroutines unique to the DPLR2D code 

dplr3d/ - subroutines unique to the DPLR3D code 

fconvert/ - subroutines unique to the FCONVERT code 

include/ - modules, common blocks and other include files 
  that are incorporated into the various executables  

makefile - makefile for the package 

makefile.comm - compiler, architecture and library options for 
  building DPLR (may be created by config script) 

post/ - subroutines unique to the POSTFLOW code 

utilities/ - utility codes and scripts distributed with the  
  package 
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Tech Tip: The contents of each directory distributed with the DPLR Code 
Package are required for that version of DPLR to function properly. Thus, 
removing files from any of the directories is not recommended. 
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3.0 Introduction 

The primary function of FCONVERT is to read plot3d grid files generated by 
third-party software applications (such as GridGen) and convert them into a format 
that can be used by DPLR to solve hypersonic CFD problems. 

However, you can also use FCONVERT to change the format of a restart file, convert 
a plot3d flow file (a.k.a. function file) into a restart file, process input radiation and 
boundary condition files, and change the number of processors on which a simulation 
can be run. 

Finally, you can use FCONVERT to manipulate a plot3d grid file through scaling 
it by a multiplicative factor (useful when changing grid units, e.g., from feet to 
meters) and to keep the DPLR solution computationally efficient by: 

• “sequencing” or coarsening the grid in one or more dimensions. 
• “breaking” or decomposing the grid into multiple pieces to run on a parallel 

machine. 1 

3.1 Running FCONVERT 

Step 1:  Open the text editor program for your system.  
Action:  At the command line prompt, type: 

  /[path to your fconvert directory]/file_convert.inp 

Result:  An input file or “deck” appears on screen with place-holder 
   default values. To start with a blank deck, delete the  
   default values as shown on the following page. 

                                                
1 Unlike DPLR2D and DPLR3D, FCONVERT is a serial code, so all pre-processing must be done on a single 
processor. 
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Input file for fconvert 

 iaction ifile   idim   iinfo   ivers   nvers 
 
 

inform  inint  idummy  nborig 
 
 

ouform  ouint  odummy  ncedge 
  
 

imseq   iscale   sfact  imir 
   
 

nbreak 
 

 
 Decomposition information for each master block 

ibrk    jbrk    kbrk 
   
 

Sequencing information for each master block 
iseq    jseq    kseq 

  
 

iname,xname,cname 
 
 

oname 
 
 

nsin  nerin  nevin  necin  ntbin 
  
 

imirx  imiry  imirz 
  

 
Figure 3-1  FCONVERT Input Deck 

 

Tech Tip: Although you can add as many sections as you need to 
specify the decomposition and sequencing instructions for each master 
block in your input grid, take special care to preserve the line spacing 
within each block-specific section and throughout the global areas of 
the input deck as you enter new values and/or replace default values 
with problem-specific ones. If lines are added to or subtracted within 
these areas, DPLR will not be able to read the file accurately.  
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Step 2:  Enter values for each of the input variables or “flags”. (See Section 3.2 
for a description of input flags and a list of allowable values.) 

Action:  For each flag, type: 
    allowable, problem-specific value  

Result:  Input deck contains sufficient information for FCONVERT 
  to process the input grid file and convert it into a DPLR-
  readable file.  

Step 3:  Save the file with your problem-specific name to your working directory.   

Step 4:  Run FCONVERT.  
Action:  At the command line prompt, type: 

    fconvert < yourinputdeckfilename.inp 

Result:  An output grid file in the format you specified through the 
   ouform flag (usually XDR parallel) is created along with 
   on-screen summary of actions performed by FCONVERT. 
   (See Section 3.3 for an example of a problem-specific  
   FCONVERT input deck and the output summary generated 
   after running the program.) 

3.2 Input Flags for FCONVERT 

Input variables for FCONVERT are discussed below in the order they appear in the 
deck. 

 iaction - Specifies the action to perform. Allowable values are: 
 0 test decompose over a range of blocks 
 1 decompose file according to (ijk)brk 
 2 decompose file according to nbreak 
 3 recompose file into original blocks 
 10 format conversion only, no parallel decomposition or 
  recomposition (scaling or sequencing still allowed) 
 11 stop after printing file size (determine the dimensions 
  and number of computational cells in each block and 
  output this information to screen) 

 ifile  - Specifies the type of file to be processed. Allowable values are: 
 1 grid file 
 2 restart / flow file 
 3 boundary condition (BC) file 
 4 radiation file 
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Tech Tip: Because restart, boundary condition, and 
radiation files are never decomposed or recomposed, the 
only functional actions for these file types are iaction = 
10 (format conversion) and iaction = 11 (file size). 

 idim  - Specifies the dimension of the input file. Allowable values are: 

 2 2D/Axisymmetric 
 3 3D 

Tech Tip: Whatever value idim is set to, the input grid file 
must match it (e.g., if idim=2, the input grid file must be 
two-dimensional; if idim=3, the input grid file must be 
three-dimensional. However, some grid generation 
programs, like GridGen, do not support 2D grid generation. 
In this case, you need FCONVERT to “see” a 3D grid file as 
a 2D file. To accomplish this, make sure that the k-
dimension =1 in the input grid file. FCONVERT will 
automatically strip the z-coordinates from a 3D input grid 
file if the k-dimension =1, regardless of the idim setting. 
For all other cases, FCONVERT will execute the operation 
if given an input grid file of different dimension than 
specified by the idim flag, but the results may be 
undesirable.  

 iinfo  - Controls the output of debugging information. Allowable  
     values are: 

 0 Do not output debugging information 
 1 Output debugging information 

Tech Tip: This information is intended for software developers. 

 ivers  - Specifies the DPLR Code version of the output file. Allowable 
     values are: 

 1 Do not attempt to change file version 
 2 Upgrade file to the current version of DPLR Code 
 3 Convert file to the DPLR Code version specified by 
  nvers 



 Using FCONVERT 

 

DPLR Code Version 4.01.1  User Manual 3-6 10/27/09  

Tech Tip: All parallel grid, restart, boundary condition, and 
radiation files are DPLR Code Version-specific. With the 
exception of boundary condition files, ivers allows the 
format conversion of all supported files between all release 
versions of the DPLR Code Package. 

 nvers  - Specifies the DPLR Version to convert the output file to when 
     ivers = 3. Allowable values are the real numbers of the major 
     and minor releases of the DPLR Code Package, from 2.31  
     through 4.01.1.  

 inform - Specifies the format of input file. (See Appendix A for more 
     information about supported I/O formats.) Allowable values 
     are: 

 1 Unformatted parallel file 
 2 Unformatted plot3d (grid or q) file 
 3 Unformatted plot3d (grid or function) file 
 11 XDR parallel file 
 21 ASCII parallel file (used for debugging) 
 22 ASCII plot3d (grid or q) file (used for debugging) 
 23 ASCII plot3d (grid or function) file (used for  
  debugging) 

Tech Tip: Because DPLR is a double precision code, be sure 
that all grid files being imported were also created as double 
precision. 

 inint - Specifies whether an input zonal interface file is to be read by 
     FCONVERT or whether zonal interfaces are to be computed 
     automatically. Allowable values are: 

 0 Do not read input interface file 
 1 Read input interface file 
 2 Auto-detect full face interfaces ONLY 
 3 Auto-detect all interfaces (fast method) 
 4 Auto-detect all interfaces (accurate method) 
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Tech Tip: Input zonal interface information is only required 
when the input file is a serial plot3D file. The zonal interface 
file required in this instance can either be created by hand 
(inint=1) or can be created automatically by 
FCONVERT which will then embed it into the DPLR-
readable grid file it creates (inint=2-4). Because the 
automatic creation of zonal interface files may require a 
substantial amount of time and computing resources, you 
can tell FCONVERT to also write the information it 
generates to a separate file by setting the ouint flag>0, 
thus eliminating the need to regenerate the information 
every time the problem is run.  See Section 3.4 for more 
information on zonal interface files.  

 idummy - Specifies whether or not the input grid file contains dummy 
     (a.k.a. “ghost”) cells. Allowable values are: 

 0 Input file does not contain dummy cells 
 1 Input file contains dummy cells 

Tech Tip: Because DPLR automatically generates grid 
dummy cells as necessary at runtime, considering their 
presence during grid generation is usually unnecessary and 
idummy typically remains = 0. idummy should only =1 if: 
 *  you choose to generate your own grid dummy cell 
     coordinates rather than allowing DPLR to do it 
   or 
 *  you are converting a function file into a restart 
    file 
Note, Input dummy cells will be discarded if mesh 
sequencing is enabled (imseq = 1).   

 nborig - Specifies the numbers of master blocks in the file. Allowable 
     values are: 

• the actual number of blocks in the input file 
    or 

• the final number of blocks after a grid file 
recomposition (iaction=3) has been performed.  
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 ouform - Specifies the format of the output file. (See Section 9.2 for  
     more information about supported I/O formats.) Allowable  
     values are: 

     0 Do not generate an output file (used for debugging) 
 1 Unformatted parallel file 
 2 Unformatted plot3d (grid or q) file 
 3 Unformatted plot3d (grid or function) file 
 11 XDR parallel file – preferred for file read into DPLR  
 21 ASCII parallel file (used for debugging) 
 22 ASCII plot3d (grid or q) file (used for debugging) 
 23 ASCII plot3d (grid or function) file (used for  
  debugging) 

 ouint  - Specifies whether an output zonal interface file is to be written 
     and saved for future use. Allowable values are: 

 0 Do not write output interface file 
 1 Write output interface file 
 2 Write output interface file including dummy cells (used 
  for debugging) 
 11 Write output interface file including edges (used for 
  debugging) 
 12 Write output interface file including dummy cells and 
  edges (used for debugging) 

Tech Tip: When inint=2-4, FCONVERT automatically 
creates zonal input information for the plot3D grid file being 
processed and embeds the information into the file being 
produced. By setting ouint >0, you tell FCONVERT to 
also write the zonal interface information it creates to a 
separate file, thus eliminating the need to regenerate it – a 
potentially time- and resource-consuming task -  if the 
problem is re-run in the future. Note, however, that if you 
change the grid topology in any future run of the problem, 
the zonal interface files will need to be recalculated.  

 odummy - Specifies when an output file contains dummy cells. Allowable 
     values are: 
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 0 Output file does not contain dummy cells 
 1 Output file contains dummy cells (use for debugging) 

Tech Tip: The appropriate setting of odummy is nearly 
always 0.  

 ncedge - Specifies which edge and corner interfaces should be  
     generated. Allowable values are: 
 0 Do not compute and edge and corner interfaces 
 1 Compute all edge and corner interfaces 
 2 Compute only edge/corner interfaces created by  
  decomposition 

Tech Tip: This flag should always be set to 1, unless used 
for software development. 

 imseq  - Specifies whether mesh sequencing (or coarsening) is to be  
     performed and in which computational direction(s). (See  
     Section 3.6 for more information on mesh sequencing.)  
     Allowable values are: 

    0 Do not sequence the file 
 1 Sequence according to the values of (ijk)seq 
 2 Sequence all blocks using (ijk)seq values 
     -2  Upsequence a restart file 

 iscale - Instructs FCONVERT to scale an input grid file (ifile=1) by 
     a constant multiplicative factor (sfact) before creating a  
     DPLR- readable output grid file. Allowable values are: 

 0 Do not scale input grid file 
 1 Scale input grid file by sfact 
 

Tech Tips: 
1) This option is typically used to convert grids to SI units.  
 
2)  If iscale is set to 1 for any file type other than a grid 
file, FCONVERT will silently reset it to zero. 
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 sfact  - Specifies the multiplicative scale factor to use when  
     iscale=1. 

 imir  - Specifies whether to mirror the input grid or restart file across 
     one or more axes. Allowable values are: 

 0 Do not mirror input file 
 1 Mirror input file according to imir(xyz) 
 2 Copy and mirror input file according to imir(xyz) 
 

Tech Tip:  imir is used primarily to generate a reflected 
grid or restart file in preparation for starting a full body 
simulation. If imir is set to 1, valid entries must be 
specified for imirx, imiry, and imirz (mirroring 
factors across the yz, xz, and xy axes). When mirroring is 
turned on, FCONVERT will mirror the appropriate xyz (or 
uvw) variable on output, automatically reverse the order of 
the grid in the i-direction in each block if necessary to 
ensure that the output grids and solutions files remain right-
handed, and determine the new zonal-interface definitions 
that result from this mirroring. However, you must manually 
correct the boundary conditions in the DPLR input deck by 
reversing the BC numbers of the imin and imax faces in 
each block! And when using FCONVERT to create or mirror 
a restart file from an input file other than DPLR’s pslx 
format, be sure to set correct values for nsin, nerin, 
nevin, necin, and ntbin so that FCONVERT can 
correctly determine the location of the velocity components 
in the file. 
 
If imir is set to 2, FCONVERT will consult the valid entries 
specified for imirx, imiry, and imirz, retain the 
current grid, copy it, and add a mirrored version to the new 
file. 

nbreak - Specifies the number of blocks to decompose the input 
    file into when iaction =2.  

 ibrk,jbrk,kbrk - Specifies grid decomposition factors in the i-,j-,and 
     k-directions for each master block when iaction=1.  
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Tech Tip: The most common use of FCONVERT is to 
decompose an input grid file into blocks for simultaneous, 
parallel execution on a number of processors. When the 
number of processors to be used for the solution run has 
been determined, the input grid file must be decomposed into 
at least one block per processor. This can be accomplished 
in two ways:  
 
 * Set iaction=1, manually determine the best 
    strategy for decomposing the input grid file into 
    master blocks, then enter one set of decomposition 
    factors (ibrk, jbrk, and kbrk) for each block 
   in the input file. 
  
   or 
 
 * Set iaction=2, enter the number of blocks 
 (minimally equal to the number of available 
 processors for the run) to  decompose the input file 
 into in nbreak, then allow FCONVERT to 
 automatically determine the best decomposition 
 strategy for the input grid file. Although this method 
 may produce a good result from a CPU load 
 balance perspective, it may not produce a good 
 flow-solver result.  
Note: When parallel decomposition is not being performed, 
setting ibrk=-1 on the first line tells FCONVERT not to 
read additional block decomposition records. 

 iseq,jseq,kseq - Specifies sequencing factors in the i-,j-,and  
     k-directions when imseq=1,2,or-2.  
 

Tech Tip: One set of sequencing factors is required for each 
block in the input file unless imseq=2 or -2. These 
settings tell FCONVERT to sequence (remove points) or 
upsequence (add back points) all grid blocks by the same 
factor so only one set of sequencing factors are required 
regardless of the number of grid blocks.  
Note: When sequcing is not being performed, i.e., 
imseq=0, setting iseq=-1 on the first line tells 
FCONVERT not to read additional block sequencing 
records. 
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 iname  - Specifies the input file name. This is the file that will be  
     processed by FCONVERT. The filename should be surrounded 
     by single or double quotes, and can be specified with either a 
     relative or an absolute path as shown in the example below:  

       ‘./ASCIIPlot3Dfilename.g’ 

 
Tech Tip: The suffix used in the file name is optional. 
FCONVERT will assume the default suffix for the specified 
file type if not manually entered. See Appendix A for a list of 
file types and associated default suffixes. 

 xname  - Specifies the name of a previously prepared, input zonal  
     interface file when inint=1. (See Section 3.4.1 for more  
     information on previous preparation of a zonal interface  
     file.) The filename should be  surrounded by single or double 
     quotes, and can be specified with either a relative or an  
     absolute path as shown in the  example below: 

      ‘./YourZonalInterfaceFileName.inter’ 
 

Tech Tip: The suffix used in the file name is optional. 
FCONVERT will assume the default suffix for this file type is 
“.inter” if not entered. 

 cname  - Specifies the CFD input deck file name (if any). This file is 
     only used to locate solid walls to assist in decomposing the  
     input grid when iaction=2 and FCONVERT is attempting to 
     automatically break the input grid into blocks for the best  
     possible parallel solution. The filename should be surrounded 
     by single or double quotes, and can be specified with either a 
     relative or an absolute path as shown in the example below:  

      ‘./CFDfile.inp’ 

 
Tech Tip: The suffix used in the file name is optional. 
FCONVERT will assume the default suffix for this file type is 
“.inp” if not entered. 
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  oname  - Specifies the output file name. This is the DPLR-readable file 
      that will be created by FCONVERT to be solved by DPLR. 
      The filename should be surrounded by single or double quotes, 
      and can be specified with either a relative or an absolute path 
      as shown in the example below:  

      ‘./XDRParallelgridfilename.pgrx’ 
 

Tech Tip: The suffix used in the file name is optional. 
FCONVERT will assume the default suffix for the file type 
specified in ouform if not manually entered. See Appendix 
A for a list of file types and associated default suffixes. 
 
Note: If the output filename (with suffix) is the same as the 
input filename, the input file will be overwritten- not a 
typically desired result. Also, if an output interface file is 
requested by setting ouint=1, the suffix ‘.inter’ will 
be appended to the prefix specified by oname. 

 nsin  - Specifies the number of chemical species to be considered in 
     the CFD solution. This is only read if you are trying to create a 
     restart file from an input file other than DPLR’s pslx format so 
     that FCONVERT can correctly determine the location of the 
     velocity components in the file. 

 nerin  - Specifies the number of unique rotational temperatures (energy 
     conservation equations) to be considered in the CFD solution. 
     This is only read if you are trying to create a restart file from an 
     input file other than DPLR’s pslx format so that FCONVERT 
     can correctly determine the location of the velocity components 
     in the file.  

 nevin  - Specifies the number of unique vibrational temperatures  
     (energy conservation equations) to be considered in the CFD 
     solution. This is only read if you are trying to create a restart 
     file from an input file other than DPLR’s pslx format so that 
     FCONVERT can correctly determine the location of the  
     velocity components in the file. 

 necin  - Specifies the number of unique electronic temperatures (energy 
     conservation equations) to be considered in the CFD solution. 
     This is only read if you are trying to create a restart file from an 
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     input file other than DPLR’s pslx format so that FCONVERT 
     can correctly determine the location of the velocity components 
     in the file.  

 ntbin  - Specifies the number of turbulence variables to be considered 
     in the CFD solution. This is only read if you are trying to create 
     a restart file from an input file other than DPLR’s pslx format 
     so that FCONVERT can correctly determine the location of the 
     velocity components in the file. 

 imirx,imiry,imirz - Specifies mirroring factors acrosss the yz-, xz-, 
     and xy-axes to be used when imir = 1. Allowable values are: 

     -1 or 0  No mirroring will take place along this axis 
      1   Mirroring will take place along this axis 

Tech Tip: It is an error to set all three of these flags to 1.  

3.3  ‘Neptune’ Sample Case 

The sample case used throughout the DPLR Code User Manual to illustrate how the 
Code Package works describes a Neptune probe with an ellipsoidal body as shown in 
Figure 3-2. This case is an example of aerocapture, where drag from the atmosphere 
is used to decelerate the vehicle and bring it into orbit. 
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Figure 3-2  Neptune Probe 
 
 

3.3.1 Neptune Input Deck  

The input deck below shows the problem-specific entries to make for FCONVERT to 
process the serial plot3D grid file of this probe shown in Figure 3-2 into a DPLR-
readable XDR parallel grid file.  
 
 

 
Input file for fconvert 
 
iaction ifile   idim   iinfo   ivers   nvers 
  1       1       3      0       1     4.01.0 
 
inform  inint  idummy  nborig 
 22       1       0       2 
 



 Using FCONVERT 

 

DPLR Code Version 4.01.1  User Manual 3-16 10/27/09  

ouform  ouint  odummy  ncedge 
 11       0       0       1 
 
imseq   iscale   sfact  imir 
  0       0      1.0      0 
 
nbreak 
  1 
 
Decomposition information for each master block 
ibrk    jbrk    kbrk 
  1       1       1 
  7       1       1 
 
Sequencing information for each master block 
iseq    jseq    kseq 
 1       1       1 
 1       1       1 
 
iname,xname,cname 
'neptune' 
'neptune' 
'none' 
 
oname 
'neptune.8PE' 
 
nsin  nerin  nevin  necin  ntbin 
 5     0       1      0      0 
 

 
Figure 3-3  FCONVERT Input Deck for Neptune Probe 

 
 

3.3.2   Neptune Input Deck Settings  

This is a three-dimensional problem. The input grid is ASCII plot-3D and the output 
grid file is parallel XDR. The original grid consists of two master blocks and must 
therefore include an interface file. (See Section 3.4 for more information on zonal 
interface files.) There are three interfaces between these two blocks. The following 
table explains the meaning of the input deck settings in this sample case. 
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Input Flag Setting Explanation 

iaction 1 Break each master block the input grid along the i, j, and k 
axes as specified in ibrk, jbrk, kbrk for each block. 

ifile 1 The input file is a grid file. 

idim 3 The input file is a 3D file. 

iinfo 0 Do not output debugging information. 

ivers 1 Do not attempt to change file version. 

nvers 4.01.0 Release version of the DPLR Code package being used. 
(Value ignored when ivers=1). 

inform 22 Input file is an ASCII plot3D grid file. 

inint 1 Read input interface file. 

idummy 0 Input file does not contain dummy cells. 

nborig 2 There are 2 master blocks in the input grid file. 

ouform 11 The output file will be an XDR parallel grid file 

ouint 0 Do not write an output interface file (one already exists!) 

odummy 0 Output file does not contain dummy cells. 

ncedge 1 Compute all edge and corner interfaces. 

imseq 0 Do not sequence the input grid file. 

iscale 0 Do not scale the input grid file. 

sfact 1.0 Ignored value because iscale = 0 

imir 0 Do not mirror input grid file. 

nbreak 1 Ignored value because iaction = 1 

ibrk, jbrk, kbrk 1, 1, 1,  
7, 1, 1 

Do not break the first master block in any direction.  
Break the second master block 7 times in the I direction only 

. 

iseq, jseq, kseq 1, 1, 1 

1, 1, 1 

Values ignored (imseq=0). 

iname ‘neptune’ The name of the input grid file is ‘neptune’. 

xname ‘neptune’ The name of the input zonal interface file is ‘neptune’. 
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Input Flag 
(cont.) 

Setting 
(cont.) 

Explanation (cont.) 

cname ‘none’ When iaction=1, FCONVERT breaks master blocks according 
to the values in ibrk, jbrk, kbrk and ignores information in a 
CFD input deck file.  

oname ‘neptune-8PE’ The name of the output DPLR-readable grid file is ‘neptune-
8PE’ – a file convention that notes how many processors were 
used to run the problem – in this case, 8.  

nsin 5 Ignored value (not trying to create a restart file from a non-
DPLR pslx input file) 

nerin 0 Ignored value (not trying to create a restart file from a non-
DPLR pslx input file) 

nevin 1 Ignored value (not trying to create a restart file from a non-
DPLR pslx input file) 

necin 0 Ignored value (not trying to create a restart file from a non-
DPLR pslx input file) 

ntbin 0 Ignored value (not trying to create a restart file from a non-
DPLR pslx input file) 

 

3.3.3   Neptune Output Summary  

When you run FCONVERT (See Section 3.1, Step 4), the program provides an on-
screen summary of the actions performed along with some supplemental information 
as shown below.  
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 fconvert 
 NASA Ames Version 4.01.0 
 Maintained by Mike Wright;  last modified: 02/05/09 
 ********************************************* 
  
 Reading plot3d asciifile  neptune.g 
 Writing parallel XDR-formatted file  neptune-8PE.pgrx 
  
 Input file does not include dummy cells 
 Output file includes dummy cells 
 
Input file is 3D 
 
 Input Block  1 size: il = 32; jl = 16; kl = 64 (32768 cells) 
 Input Block  2 size: il = 48; jl = 64; kl = 64 (196608 cells) 
  
 Largest block is: 
      nb = 2; original block = 2 
      il = 48; jl = 64; kl = 64 
   
 Read input interface file neptune.inter 
 Found 3 valid zonal interface blocks in   2 block grid file 
 
 Decomposing block   1 into  1: ibrk=  1 jbrk=  1 kbrk=  1 
 Decomposing block   2 into  7: ibrk=  7 jbrk=  1 kbrk=  1 
 ----------------------------------------- 
                  creating   8 total blocks 
 
   8 Blocks;  Total load imbalance =  12.50% 
  
 Output Block 1 size: il = 32; jl = 16; kl = 64 (32768 cells) 
 Output Block 2 size: il =  7; jl = 64; kl = 64 (28672 cells) 
 Output Block 3 size: il =  7; jl = 64; kl = 64 (28672 cells) 
 Output Block 4 size: il =  7; jl = 64; kl = 64 (28672 cells) 
 Output Block 5 size: il =  7; jl = 64; kl = 64 (28672 cells) 
 Output Block 6 size: il =  7; jl = 64; kl = 64 (28672 cells) 
 Output Block 7 size: il =  7; jl = 64; kl = 64 (28672 cells) 
 Output Block 8 size: il =  6; jl = 64; kl = 64 (24576 cells) 
  
 Largest block is: 
      nb =   1; original block =    1 
      il =   32; jl =   16; kl =   64 
--------------------------------------------- 
 Summary (grid dimensions for CFD input deck): 
 Hardwired to run on   8 processors 
 
      Block   1; nx =  32; ny =  16; nz =  64 
      Block   2; nx =  48; ny =  64; nz =  64 
 
 ==> Finished writing output file neptune-8PE.pgrx 
Done! 
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3.3.4 Neptune Output Summary Information 

In addition to verifying the steps undertaken by FCONVERT, the output summary 
also provides specific information about how the master blocks from the input grid 
file were decomposed into a set of output blocks suitable for parallel processing by 
DPLR. 

In this sample case, FCONVERT was told how to break the master blocks when 
iaction was set to = 1 and the ibrk, jbrk, and kbrk values for each master 
block were entered into the input deck (See Section 3.3.1.). These settings told 
FCONVERT to leave the first master block alone (to make 1 block) and break the 
second master block 7 times in the i direction (to make 7 blocks). This created a total 
of 8 blocks in the output XDR grid file and thus required or ‘hardwired’ the file to 
be run on a minimum of 8 processors. 

If iaction had been set to =2, the user would have had to know, in advance, how 
many processors their system could dedicate to running the problem and enter that 
value into nbreak. FCONVERT would then have calculated the best numerical 
solution for breaking the input grid into at least the number of blocks equal to the 
value in nbreak and displayed the resulting block dimensions and load imbalance 
information in the output summary. 

See Section 3.5 for more information on parallel decomposition and load imbalance.  

Tech Tip: Although FCONVERT-generated solutions for block decomposition are 
computationally accurate, they may not be the most practical way to handle grids for 
complex object geometries. Therefore, most DPLR users choose to keep iaction=1 and 
determine from their own experience the best way to break the master blocks in the input 
grid, recognizing that there are algorithmic limits on how small parallel blocks should be, 
and thus determining how many processors the problem will require.  

3.4 Parallel Decomposition 

DPLR is a distributed-memory parallel code, so solutions for each grid block are 
computed simultaneously rather than sequentially. Multi-block information transfer is 
handled through MPI data constructs, so it is necessary to run on at least as many 
processors as blocks in the original computational grid. Running on more processors 
than master grid blocks is often advantageous, since the largest blocks can then be 
split (decomposed) into smaller pieces, increasing computational efficiency and 
decreasing turnaround time. This decomposition, if required, is the most common 
reason for running FCONVERT. 
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Although the “ideal” number of processors to use for a given job is a matter of 
personal preference, it is generally a function of the total number of processors that 
are available and the number that are necessary to achieve a reasonable measure of 
computational efficiency referred to as “load balance”.  

Once the desired number of processors to use during the DPLR run has been 
determined, the plot 3D input grid file must then be decomposed into a minimum of 
one block per processor.  

As discussed in Section 3.2, parallel decomposition of an input grid file can be 
accomplished in two ways: 

• Setting iaction=1, manually determining the best strategy for decomposing 
the input grid file, then entering one set of decomposition factors in the ibrk, 
jbrk, and kbrk flags in the FCONVERT input deck for each block in the 
input file  

    or 

• Setting iaction=2, entering the number of blocks to decompose the input 
file into (minimally equal to the number of processors that will be used for the 
DPLR run) in the nbreak flag, and allowing FCONVERT to automatically 
determine the best decomposition strategy for the input grid file.  

Although the choice of setting is dependent upon the situation, choosing iaction=1 
can have significant advantages, including: 

• More direct control over the decomposition strategy to ensure minimal 
generation of additional zonal interfaces and to avoid breaks in the body-
normal direction – two conditions that support the rapid convergence of 
DPLR Code solutions. 

• Avoiding the need to generate the DPLR input deck prior to running 
FCONVERT (as is the case when iaction=2. See Chapter 6 for more 
information on this requirement.) 

3.4.1  Load Balance 

Load balance is a measure of the computational efficiency, and thus the operational 
quality, of a grid decomposition strategy.  

Expressed in terms of imbalance, this metric is computed as the average amount of 
wasted CPU time that will result if the proposed grid decomposition strategy is 
employed to prepare the input grid for parallel processing.  

Ideally, as the load imbalance value for a decomposition strategy approaches zero, the 
computational efficiency, and thus quality/desirability of the strategy increases.  
In practice , however, things are often more complex and accepting a certain amount 
of load imbalance can be preferable to a decomposition strategy that introduces an 
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unacceptable number of zonal interfaces or one that requires block breaks in the body 
normal direction.  
In most cases, using the load imbalance metric, estimated and reported by 
FCONVERT whenever a grid file is processed, is usually sufficient to provide a first-
order estimate of the quality of a decomposition strategy.  

Tech Tip: To test the load balance for a decomposition strategy before using it in a 
DPLR run, set iaction=0 and nbreak = the maximum number of blocks in the 
strategy. FCONVERT will then output the most load balanced way to decompose the 
input grid into that number of output blocks. 

3.4.2  Parallel Recomposition 

Although this action is rarely used, FCONVERT can be used to “recompose” a grid 
file that was previously decomposed by setting iaction=3, nborig= number of 
blocks in the recomposed file, and init=1.  

Tech Tip: Although FCONVERT will recompose an input grid file, it does not 
recreate the zonal interface file for the recomposed file. Therefore, it is important to 
save the original interface file to avoid having to recreate it after the recompose is 
completed.  

3.5 Mesh Sequencing 

Computational grids composed of a large number of data points typically take longer 
to solve than grids with fewer points. As a result, grids used for initial solutions of 
CFD problems are sometimes coarsened or “sequenced” to reduce the number of 
points while maintaining the topology of the mesh. After an acceptable “first guess” 
is acquired, the grid is restored in a step-wise fashion to its original number of points 
for final solution and post-solution data reporting.  
Also, there may be a problem-specific advantage to obtaining a solution on a coarser 
mesh, as in the case of wake flow problems or for performing grid convergence 
studies.  
For both these reasons, an option is included in FCONVERT to sequence (coarsen) a 
grid, radiation, boundary condition, or restart file, and create a new output file that 
maintains point-matching fidelity.  
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3.5.1  Sequencing an Input Grid 

To sequence an input grid, set imseq=1, then enter a sequencing factor in iseq, 
jseq, and kseq for each master block in the grid. A sequencing factor of n implies 
that the block should be coarsened n times in that direction.  
For example, a sequencing record of: 

iseq    jseq    kseq 

  3       2       1 

tells FCONVERT to retain one out of every 3 points in the i direction, one out of 
every 2 points in the j direction, and every point in the k direction of the block being 
described. 

To sequence every block in the grid by the same set of factors, set imseq=2, then 
enter only one set of sequencing factors in the iseq, jseq, and kseq input flags. 

If the input grid has zonal interface information associated with it, these data will be 
automatically sequenced along with the grid file. Once you have appropriately 
sequenced the grid file, boundary condition file (if any), and radiation file (if any), 
you can set up and run the problem independently from the fine grid solution.  

Tech Tip: Be sure that the sequencing strategy you choose for multi-block problems 
results in a coarsened grid that remains point matched. While failure to produce a 
point-matched grid across zonal interfaces will not result in a runtime error in 
FCONVERT, it will cause problems in the DPLR run. 

3.5.2  Upsequencing Restart Files 

After using a sequenced grid file to achieve a good initial solution in a relatively short 
period of computing time, you can proceed to restoring grid points and refining your 
solution by using FCONVERT to upsequence the restart file. 

To upsequence the restart file generated with the coarsened grid: 

Step 1:  Open and name a new FCONVERT input file. 

Step 2:  Set  ifile=2, inform=11, imseq=-2, iseq, jseq, kseq to 
values used during sequencing, iname= coarsened 
restart file name, oname= new (uncoarsened) restart 
file name (*.pslx). 

Step 3:  Save file to your working directory. 
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Step 4:  Run FCONVERT < new FCONVERT input file. 

Step 5:  Open and name another new FCONVERT input file. 

Step 6:  Set  ifile=1, inform=2, imseq=0, iname= original plot3d 
grid filename, oname= new (unsequenced) XDR parallel 
grid file name (*.pgrx). 

Step 7:  Save file to your working directory. 

Step 8:  Run FCONVERT < second new FCONVERT input file. 

Result:  Your working directory now contains an upsequenced restart file that can be 
used to start a new solution run with the DPLR-readable grid file containing the 
original number of data points.  

Tech Tips: 
1). Starting a new solution run with a restart file is always more time-efficient than 
starting an initial run. Thus, this “quick” method of obtaining a valid restart file can 
significantly shorten the time you will need to obtain a solution for the first run of a 
CFD simulation.  
 
2). If you use different levels of sequencing to obtain restart files, be sure to create 
and save a new pgrx grid file from the original plot3d grid file to match the number 
of points in the restart file used for each DPLR run. See Section 7.1 and 7.2  for more 
information on DPLR Workflow and Workflow Shortcuts. 
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4.0 Introduction 

DPLR2D and DPLR3D are the main CFD solver applications provided in the DPLR 
Code Distribution Package. The two programs are closely related - sharing a common 
input deck format and most of the physics and numeric subroutines and libraries. 
However, two-dimensional or axisymmetric problems must be solved (and run much 
faster) with the DPLR2D executable whereas DPLR3D must be used for solving 
three-dimensional problems.  

For this manual, the term DPLR will be used to refer to whichever solver application 
(DPLR2D or DPLR3D) is chosen for the problem under consideration.  

4.1 Running DPLR 

Step 1:  Open the text editor program for your system.  
Action:  At the command line prompt, open: 

        /[path to your cfdinput directory]/ generic.inp 

Result:  A generic input file or “deck” appears on screen, with  
   place-holder default values. To start with a blank deck,  
   remove the values as shown on the following page.  

Step 2:  Enter appropriate, problem-specific values for each of the input variables 
or “flags”. (See Section 4.3 for a description of DPLR input flags and a list 
of allowable values.) 

Action:  For each flag, type: 
    allowable, problem-specific value  

Result:  Input deck contains sufficient information for DPLR to  
  process an input grid file and develop a solution to the  
  problem.  

Tech Tip: Take special care to preserve the line spacing in the 
file as you enter new values and/or replace default values with 
problem-specific ones. If lines are added to or subtracted from 
the input deck file, DPLR will not be able to read it accurately.  
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INPUT DECK FOR DPLR2D/DPLR3D CODE v4-01-1 

 
gname,fname,bname,rname,dname,cname 
'mygridname' 
'myrestartname' 
'mybcname' 
'myradname' 
‘myconnectname’ 
'PATH/cfdinput/air5sp5.chem' 
 
     nblk     igrid     irest      ibcf     iradf     nfree     iinit 
 
 
     ivis       ikt       ikv     ivmod     idmod     itmod     islip  iblow 
 
 
   icatmd    ireqmd     twall      epsr    gamcat     xxxx     vwall 
 
 
    ichem      ikeq      ivib      irot      ieex       iel      irad   ipen 
 
 
   itrmod    itrans     trloc     trext     itshk 
 
 
    istop     nplot     iplot      iaxi      ires 
 
 
    igdum       kbl       kdg    istate     iresv   
 
 
   xscale       ils     Le/Sc   LeT/ScT      prtl     prtlT 
 
 
   xxxx         xxxx     rvr    resmin 
 
 
================================================================ 
 SPACE MARCHING 1D IMPLEMENTATION 
================================================================ 
 
   ispace     dxmin   slength     nxtot 
 
 
================================================================ 
 TIME ACCURATE & STATISTICAL OPTIONS 
================================================================ 
 
itime     lmax     dttol    tfinal   tfac 
 
 
ifstat    iaero 
 
 
================================================================ 
 GRID ADJUSTMENT/ALIGNMENT/MORPHING 
================================================================ 
  
  igalign    ngiter    nalign     i1stadpt 
 
  imedge    imradial   ngeom     ismooth 
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  fs_scale   ds_mult   gmargin 
 
 
    ds1    cellRe     ds1mx     ds2fr 
 
 
================================================================ 
 OVERSET GRID IMPLEMENTATION 
================================================================ 
 
   iover     ioint    xxxxx    
 
 
================================================================ 
 BLOCK #1 
================================================================ 
 
   ntx     nty      ntz    iconr     isim    ifree   initi  ibadpt 
 
 
   iflx      iord      omgi      ilim     idiss      epsi 
 
 
   jflx      jord      omgj      jlim     jdiss      epsj 
 
 
   kflx      kord      omgk      klim     kdiss      epsk 
 
 
   iextst    nrlx    ildir     ibcu    iblag    ilt  ibdir   cflm 
 
 
  Boundary condition type [ibc]: 
    imin imax jmin jmax kmin kmax 
 
 
================================================================ 
 Freestream Specification #1 
================================================================ 
 
     irm    density    M/Re/V     cx      cy      cz 
 
 
     Tin      Trin       Tvin      Tein 
 
 
     turbi     tkref 
 
 
     subp0     subT0      pback 
 
 
      cs        (Species order: N2 O2 NO N O) 
 
================================================================ 
 List of CFL numbers or timesteps for ramping 
================================================================ 
 
-1 

Figure 4-1  DPLR Input Deck 
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Step 3:  Save the input deck file.   
Action:  At the command line, type: 

    save ‘yourdplrinputfilename.inp’  

Result:  The input deck for your problem is saved.  

Step 4:  Run DPLR.  
Action:  At the command line prompt, type: 

   mpirun – np X (-machinefile machine.inp)  
   $path/dplr2d (or dplr3d) <     
   yourdplrinputfilename.inp 

Result:  DPLR performs the simulation on ‘X’ number of processors 
   for the number of iterations specified in the input deck to 
   achieve a solution. During the run, diagnostic output called 
   the “standard out” (STDOUT), is echoed to the screen to 
   provide feedback on the action(s) being performed,  
   including any warning messages. If a fatal error is  
   encountered, a descriptive message will be displayed in the 
   STDOUT and the run will terminate.  
 
   When a specified convergence level is reached or you halt 
   the run, an  output solution (or restart) file [.pslx] is  
   created along with an on-screen run summary. (See Section 
   4.3 for an example of a problem-specific DPLR input deck 
   and run summary.) 
 
Tech Tips:  
1) The run command above works for MPICH with a single type of 
processor. Different commands may be required for different MPI 
implementations or execution on heterogeneous clusters. Consult your 
system administrator for details on MPI program execution on your 
particular machine. 
 
2) If a machinefile is required by your computer architecture, it consists 
simply of an ASCII listing of available machine (node) names, followed by 
the number of processes to start on each node. Example: 
 
 node001:2        or  node001 slots=2 
 node002:2    node002 slots=2 
 node003:2    node003 slots=2 
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Both machine files show that the system can accept a job requiring up to 6 
processors. 
 
3) To avoid slow performance, hangs or crashes, be sure that: 
 * Nodes listed in the machine file are available for use and free of  
  other jobs  
 * Your job does not require more processors or memory than the  
  machine file says the system can accept.  

4.2 Input Flags for DPLR 

Input flags for DPLR are discussed below in the order they appear in the deck.  

Input Filenames - These are external input files used by DPLR at runtime. Although 
these files can be specified using relative or absolute pathnames (with the exception 
of the chemistry input file which requires an absolute pathname), you may find that 
placing them in your problem-specific working directory creates a more productive 
computational environment for DPLR solutions.  
 
Depending on the format of the file, a standard suffix will be assumed. See Section 
9.2 for a list of file types and associated default suffixes. 

  gname  - Specifies the name of the input XDR parallel grid file, and 
      will typically have the suffix “.pgrx”. If the file was  
      prepared using FCONVERT, the name is specified in the 
      oname flag of the FCONVERT input deck. This file  
      contains not only the xyz coordinates of all the grid blocks 
      in the simulation, but also information about block  
      connectivity and the desired decomposition for processing. 
      This file is required and must already exist when the  
      simulation run begins.  

  fname  - Specifies the name of the input restart file, and will  
      typically have the suffix “.pslx”. This is a required file 
      name. If this is a new simulation, DPLR will create the file 
      to go with the name specified here. If the simulation is a 
      rerun, the file specified here should already exist. See  
      Section 6.6 for more information  on restart files.  

  bname  - Specifies the name of the input boundary condition file, 
      and will typically have the suffix “.pbca”. This file is not 
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      required to run a simulation, but having one gives you  
      increased flexibility in specifying point-by-point  
      parameters as opposed to the standard block face  
      parameters. See Section 6.4 for more information on  
      boundary condition files.  

  rname  - Specifies the name of the input surface radiation file, and 
      will typically have the suffix “.prdx”. This file is optional 
      and read only if volumetric radiation data are input and the 
      irad flag is set to =1. If the file is not required for the  
      simulation, use “none” as the filename.  

  dname  - Specifies the name of the input overset connectivity file 
      and will typically have the suffix “.dci” if ioint=1. This 
      file is only required in iover=1. If overset logic is not  
      enabled, use “none” as the filename.  

  cname  - Specifies the name of the input chemistry file, and will  
      typically have the suffix “.chem”. This file is required and 
      must exist in the “cfdinput”  directory that is created  
      when you install the DPLR Code Package. See Section 2.4 
      for information on the directory and file structure of the 
      DPLR Code Package and  Section 6.7 for more information 
      on chemistry files. 

Tech Tip: Unlike other input files, the absolute pathname to this 
file must be specified in the input deck.  

Global Modeling Flags – These flags are for values that remain constant for all 
blocks of the simulation. 

  nblk  - Specifies the number of master grid blocks in the  
      simulation. This is the same value as nborig in the  
      FCONVERT input deck and will be less than or equal to 
      the number of processors on which the job is run. 

  igrid  - Specifies the format of the input grid file (gname).  
      Allowable values are:  

1 Parallel archival file (native unformatted) 
       11 Parallel archival file (XDR format) (Recommended) 
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      21 Parallel archival file (ASCII) 

  irest  - Specifies the format of the restart file (fname).   
      Allowable values are:  

1 Parallel archival file (native unformatted) 
        11 Parallel archival file (XDR format) (Recommended) 
      21 Parallel archival file (ASCII) 

  ibcf  - Specifies the format of the boundary condition (BC) file 
      (bname), if any. Allowable values are:  

0 Do not read a BC file 
1 Parallel archival file (native unformatted) 

      11 Parallel archival file (XDR format) 
      21 Parallel archival file (ASCII) 

  iradf  - Specifies the format of the input radiation file (rname), if 
      any. Allowable values are:  

0 Do not read a radiation file 
1 Parallel archival file (native unformatted) 

      11 Parallel archival file (XDR format) 
      21 Parallel archival file (ASCII) 

  nfree  - Indicates the number of freestream specifications (i.e. areas 
      of the freestream with preconfigured flow conditions) that 
      are characterized in the DPLR input deck.  

  iinit  - Specifies how to initialize the simulation. Allowable values 
      are:  

    0  Start all blocks by initializing to freestream values 
     in the specification identified in the block 

1 Restart from saved file 
2 Start with a stagnant interior at low pressure 
3 Start with artificial boundary layer in place 

       10 Block-by-block initialization using iconr flag 
      11 Restart from saved file, reset nit and etime  
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Tech Tip: When you are running a simulation for the very first 
time, set iinit=0. Thereafter, set iinit = 1 unless problem 
specifics require use of one of the other available options.  

  ivis  - Specifies the equation set to solve. Allowable values are:  

0 Euler simulation (neglect Navier-Stokes terms) 
1 Laminar full Navier-Stokes simulation 
2 Turbulent full Navier-Stokes simulation 

        11 Laminar Navier-Stokes simulation (thin-layer)  
       12 Turbulent Navier-Stokes simulation (thin-layer) 

Tech Tips: 
1) DPLR is a full Navier-Stokes solver and recommended to be 
used as such. By setting ivis=0, you can run the problem in 
Euler mode, but the run time per iteration will increase 
significantly and viscous boundary conditions should not be 
specified.  
2) Running DPLR in thin-layer mode is also not recommended 
because there are no time or memory savings in doing so. 
3) The turbulence model to be employed when ivis=2 is 
determined by the itmod flag. 

  ikt  - Specifies the model used to compute translational thermal 
      conductivity. An appropriate setting is required for all  
      viscous simulations. Allowable values are:  

1 Use the model that is consistent with ivmod 
2 Use constant Prandtl number expression 

Tech Tip: ikt=1 is the preferred setting for all practical 
applications.  

  ikv  - Specifies the model used to compute vibrational thermal 
      conductivity. An appropriate setting is required for all  
      viscous simulations with vibrational nonequilibrium  
      (ivib=1, 3, 4). Allowable values are:  

 1 Standard expression with ev gradients 
 2 Hard sphere approximation with ev gradients 
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    11 Standard expression with Tv gradients (preferred 
  setting for all practical applications.) 
    12 Hard sphere approximation with Tv gradients  

Tech Tips:  
1). Hard sphere approximations are provided only for 
comparison to legacy codes and should not be used. 
2). The choice between ev and Tv gradients is somewhat 
arbitrary, and scales the resulting vibrational thermal 
conductivity (kv) by the vibrational specific heat (

€ 

Cvvib
): 

€ 

qv =κ
∂Tv
∂η

≈κ
∂Tv
∂ev

∂ev
∂η

= ′ κ 
∂ev
∂η

 

€ 

′ κ v =κ /Cvvib
 

For most simulations there is little difference between ikv = 1 
and ikv = 11. However, for cases where the flow is nearly 
completely dissociated, using energy gradients becomes slightly 
unstable because there is little energy in this mode. 

  ivmod  - Specifies the baseline model used to compute mixture  
      viscosity and thermal conductivity. An appropriate setting 
      for ivmod is required for all viscous simulations.  
      Allowable values are:  

 1 Blottner/Wilke model with an Eucken relation 
  (inaccurate at elevated temperatures) 
 2 Sutherlands Law and constant Prandtl number 
  (available only for perfect gas flows but a  
  reasonable estimate at low to moderate   
  temperatures) 
 3 Yos approximate mixing rules (preferred model 
  for all reacting gas simulations) 
 4 Full first-order Chapman Enskog   
  multicomponent  (NOT WORKING in DPLR  
  4.01.1) 
    11 Blottner/Armaly-Sutton with an Eucken relation 
  (requires composition-dependent tailoring of the 
  free parameters for maximum accuracy) 
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    12 Keyes’ Equation and constant Prandtl number 
  (should be used only where the freestream  
  temperature is very low (<100K) 
 

Tech Tip: ivmod=3 has been shown to be a reasonable and 
general approximation to the true Chapman-Enskog fluxes.  

  idmod  - Specifies the baseline model used to compute species  
      diffusion coefficients. An appropriate setting for idmod is 
      required for all multi-species viscous simulations.  
      Allowable values are:  

       0  No diffusion (single species) 

 1 Constant Lewis/Schmidt number (assumes all 
  species have the same diffusion coefficient) 
 2 Bifurcation model (developed to model boundary 
  layer diffusion of carbon-based ablators; requires as 
  input least squares fit coefficients for each species) 
 3 Self-Consistent Effective Binary Diffusion  
  (preferred model for all multi-species calculations, 
  but somewhat unstable for separated flows. See Tech 
  Tip below.) 
 5 Iterative multicomponent (NOT WORKING in 
  DPLR 4.01.0) 
    11 Constant Lewis/Schmidt number, ignore  
  ambipolar diffusion (widely used, but often  
  inaccurate; provided for comparison to heritage 
  codes.) 

    12 Bifurcation model, fits obtained with  
  assumption of ambipolar diffusion  
  (developed to model boundary layer diffusion of  
  carbon-based ablators; appropriate when using  
  coefficients provided by Olynick) 

    13 Self Consistent Effective Binary Diffusion,  
  ignore ambipolar diffusion (provided for  
  comparison to heritage codes) 

Tech Tip: The preferred model for all multi-species calculations 
is the Self-Consistent Effective Binary Diffusion (SCEBD) model 
of Ramshaw and Chang (idmod=3,13), which has been shown 
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to give results in good agreement with exact solutions of the 
Stefan-Maxwell equations. This model requires as input collision 
integral data for each binary interaction in the mixture. These 
data are imported to DPLR via the “gupta.tran” physical 
model file in the cfdinput directory. However, it does tend to 
be unstable for separated flows, particularly while the 
recirculation region is being formed. Therefore, for separated 
flows, start the solution with idmod=1 and an appropriate 
Schmidt number, then switch to idmod=3 once the flow 
structures have stabilized. 

  itmod  - Specifies the turbulence model to be employed. An  
      appropriate setting for itmod is required for all turbulent 
      simulations indicated by ivis=2,12. Allowable values 
      are:  

 0 Laminar Flow (non-turbulent) 
 1 Baldwin-Lomax Model (reasonable results for 
  attached flows with a favorable pressure gradient on 
  both blunt and slender bodies) 
1000 Spalart-Allmaras Model (no compressibility  
  correction)  
1001 Spalart-Allmaras Model (Catris&Aupoix comp.)  
1002 Spalart-Allmaras Model (Secundov comp.)  
1050 Detatched Eddy Simulation  with Spalart- 
  Allmaras Model (Hybrid Reynolds Average Navier 
  Stokes (RANS) Large Eddy Simulation (LES) model 
  – no compressibility correction) 

1051 Detatched Eddy Simulation with Spalart- 
  Allmaras Model (Hybrid RANS LES model –  
  Catris&Aupoix  comp.) 

1052 Detatched Eddy Simulation with Spalart- 
  Allmaras Model (Hybrid RANS LES  model – 
  Secundov comp.) 

2001 Menter SST Model (no compressibility  
  correction)  
2002 Menter SST Model (compressibility   
  correction #1)  
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2003 Menter SST Model (compressibility   
  correction #2 - recommended model for separated 
  flows and flows with adverse pressure gradients)  

2004 Menter SST Model (compressibility corrections 
  with further modifications)  

2011 Overflow 2.0a “version” of SST  

2021 Menter SST 2006 K-W model (no   
  compressibility) 

2022 Menter SST 2006 K-W model (compressibility 
  correction #1) 

2023 Menter SST 2006 K-W model (compressibility 
  correction #2) 

2024 Menter SST 2006 K-W model with further  
  modifications and improvements 
 

2051 Detatched Eddy Simulation with Menter SST 
  Model (Hybrid RANS LES model – no   
  compressibility correction)  

2052 Detatched Eddy Simulation with Menter SST 
  Model  (Hybrid RANS LES model –compressibility 
  correction #1)  

2053 Detatched Eddy Simulation with Menter SST 
  Model (Hybrid RANS LES model - compressibility 
  correction #2 - recommended model for separated 
  flows and flows  with adverse pressure gradients)  

2054 Detatched Eddy Simulation with Menter SST 
  Model with further modifications and  
  improvements 

3001 1998 K-W modified 3-equation, for Lag  
  development (NOT WORKING in DPLR 4.01.1.)  
3002 Lag Turbulence model (NOT WORKING in DPLR 
  4.01.1)  

  islip - Specifies the model to be used for slip-wall boundary  
     conditions.  Allowable values are:  

 0 Disable wall slip (recommended setting. See Tech 
  Tip below.) 
 1 Maxwellian slip model   
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Tech Tip: Slip walls are not generally employed for simulations 
in the hypersonic or supersonic continuum. DPLR has currently 
implemented velocity and temperature slip models, but not 
species density (mole fraction) slip conditions. The slip wall 
model currently used in DPLR has not been fully validated yet, 
and should therefore be used with caution. 

  iblow - Specifies the model to be used for blowing-wall boundary  
     conditions.  Allowable values are:  

 0 Disable wall blowing (usual setting) 
 1 Specified wall blowing velocity (m/s)  
 2 Specified unit mass flow rate (kg/m2/s)  

Tech Tip: If blowing wall boundary conditions are taken into 
account, vwall>0 defines a blowing wall and vwall<0 
defines a sucking wall. Pointwise blowing rates can be specified 
using the pointwise boundary condition file (.pbca) (See Section 
6.3 for more information on boundary condition files). Complex 
blowing models can be characterized using the material 
response boundary conditions icatmd, ireqmd, twall, 
epsr, and gamcat discussed below, 

  icatmd  - Specifies the model to be used for wall catalysis. 
       Allowable values are:  

 0 Disable wall catalysis (wall is assumed to be non-
  catalytic and the gradient of all species mole  
  fractions is assumed to be zero.) 
 1 Constant γ, homogeneous model (value for γ must 
  be with the gamcat flag. ) 
 2 Constant γ, fully catalytic to ions but supports 
  only homogeneous surface reactions such as  
  N + N → N2 & O + O → O2. 
3-98 Material specific surface kinetics (reaction rates 
  for different materials are experimentally obtained 
  and given in the “catalysis.surf” file in the 
  cfdinput  directory) 
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   99 Input material map  (allows DPLR to access a  
  surface catalytic map specifying pointwise material 
  properties in a boundary condition file) 

 100 Supercatalytic wall (assumes chemical  
  composition at the wall is identical to the  
  freestream, resulting in conservative enthalpy  
  estimates appropriate for design studies)  

 101-198 Supcercatalytic with specified freestream  (most 
  appropriate for high enthalpy simulations in ground 
  test facilities) 

 200 Mitcheltree CO2 model (developed for the Mars-
  like C02 atmosphere; models diffusion limited  
  recombination pathways) 

 201 Enhanced Mitcheltree CO2 model (additional 
  recombination pathways in this model may make it 
  more appropriate for higher flow enthalpies.) 

 300 Generalized CO2 catalysis (Bose/Wright) (used 
  in sensitivity analyses, not design work) 

999 Equilibrium chemistry boundary condition  

     1001 Parks Cabron Oxidation/Sublimation  

     1002 Shuttle STS Carbon Oxidation  

 

Tech Tip: Catalysis refers to how the wall surface facilitates 
chemical reactions that can deposit energy on the vehicle 
surface during flight. Much work is currently being done to 
enhance empirical knowledge of material responses under 
hypersonic flight conditions in a variety of atmospheric flows. As 
the materials knowledge base increases, DPLR can be used to 
simulate how the overall flow environment contributes to and, in 
turn, is affected by chemical reactions on flight vehicle surfaces.  

  ireqmd  - Specifies the model to be used for surface radiative  
       equilibrium. Allowable values are:  

 0 Disable radiative equilibrium  
 1 Constant emissivity (ε) model (value for ε set 
  with the espr flag) 
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3-98 Material specific ε  (emission rates for  different 
  materials are experimentally obtained and given in 
  the “emission.rad” file in the cfdinput  
  directory) 
   99 Input material map  (allows DPLR to access an 
  emission radiation map specifying pointwise  
  material properties in a boundary condition file) 

 101-199 Material specific ε with a maximum wall  
  temperature  (used to model physical material  
  temperature limits during initial design analysis. 
  Maximum temperature specified with twall flag. 
  DPLR will automatically switch between an  
  isothermal and radiative equilibrium wall on a  
  pointwise basis if this option is used.) 

201-209 Material specific ε with a view factor correction 
  (allows you to modify the surface emissivity in a  
  pointwise manner to enable a simple view-factor 
  correction to the hemispherical emissivities for  
  internal and/or cavity flows.) 

Tech Tip: A radiative equilibrium wall is a common design 
model that assumes all energy incident to the surface of a vehicle 
is reradiated to space at a rate consistent with the emissivity of 
the wall material. As the materials knowledge base increases, 
DPLR can be used to simulate how the overall flow environment 
contributes to and, in turn, is affected by radiative emissivity of 
vehicle surfaces during hypersonic flight.  

  twall  - Specifies the wall temperature to be used for isothermal 
      temperature-capped radiative equilibrium wall   
      simulations. Also specifies wall temperature if  
      ireqmd > 100. 

  epsr  - Specifies the constant value of emissivity (ε ) to be used for 
      radiative equilibrium wall simulations (ireqmd=1) 

  gamcat - Specifies the constant value of catalytic effcienty (γ ) to be 
      used for catalytic wall simulations (icatmd=1,2) 
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  xxxx  - Not used in DPLR 4.01.0.  

  vwall  - Specifies the wall velocity or blowing rate. Allows you to 
      impose a constant blowing (vwall>0) or sucking  
      (vwall<0) when used with the iblow flag. If iblow=1, 
      expressed as velocity (m/s) . If iblow=2, expressed in  
      mass flux per unit area  (kg/m2/s). 

  ichem  - Specifies the model employed for chemical reactions in the 
      gas phase. Allowable values are:  

 0 Frozen chemistry (no chemical reactions occur in 
  the flowfield)  
 1 Finite-rate chemistry (Arrhenius style reaction 
  kinetics used to model the chemistry are given in the 
  “.chem” file specified with the dname flag and 
  found in the cfdinput/directory.) 

Tech Tip: DPLR does not currently support equilibrium 
chemistry.  

  ikeq  - Specifies the model used for computing equilibrium  
      constants. This is required when ichem=1. Allowable  
      values are:  

    -1 No reverse reactions (debugging tool that turns off 
  reverse reactions completely; should not be used for 
  actual simulations)  
 1 Park 1985 fits (not recommended for use due to 
  potential instabilities in some simulations) 

 2 Mitcheltree 1994 fits (not recommended for use 
  due to potential instabilities in some simulations) 
 3 Park 1990 fits (n = 1016/cm3) (not recommended 
  for use due to potential instabilities in some  
  simulations) 
 4 Park 1990 fits (n = 1019/cm3) (not recommended 
  for use due to potential instabilities in some  
  simulations) 
 9 Computed from NASA Lewis thermodynamic 
  fits (1994) (preferred method of computing  
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  equilibrium constants using Gibb’s free  energy  
  method where species enthalpy and entropy are  
  computed using curve fit expressions given by  
  Gordon and McBride with the final equilibrium  
  constant determined via the van Hoff’t equation.) 

       11-19 Same as 1-9 with ramped limiter (slowly  
      approaches more aggressive limiter value ; for  
      advanced users only) 
         21-29 Same as 1-9 with aggressive limiter (begins with 
     larger limiter as default as used in simulations of the 
     Fire-II entry vehicle at early trajectory points: for 
     advanced users only)     
          31-39 Same as 1-9 with conservative limiter (scales 
     down the 1-9 model selected by 75%) 

Tech Tip: Equilibrium constants used to compute the reaction 
kinetics for chemical reactions in the gas phase are computed by 
default in DPLR via Arrhenius expressions. The curve fit model  
offered in ikeq=9 has been found to yield the most stable 
equilibrium constants for most simulations. However, in those 
situations where the equilibrium constants are either very small 
or very large, e.g. ionized wake flow simulations and low density 
ionized flow simulations with non- or weakly catalytic cold 
walls, DPLR offers ways to minimize the potential solution 
instability that may occur with these extreme values. By setting 
ikeq=11-19, DPLR slowly increases the value of the constant 
limiter as the solution progresses. By setting ikeq=21-29, 
DPLR begins with a larger limiter as the default value to avoid 
computed heat transfer at the vehicle surface being too small. By 
setting ikeq=31-39, DPLR scales down the 1 – 9 model 
selected by 75%.  Although extreme situations such as these are 
unlikely to occur during routine use of DPLR, the capability of 
dealing with them does exist for the advanced user who needs to 
do so. 

  ivib  - Specifies the model used to compute the vibrational energy 
      component of the gas. Allowable values are:  

 0 Neglect vibrational energy  
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 1 Vibrational nonequilibrium, single Tv   
  (recommended for all planetary and high-velocity 
  Earth entry flows) 
 2 Vibrational equilibrium using statistical  
  mechanics  
 3 Complete thermal equilibrium using NASA  
  LeRC curve fits (based on data from NASA’s Lewis 
  Research Center’s (now Glen Research Center)  
  computer program CEA (NASA Reference  
  Publication 1311). Can be employed for low altitude 
  hypersonic flight or some Shuttle-type reentry  
  trajectories where vibrational nonequilibrium is not 
  very important) 
 4 Two temperature model using LeRC curve fits 
  (Tr = Tel = T) (not recommended) 

 5 Two temperature model using LeRC curve fits 
  (Tr = T; Tv = Te = Tel)  (NOT WORKING in DPLR 
  4.01.0) 
    11 Virbrational nonequilibrium, multiple Tv (NOT 
  WORKING in DPLR 4.01.1) 

Tech Tip: If ivib=3 or 4 , the values of irot, ieex, and iel 
are ignored because these settings uniquely determine the 
apportionment of internal energies among the various modes. 

  irot  - Specifies the model used to compute the rotational energy 
      component of the gas. Allowable values are:  

 1 Rotational nonequilibrium, single Tv  (mainly 
  used for radiation studies of high altitude flows) 
 2 Rotational equilibrium using statistical  
  mechanics (recommended setting)  
 3 Complete thermal equilibrium using NASA  
  LeRC curve fits (based on data from NASA’s Lewis 
  Research Center’s (now Glen Research Center)  
  computer program CEA (NASA Reference  
  Publication 1311). 

 4 Two temperature model using LeRc curve fits 
  (Tr = Tel = T; Tv = Te ) (not recommended) 
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 5 Two temperature model using LeRC curve fits 
  (Tr = T; Tv = Te = Tel)  (NOT WORKING in DPLR 
  4.01.0) 
    11 Rotational nonequilibrium, multiple Tr (NOT  
  WORKING in DPLR 4.01.1) 

Tech Tip: Unlike vibration, the rotational mode of the gas is 
assumed to be fully excited, and thus cannot be neglected for 
polyatomic species. You must decide whether to model the 
rotational mode in equilibrium with the translational mode 
(irot = 2-4) or in nonequilibrium (irot=1). In practice, it 
is rarely necessary to solve for a nonequilibrium rotational 
energy so this feature is provided mainly for detailed radiation 
studies of high altitude flows.  

  ieex  - Specifies the model used to compute the electronic energy 
      component of the gas. Allowable values are:  

 0 Neglect electronic energy  
 1 Statistical mechanics (Te = T) (recommended 
  setting) 

 2 Statistical mechanics  (Te = Tv) 
 3 Complete thermal equilibrium using NASA  
  Lewis curve fits (based on data from NASA’s  
  Lewis Research Center’s (now Glen Research  
  Center) computer program CEA (NASA Reference 
  Publication 1311).   
 4 Two temperature model using LeRC curve fits 
  (Tr = Tel = T; Tv = Te) (not recommended) 

  5 Two temperature model using LeRC curve fits 
  (Tr = T; Tv = Te = Tel)  (NOT WORKING in DPLR 
  4.01.1) 

Tech Tip: For ieex=1, the contribution of the electronic 
energy to the total is computed using statistical mechanics based 
on characteristic temperatures and degeneracies in the 
“chemprops.spec” file from the cfdinput directory and 
is assumed to be in equilibrium with the translational mode.  
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  iel  - Specifies the model used to compute the free electron  
      energy  component of the gas. Allowable values are:  

 0 Neglect free electron energy (only valid for flows 
  with no ionization) 
 1 Coupled free electron and translational energy  
  (Tel =T) (recommended setting ; assumes that the 
  energy of the free electron gas is governed by the 
  translational temperature) 
 2 Coupled free electron energy and vibrational 
  energy (Tel = T v) (NOT WORKING in DPLR  
  4.01.1) 
 3 Complete thermal equilibrium using NASA  
  LeRC curve fits (based on data from NASA’s Lewis 
  Research Center’s (now Glen Research Center)  
  computer program CEA (NASA Reference  
  Publication 1311). 
 4 Two temperature model using LeRc curve fits 
  (Tr = Tel = T; Tv = T e) 

 5 Two temperature model using LeRc curve fits 
  (Tv = Te =Tel; Tr = T) (NOT WORKING in DPLR 
  4.01.1) 
    11 Tel Independent (NOT WORKING in DPLR 4.01.1) 

  irad  - Specifies the model used for shock layer radiation  
      modeling. Allowable values are:  

   0 No radiation model (for weakly radiating flow  
  fields)  
 1 Read pointwise 

€ 

Δ ⋅QR  from a file  (use only if 
  rname is defined.) 

 2 Optically thin emission (Carbon-Nitrogen  
  Violet)  
 3 Optically thin emission (Carbon-Nitrogen Red) 
 4 Optically thin emission (Carbon-Nitrogen Violet 
  + Red) 

 102-198 Same as 2-98 but with input surface heating  
   information read from the rname file 



 Using DPLR 

 

DPLR Code Version 4.01.1  User Manual  4-22  10/27/09  

Tech Tip:  
1). DPLR does not compute shock layer radiation directly, but 
several hooks are provided for coupling, either loosely to 
external radiation transport codes or tightly for optically thin 
emission. Typically, for weakly radiating flowfields, shock layer 
radiation is either neglected or computed in an uncoupled 
manner. For these cases, irad = 0. 
 
2). If the radiation field is known to be optically thin, DPLR 
supports tight coupling by computing the 

€ 

Δ ⋅QR  source term at 
each volume cell using curve fits generated by comparison to 
more exact computations. Currently DPLR supports this option 
for CN radiation only (irad = 2-4). In this case, DPLR reads the 
curve fit coefficients from the file “emission.rad” from the 
cfdinput directory. As information becomes available for 
other species, this file can be updated and expanded.( Note: this 
option assumes that energy converted to radiation is instantly 
lost from the control volume.) 
 
3). To include the surface radiative heating effects in the 
radiative equilibrium surface energy balance, set irad=102-
104 and read the pointwise surface radiative heating from a 
radiation file (rname ) in your working directory. See Section 
6.7 for more information on radiation files.  
 
4). To use an external radiation transport code such as 
RADEQUIL or NEQAIR to loosely couple flowfield radiation 
information to DPLR solutions, iterate between the two codes as 
follows: 
 a. Set irad=0 and run an initial DPLR solution.  
 b. Extract data using POSTFLOW for input to your  
    radiation transport code. 
 c. Create a radiation file (rname) from data generated by 
    running your radiation transport code. See Section 6.7 for 
    more information on radiation files. 
 d. Perform a second DPLR run with irad=1.  
 e. Repeat until you obtain a fully converged solution. 
 f. Compare your first and final solutions to determine the 
    significance of the shock layer radiation value. 

   ipen  - Specifies the model used for reaction product energy  
       distribution. Allowable values are: 
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0 All species are created/destroyed at the internal 
energy of the mixture  

1-9 n*10 percent of dissociation energy for all 
 reactions (NOT WORKING in DPLR 4.01.1)  

  itrmod - Specifies the model used for turbulence transition  
      modeling. This flag is used whenever a turbulent flowfield 
      is specified by ivis=2, 12. Allowable values are:  

   0 Neglect transition, flow is fully turbulent  
 1 TANH transition function  
 2 Dhawan and Narashima model  
 3 Sigmoid function 

         100 Input transition map (allows simulation of local 
   turbulent regions in a laminar flow) 

Tech Tip: Although some turbulence models in DPLR are 
capable of predicting transition, the code also allows you to use 
several models to impose transition in locations of your 
choosing. When itrmod=1,2,3 , the location and extent of 
the transition regions are defined by the values you put into 
itrans, trloc, and trext. When itrmod=100, you have 
the option of creating a transition map consisting of a turbulence 
intensity value ranging from 0 (fully laminar) to 1 (fully 
turbulent) at each surface point and placing the information into 
a boundary condition file (bname). See Section 6.3 for more 
information on boundary condition files.  Remember, however, 
choosing any of these models will impose, and not predict, 
turbulent transition(s) in your simulation.  

  itrans - Specifies the ordinate of the transition onset location. This 
      flag is used whenever a turbulent flowfield (ivis=2,12) 
      with an input transition model (itrmod=1,2,3) is chosen. 
      Allowable values are:  

 ±1 Transition at specified constant x value 
  ±2 Transition at specified constant y value 
 ±3 Transition at specified constant z value 

Tech Tip: Setting itrans to a positive value implies transition 
proceeds with increasing ordinate, while setting it to a negative 
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value implies that transition proceeds with a decreasing 
ordinate.  

  trloc  - Specifies the transition onset location. This flag is used  
      whenever a turbulent flowfield (ivis=2,12) with an input 
      transition model (itrmod=1,2,3) is chosen. trloc is a 
      real dimensional number tied to the value of itrans.  For 
      example, if itrans=1 and trloc=2.5, DPLR will initiate 
      transition at a value of x=2.5m, with turbulent flow for  
      larger values of x and laminar flow for smaller values. 

  trext  - Specifies the extent of transition to turbulent flow. This flag 
      is used whenever a turbulent flowfield (ivis=2,12) with 
      an input transition model (itrmod=1,2,3) is chosen.  
      trext is a real dimensional number equal to the width of 
      the TANH function from 0.01 – 0.99. The other transition 
      models do not permit user modification of the transition 
      length, so the trext flag is not used in those cases. 

   itshk  - Specifies the type of limiting employed (Spalart-Allmaras 
       & SST) for turbulent shock interaction. Allowable values 
       are: 

0 No shock interaction modification 
1 Standard limiting, Wilcox-type for SST or SALSA for 

S-A 
2 Limiting with low Reynolds number effect, for SST 

only 

  istop  - Specifies the number of iterations to run before stopping 
      the simulation. This is a relative value. For example, if a 
      simulation  is started after 500 iterations are already  
      complete and istop=100, DPLR will run 100 additional 
      iterations, reaching completion after 600 total iterations.  

Tech Tip: DPLR can also be instructed to stop a run when a 
specified L2norm residual level is reached using the resmin 
flag. In this case, termination will occur when the first condition, 
either istop or resmin, is met. 
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  nplot  -  Specifies the frequency of restart file writes. DPLR will 
      save a restart file periodically every nplot iterations  
      during the solution run as long as the flag iplot>0.  

Tech Tip: A good general value to use for nplot is usually 100 
- large enough so DPLR does not spend a large percentage of 
the runtime writing restart files, but small enough so a lot of 
work is not lost if the job quits for some reason. 

  iplot  - Controls the redundancy of restart file writes.  Allowable 
      values are:  

    -1 or  0 Do not write a restart file (use only for debugging) 
 1 Write a single restart file  
 n Save n-1 prior restarts  

          -99 Force restart file write (use only for debugging) 

Tech Tip: Setting iplot to a positive integer larger than 1 (n) 
causes DPLR to save n-1 previous restart files in addition to the 
current one. To distinguish saved files, DPLR will append the 
iteration number of the restart file to the filename specified in 
fname. For example, if fname=sample.pslx, 
iplot=3, nplot=100, then after 1000 iterations the 
following files will exist: sample.pslx, sample.pslx-900, 
sample.pslx-800. Note that older restart files, created every 100 
iterations as specified by the value in nplot, are not saved! 

  iaxi  - Enables axisymmetry in a DPLR2D simulation run.  
      Allowable  values are:  

    -1 or  0 Non-axisymmetric (2D) 
 1 Axisymmetric about the x-axis  
 2 Axisymmetric about the y-axis  

Tech Tip: DPLR2D simulates axisymmetric flows by solving the 
Navier-Stokes equations in cylindrical rather than Cartesian 
coordinates. This allows for an axisymmetric simulation in about 
the same total solution time as a 2D result. The rotation axis of 
the problem is always assumed to be either the x- or y-axis. Note 
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that DPLR2D simulations are always in the xy-plane, so rotation 
about the z-axis is not permitted. 

  ires  - Specifies the type of residual and convergence data that are 
      tracked and output to the screen and to the convergence  
      file. Allowable values are:  

 0 Do not output a convergence file 
 1 Output nit, global residual, and Δt (iteration  
  number, summed residual over all computational 
  blocks, timestep for the iteration number) 
 2 Output nit, global residual, and CFL number 
 3 Output nit, global residual, and CPU time 
 4 Output nit, global residual, and flow time 
 5 Output nit, global residual, CFL number, and 
  aero data  
    11 Output nit, block residual, and Δt 
    12 Output nit, block residual, and CFL number 
    13 Output nit, block residual, and CPU time 
    14 Output nit, block residual, and flow time 
    15 Output nit, block residual, CFL number, and 
  aero data  
    22 Output nit, global residual, and min/max CFL 
    32 Output nit, block residual, and min/max CFL 
    99 Output nit, global residual, CFL number, and Δt  
 

Tech Tips: 
1) ) nit = iteration number; global residual = summed 
residual over all computational blocks; Δt = timestep for the 
iteration number; CFL number = CFL number for the 
iteration number; CPU time = elapsed CPU time at the 
iteration number; flow time = elapsed flow time at the 
iteration number (only useful for time accurate simulations); 
aero data = data written to a *.aero file for each iteration 
when viscous fluxes are included in the simulation; block 
residual = residuals computed for each master block in the 
simulation, (written only to the convergence file).  
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2) To compare the output residual at each iteration with the 
computed residual in the first iteration, enter the ires value as 
a negative number. Although this technique is usually preferred 
by DPLR users for viewing progress toward solution conversion, 
you should be aware that certain problems can have very small 
or zero residuals in the first iteration which would result in 
seemingly large, or inappropriate, residuals at later iterations. 
  
3) Although DPLR will automatically capture specific 
information in the convergence file “.con” and in the log file 
“.log”, these are both subsets of what is echoed to the screen 
during a DPLR run. To capture all the information created 
during a DPLR run, you can set up your own user log file to run 
in the background by typing the following at the command 
prompt: 

mpirun – np X (–machinefile machine.inp) 
/$path/dplr2d (or dplr3d)< 
yourdplrinputfilename > userlogfile &  

This will result in your system returning you to the command 
prompt and capturing the screen data in the background for your 
future reference. See Section 6.8, 6.9, and 6.10 for more 
information on convergence, aerodynamic, and log files.  

  igdum  - Controls the computation of grid dummy cell coordinates.  
      Allowable  values are:  

   0 Only compute if necessary (preferred setting) 
 1 Always recompute (use if boundary conditions are 
  changed during simulation e.g. if a setup error is 
  detected) 

          -99  Only compute if necessary, output debugging 
         files (for use by code developers) 
                   99 Recompute and output debugging files (for use 
        by code developers) 

Tech Tip: When a grid file is created by FCONVERT, dummy 
cell values are not computed because FCONVERT does not have 
information about the correct boundary conditions to enforce at 
each grid face. DPLR will automatically generate the correct 
dummy cell coordinates for each block based on the supplied 
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boundary conditions, and send the correct data to all processors 
in the simulation. DPLR will then overwrite the stored grid file 
to include the dummy cell information. The preferred setting for 
this flag is igdum=0  because there is usually no need to 
recompute dummy cells unless an error is detected and the 
boundary conditions change during the simulation (igdum=1) 

  kbl  - Seldom needed, rarely used. (Allows you to zero out the body-
      normal added dissipation term in the boundary layer. If kbl is a 
      positive integer, the body-normal eigenvalue will be zeroed out 
      for the kbl cells nearest to each solid wall in the simulation and 
      smoothly increased to the specified value.) 

  kdg  - Tangential epsilon augmented near axis boundary condition 
      for k<kbl. Must have one or more 1011:1019 or 1011:2019 
      BCs for this to have any effect. For developers only. Leave 
      set to 0. 

  istate - Specifies equation of state being used. Allowable values 
      are: 

      0, 1 Perfect gas 

          2 Real gas (excluded volume) (NOT WORKING in 
        DPLR 4.0)  

  iresv  - Controls the residual variable(s) tracked by DPLR.  
      Allowable values are:  

  1 Total density (sum of L2Norm of all species  
  densities) 

 2 Velocity (sum of velocity components)    
 3 Energy (sum of energy equations) 
 4 Turbulence variables (sum of turbulence variables 
  for Spalart-Allmaras or Menter SST model) 

          -n  Conserved variable #n (See Tech Tip below)  

Tech Tip: You can track the residual of a single equation by 
using a negative integer for iresv. For example, for a 5-
species 2D simulation, the residual in the u momentum 
component can be tracked with iresv = -6. Since DPLR is a 
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fully coupled code (with the exception of some turbulence 
models), convergence of one variable is typically dependent on 
convergence of the others, which limits the utility of single 
variable residual. However this option can be useful for 
analyzing an unstable simulation because the offending equation 
will generally “blow up” before the others do.  

  xscale - Used to scale the input grid at runtime. Allowable values 
      are:  

  1 No scaling (recommended) 

       f Multiply grid dimensions by this value  
        immediately after read  

Tech Tip: DPLR will print a warning message if xscale is not 
set to 1. 

  ils  - Specifies whether input constants governing laminar  
      (Le/Sc) and turbulent (LeT/ScT) diffusion coefficients are 
      to be interpreted as Lewis or Schmidt numbers. Allowable 
      values are:  

  1 Lewis Number 
       2 Schmidt Number  

 Le/Sc  - Specifies the value of the laminar Lewis or Schmidt  
     number to be employed in the simulation. This   
     parameter is relevant for viscous simulations   
     (ivis≠0) with constant Lewis/Schmidt number  
     diffusion (idmod =1,11). Choosing a constant   
     Schmidt number is typically preferred, with   
     appropriate values varying with the target destination  
     and entry velocity. Recommended values: 

        0.4 – 0.7 

Tech Tip: Remember that the preferred approach is to model 
multi-species diffusion coefficients (idmod=3), in which case 
this flag is not used during the simulation. 
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LeT/ScT  - Specifies the value of the turbulent Lewis or  
     Schmidt number to be employed in the simulation. 
     Relevant for turbulent viscous simulations  
     (ivis=2,12) regardless of the model used to  
     compute species diffusion coefficients set by the 
     idmod flag. Recommended values:  

       0.5– 1.0       

Tech Tip: A value of 0.7 has been baselined for the Mars 
Science Laboratory. 

 prtl  - Specifies the value of the Prandtl number to be  
     employed in the simulation. Relevant for viscous 
     simulations (ivis≠0) with constant Prandtl  
     number thermal conductivity model (ivmod=2,12 
     or ikt=2.) Recommended value for low  
     temperature air flows:  

       0.72  

Tech Tip: These models should only be selected for perfect gas 
(non-reacting) low temperature flows. As such the value of prtl 
is not usually relevant. 

 prtlT  - Specifies the value of the turbulent Prandtl number 
     to be employed in the simulation.  Relevant for all 
     turbulent viscous simulations (ivis=2,12)  
     irrespective of the turbulence or laminar   
     conductivity model. Recommended value:  

       0.9  

   xxxx  -  Not used in DPLR 4.01.1 

   xxxx  -  Not used in DPLR 4.01.1. 

     rvr  - Viscous overrelaxation parameter. Recommended 
     value:  

       1.3 (default)  
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   resmin - Specifies the minimum L2Norm residual for DPLR to  
      reach to achieve a converged solution. Recommended  
      value: 

  1×10-8 or lower  

Tech Tip: If you prefer to run your simulation to a specified 
number of iterations irrespective of the residual, set istop to 
the desired number of iterations and resmin to a very small 
value, such as 1×10-20. 

Space Marching 1D Implementation – Each of the flags in this portion of the DPLR 
input deck allow for shock capture in 1D only.  

  ispace - Used for 1D space marching simulations, i.e., shock tube 
      flows. Allowed values are: 

0  Disable space marching 
1 Enable space marching 

Tech Tip: Seldom used in practice, this option gives you a fast 
and efficient tool to perform 1D flow simulations with complex 
models. If this option is used, many of the other flags in the code 
are ignored. 

    dxmin  - Sets the minimum x-spacing for the space marching  
      routine. (Only used when ispace=1) 

  slength  - Sets the total marching distance for the space marching  
      routine. (Only used when ispace=1) 

   nxtot  - Sets the total number of cells for the space marching  
      routine. (Only used when ispace=1) 

Time Accurate and Statistical Options Flags – Prior to release version 4.01.1, 
DPLR has been primarily used to solve steady state problems characterized by large, 
but stable time steps. With this release, DPLR can be run in a time-accurate fashion 
and is thus capable of studying transient phenomena. Although default values are 
suggested for each of the input flags, users should determine context-appropriate 
values for each simulation problem employing this capability.  
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   itime  - Specifies time integration order of accuracy. Allowable  
      values are:  

0  1st order of accuracy 
1  2nd order (dual time-stepping) accuracy 

  lmax  - Specifies maximum number ( n ) of sub iterations per  
      time step when itime=1. Default value: 

  5  

   dttol  - Specifies the residual tolerance ( f ) for convergence of the 
      sub iterations when itime=1. Default value: 

  10-3  

   tfinal - Tells DPLR to stop the simulation when flow time reaches 
      this ( f ) value. Default value: 

  1099  [ very large number ]  

  tfac  - Specifies the multiplicative factor on physical time step  
      used to determine dual time step (i.e. sub iteration) when 
      itime=1. Default value: 

  1015 [ very large number ] 

   ifstat - Specifies flow statistics DPLR is asked to compute.  
      Allowable values are:  

0  Do not compute flow statistics 
1  Compute mean and root mean square (RMS)  

      -1  Reset previously computed flow statistics and start 
   again  
      -2  Strip previously computed statistics from the restart 
   file  

   iaero   - Tells DPLR to track integrated aerodynamic variables 
       at each iteration. Allowable values are:  

0  Do not track variables 
1  Write integrated body forces and moments to file at 
  each iteration  
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Grid Adjustment / Alignment / Morphing Flags – Each of the flags in this portion 
of the DPLR input deck gives you a range of options to use if you decide to realign 
your input grid to better capture the shock wave inside DPLR. 

You can accomplish this in two ways: 

• Adjusting the values for the grid adaption flags in the DPLR input deck to be 
used with the restart file after running an initial simulation. 

• Creating a runtime control file to adjust the values for the grid adaption flags 
while the simulation in running. (See Section 6.4 for more information on Runtime 
Control Files.) 

To better capture the shock wave using this grid adaption option, you need to: 
(1) Move the outer boundary of the input grid to just beyond the shock location as 

determined by the initial converged solution. 
(2) Smooth the outer boundary surface (controlled by the ismooth flag). 
(3) Redistribute the interior grid points (controlled by the imradial flag). 

  igalign - Enables and sets the type of grid adaption you want DPLR 
      to use. Allowable values are:  

0 Do not perform grid alignment 
1 Perform basic grid alignment (should only be used with a 
 restart file) 

2 Recluster grid only; no alignment (not dependent upon a 
shock wave location, can be used in initial simulation but do 
not use with imradial=1 setting unless the problem has 
been previously converged) 

3 Smooth outer boundary only; no alignment (not 
dependent upon a shock wave location, can be used in initial 
simulation) 

    5 Perform basic grid alignment, but hold first 40% of grid 
     points in the body-normal direction fixed (should only be 
     used with a restart file; permits rapid alignment of grid to 
     shock wave and more aggressive CFL ramp between  
     alignments, but should only be used after coarse alignment 
     has been achieved; still experimental) (Not Tested in DPLR 
     4.01.0) 
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       11 Automatic grid alignment (basic) (Allows DPLR to  
     determine when to perform grid adaptions; not extensively 
     tested, so use with caution) 

         20 Surface morphing (constant amount) (Allows you to  
       morph the surface of the body by an amount specified in the 
       ds1 flag; used primarily for surface recession calculations; 
       not extensively tested at this time, so use with caution) 
          21 Surface morphing (variable delta specified in a  
       pointwise boundary condition file ) (Not Working in  
       DPLR 4.01.0) 

Tech Tips:  
1). If you set igalign=1 before a restart file from an existing 
solution exists, a runtime error will occur. 
 
2). When igalign=5, ngeom and imradial are ignored. 
 
3) When igalign=20, the remainder of the flags in this block 
are ignored and the body-normal distribution is taken as a 
scaled version of the previous distribution at every body 
location. 
 
4). Two options that were allowed in v3.05, igalign=4 and 
igalign=14, are deprecated in this release. As of v4.01.0, the 
input flag ismooth is provided in order to give the user more 
flexibility in controlling the type of smoothing that occurs. The 
functionality of igalign=4 and igalign=14 can be 
replicated in the current release by setting igalign=1 and 
igalign=11 respectively, along with ismooth=3. 

 ngiter - Sets the frequency at which a grid alignment is  
     performed. Recommended values:  

       500 – 1500  

Tech Tip: The first alignment always occurs on a restart prior to 
running the first iteration, and subsequent alignments (with the 
total number set by nalign) are performed every ngiter 
iterations. 
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 i1stadpt  - Specifies the multiplier to use to delay the first grid 
     adaption/alignment, which occurs when  
     nit >= i1stadapt*ngiter.  Default value:  

       0 

 imedge  - Specifies the method used to locate the bow shock 
     in the simulation. Allowable values are:  

       1 Align to a constant Mach number  
        contour  

Tech Tip: Although other programs such as SAGe or Outbound 
have other options, only Mach number-based adaption is 
supported in DPLR at this time.  

 imradial  - Specifies the type of wall spacing to employ during 
     the reclustering of interior points that takes place 
     during a grid adaption. Allowable values are:  

     1 Constant cell Reynolds number wall spacing 
      (wall spacing varies over the body surface from the 
      value set in ds1 to the value set in dslmx) 

     2 Use a constant wall spacing (wall spacing at all 
      surface locations will equal the value set in ds1) 

Tech Tip: If ds1=0, the current wall spacing will be used. 

 ngeom   - Specifies the number of geometrically spaced points 
     to place near the body surface during reclustering. 
     Recommended value:  

       2 

Tech Tip: If ngeom <2, a pure two-sided Vinokur stretching 
routine will be used. 

  ismooth - Specifies the type of smoothing to employ at the outer  
      boundary following a grid alignment. Allowable values are: 

0 Do not smooth the outer boundary 
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1 Smooth outer boundary of grid based on changes in arc  length at 
each body point location. 

2 Smooth outer boundary of grid based on total final arc  length at 
each body point location.  

3 Smooth using both method #1 and method #2.  (preferred for initial 
adaption from a hyperbolic grid) 

Tech Tips:  
1).  Setting ismooth=1 is generally preferred because it tends 
to give smoother outer boundaries and will eventually asymptote 
to zero smoothing when the outer boundary stops moving. Also, 
it avoids some problems seen with SAGe when smoothing grids 
with abrupt changes in surface geometry, such as a propagation 
of the surface geometry to the outer boundary, as seen in the 
Shuttle Orbiter tail region. On the downside, this option will tend 
to preserve oscillations in the outer boundary if they develop 
during the solution procedure. 
 
2). Setting ismooth=2 is the only approach that can be used 
for smoothing a grid without adaption (igalign=3) because 
all of the arc length changes are zero. Also, this option is 
preferable for the first adaption when there is an extremely large 
ratio between the shortest and longest arc lengths in the grid, 
particularly if short arc lengths occur near a region with high 
curvature, such as a wing leading edge. 
 
3).Setting ismooth=3 causes the outer boundary of the grid to 
be smoothed using both algorithms described above, producing 
superior quality outer boundaries for the initial adaption of 
hyperbolic grids. Further adaptions should then be peformed 
with ismooth=1. 

fs_scale   - Specifies the fraction of the freestream Mach  
     number to pick as the adaption contour.   
     Recommended values:  

       0.9< fs_scale<0.95 
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Tech Tip: Values smaller than 0.90 lead to smoother grids, but 
increase the chance that the final outer boundary will not 
contain the entire shock. 

 ds_mult  - Specifies, as a multiple of the “local” radial grid 
     spacing at the estimated shock location, where to 
     place the realigned outer boundary beyond that  
     location. Must be > 0. Recommended values range: 

       1.0-3.0, with 2.5 being typical  

Tech Tip: The idea is to leave at least the outer two points of 
each radial grid line beyond the shock following reconvergence 
of the flow solution. The shock location tends to move inward 
with each tailoring, so erring on the low side with ds_mult is 
normally safe during early adaptions, especially if the initial 
boundary is far away from the shock. 

 gmargin  - An optional multiplier of the “outermost” radial  
     spacing of the grid, normally not needed. This  
     permits additional control over the outer grid  
     boundary, and may be used to increase or  
     “decrease” the radial adjustment produced by the 
     normal alignment scheme. Although values may be 
     positive or negative real numbers, the typical value 
     for this input is:  

       0 

Tech Tip: This control allows the boundary to expand or 
contract (everywhere) if there is reason to believe the current 
outer boundary is too close to the eventual shock or too far from 
it. If extrapolation is implied, the extrapolations are linear. 
Beware of possible crossed grid lines or excessive cell skewness 
if any existing radial lines are convergent.  

  ds1  - Constant value with different meanings for different 
     settings of  imradial and igalign.  

     When imradial=1, ds1 sets the minimum  
     allowable wall spacing anywhere in the volume. 
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      ds1=0  No minimum allowable wall spacing 
         anywhere in the volume  
      ds1<0  Lower limit for cell Reynolds  
         number smoothing (minimum spacing 
         is limited by ds1% of the current  
         adapted arc length) 

     When imradial=2, ds1 sets wall spacing  
     everywhere in the volume.  

      ds1=0  Maintains wall spacing in the current 
         grid.    
      ds1<0  Wall spacing is ds1% of the current 
         adapted arc length.  

     When igalign=20, ds1 is the constant value by 
     which the surface grid should be morphed in the 
     body normal direction.  

      ds1>0  Used for a recession in the surface
      ds1<0  Used for a growth in the surface   

 cellRe  - Specifies the value of the cell Reynolds number  
     when imradial=1. (For all other values of  
     imradial, cellRe is ignored.) 

 dslmx   - Specifies the maximum wall spacing allowed when 
     cell Reynolds number spacing is employed  
     (imradial=1). (For all other values of imradial, 
     ds1mx is ignored.) 

      ds1mx<0 Wall spacing is ds1mx% of the  
         current adapted arc length.  

Tech Tip: Using arc length-based spacing is not generally 
recommended, but can be helpful for certain situations, such as 
the tail root area of the Shuttle orbiter grid. 

 ds2fr   - Specifies the spacing for the outer boundary of the 
     grid. Recommended value: 

       0.35  
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Tech Tip: ds2fr is expressed as a fraction of the spacing that 
would be used if an unconstrained (one-sided) Vinokur 
stretching algorithm were employed. 

Overset Grid Implementation – The flags in this portion of the DPLR input deck 
control Overset Grid capabilities of DPLR (i.e., enable Chimera topologies). See 
Chapter 8 for more information on Using Overset Grids. 

Note:  DiRTlib and Overset functionality must be available at compile time for this 
 functionality to be enabled.  

  iover - Indicates enabling of Overset Logic, if compiled, in DPLR.  
     Allowable values are:  

0 Overset logic is disabled 
1 Overset logic is enabled 

  ioint - Indicates format of domain connectivity file (cname).  
     Allowable values are:  

     0  ASCII Suggar-type .dci output 

   xxxxx - Not used in DPLR 4.01.1 (reserved for future use) 

Block-Specific Flags – The flags in this portion of the DPLR input deck can be set 
differently for each computational block in the simulation.  

ntx, nty, ntz  - Specifies the total number of computational cells in the i, j, 
      k directions for a block. Should be set to the number of  
      interior cells, not including dummy or ghost cells. (Note  
      that ntz is only used for 3D flow simulations.)  

  iconr  - Specifies how to initialize this block for simulation when 
      then global modeling flag iinit=10. Allowable values 
      are:  

0 Start by initializing to the values in the freestream 
 specification identified in ifree 
1 Restart from saved file 
2 Start with a stagnant interior at low pressure 
3 Start with artificial boundary layer in place 
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  isim  - Includes or excludes a master block from the simulation. 
      Allowable values are:  

0 Do not include this block in the simulation 
     1  Include this block in the simulation  

Tech Tip: Because excluding blocks does not save on the 
computational intensity of the simulation, this setting is only 
used when you want to freeze problem blocks while the 
remainder of the solution is allowed to converge.  

 ifree  - Identifies the number of the freestream specification 
     to use for this block.  

 initi  - Identifies the number of the freestream specification 
     to use to initialize the interior of this block.  

  ibadpt - Indicates whether grid adaption will be applied to a specific 
      block. Allowable values are:  

0 Do not perform adaption on this block (Not Working 
 in DPLR 4.01.1) 

     1  Perform adaption on this block  

(ijk)flx  - Specifies the method to use to extrapolate the  
     Euler fluxes in the i, j, or k directions. Note that the 
     method for flux extrapolation can be set separately 
     in each computational direction. Allowable values 
     are: 

 0   No flux evaluation 
 1  Upwind modified Steger-Warming with Δp 
 2  MUSCL Steger-Warming with Δp [p, cs,   

€ 

 
u ,   

€ 

 
T ] 

   (recommended value) 
 3  MUSCL Steger-Warming with Δp [ρs,   

€ 

 
u ,   

€ 

 
T ] 

 4  MUSCL Steger-Warming with Δp [p, cs,   

€ 

 
u ,   

€ 

 
e i , T] 

 5  Pure 2nd order central difference (should not be used for 
   problems which contain shock waves; could be unstable  
   even for subsonic flows.) 
    11  Upwind modified Steger-Warming without Δp 
    12  MUSCL Steger-Warming without Δp [p, cs,   

€ 

 
u ,   

€ 

 
T ] 
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    13  MUSCL Steger-Warming without Δp [ρs,   

€ 

 
u ,   

€ 

 
T ] 

            14  MUSCL Steger-Warming without Δp [p, cs,   

€ 

 
u ,   

€ 

 
e i , T]  

Tech Tip: The settings (ijk)flux = 2-4 and 12-14 use a 
MUSCL-based adaptive stencil to attain higher-order accuracy 
via a more sophisticated approach. The difference between the 
selections is in the set of variables that are extrapolated to attain 
high-order accuracy, and whether a pressure gradient based 
switch is employed to smoothly transition from high order to 
first-order in the vicinity of strong shock waves. 

 (ijk)ord  - Specifies the nominal order of accuracy of the Euler flux 
      extrapolation. Allowable values are:  

1 First-order upwind 
2 Second-order upwind biased 
3 Third-order upwind biased (recommended value) 

 omg(ijk)  - Specifies the value of ω  (as defined by Yee) to employ in 
      the MUSCL extrapolation scheme. Recommended value:  

        3  

Tech Tip: DPLR will automatically reset this value to 2 for 
second-order simulations. 

 (ijk)lim  - Specifies the type of flux limiter to use in the Euler flux 
      extrapolation. Allowable values are:  

1 Minmod (recommended value) 
2 Superbee 

     3  Van-Albada  

Tech Tip: The Superbee and Van-Albada flux limiters, while 
somewhat less dissipative, are also less stable and should only 
be used when low dissipation schemes are actually necessary to 
obtain highly accurate solutions, such as reactive mixing layer 
flows. 

 (ijk)diss - Specifies the type of eigenvalue limiter to use in the Euler 
      flux extrapolation. Allowable values are:  
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0 No added dissipation (recommended value for body 
 normal direction) 

1 Standard eigenvalue limiting (recommended value for 
 radial and circumferential directions) 

2 Standard eigenvalue limiting on linear fields only 
     3  Standard eigenvalue limiting on non-linear fields only  

Tech Tip: Normally, eigenvalue limiters should be used in the 
radial and circumferential flow directions, but should be avoided 
in the body-normal direction when possible to avoid adding 
dissipation in the boundary layer. However, in those very rare 
instances when a normal direction limiter can be helpful, set 
(ijk)diss=3 to apply the limiter only to fluxes with non-
linear eigenvalues or set kb1 to a positive integer to turn off the 
eigenvalue limiter within the boundary layer.  

 eps(ijk)  - Specifies the magnitude of the eigenvalue limiter to use in 
      the Euler flux extrapolation. Recommended values for  
      hypersonic blunt body flow simulations are:  

        0  No added dissipation – Recommended for body normal  
       direction  
      0.3 Recommended for radial and circumferential directions  

Tech Tip: Much lower values of eps(ijk) – on the order of 
0.01- can be used in separated flows which have no strong 
shocks and are much more sensitive to the effects of added 
(artificial) dissipation. DPLR will print a run-time warning if it 
detects a non-zero value of eps(ijk)in the body-normal 
direction in any block. 

  iextst - Specifies the time advancement method to use in the  
      simulation. Allowable values are:  

1 Explicit first-order Euler 
2 Explicit second-order Runge-Kutta 

       -1 Implicit data-parallel line relation (DPLR)  
   (recommended value for steady-state problems) 

         -2  Implicit data-parallel full matrix (FMDP)  



 Using DPLR 

 

DPLR Code Version 4.01.1  User Manual  4-43  10/27/09  

Tech Tip: For time accurate calculations, only the relatively 
inefficient second-order Runge-Kutta (Midpoint) method is 
offered at this time. 

  nrlx  - Specifies the number of implicit relaxation steps to use  
      when using the DPLR or FMDP time advancement  
      methods (iextst= -1 or -2). Recommended value:  

        4  

  ildir  - Specifies the direction in which the lines are to be formed 
      for the DPLR time advancement method (iextst= -1). 
      Allowable values are:  

0 Autodetect direction (recommended value) 

1 i-direction 

2 j-direction  
3 k-direction 
4 Alternate directions (changes orientation of lines with 
 each iteration, alternating between i. j, and k direction 
 solves. Provided for use with separated flows, although 
 no significant advantage has been shown with this 
 method.) 

Tech Tips: 
1).  The DPLR time advancement method is based on the Gauss-
Seidel Line Relaxation (GSLR) method, and the lines should be 
formed in the body-normal direction for maximum performance. 
Setting ildir = 1, 2, or 3 will cause the code to orient 
the solver in that block so that lines are formed in the i, j, or k-
directions respectively. If DPLR detects that a line is formed in a 
non body-normal orientation a warning message will be printed. 
It is not a fatal error to run DPLR with the lines in non body-
normal directions, but the convergence rate and stability of the 
method will be degraded. 
 
2) When ildir=0, DPLR will automatically determine the best 
direction to form the lines for each block at runtime by 
examining the block boundary conditions. For those blocks for 
which no body-surface boundary condition is detected, the lines 
will be formed in the i-direction. For those blocks with a body 
surface boundary condition at more than one face, the lines will 
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be formed in the direction normal to the last body-surface 
detected. 

  ibcu  - Specifies how often to update the implicit boundary  
      conditions during the relaxation process for DPLR or  
      FMDP (iextst = -1 or -2). Recommended value:  

        1  

Tech Tip: Updating implicit boundary conditions improves 
parallel efficiency on machines for which message-passing is 
very inefficient. ibcu=1 forces the implicit boundary 
conditions to be updated during each relaxation step. 

  iblag  - Specifies whether to lag the implicit boundary conditions 
      when using DPLR or FMDP (iextst = -1 or -2). 
      Allowable  values are:  

           -1 or 0 Do not lag implicit boundary conditions   
   (recommended value) 

1 Lag implicit boundary conditions  

Tech Tip: Although it is generally desirable to lag the implicit 
boundary condition update in order to better mask the message-
passing latency and improve parallel performance of the time 
advancement method, there are certain instances when the block 
topology employed makes lagged boundary conditions 
dangerous. In the future, DPLR may automatically determine 
whether latency can be masked for a given application and this 
flag will be automatically set by the code.  

  ilt  - Specifies whether to employ global or local time stepping 
      for implicit simulations. Allowable values are:  

       -1 Global time stepping 
       -2 Global time stepping with maximum CFL limit 
    1  Local time stepping 

2 Local time stepping with a maximum CFL limit  
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Tech Tips:  
1).  When the DPLR method of time stepping is chosen 
(iextst=-1), only global time stepping (ilt=-1 or -2) 
should be used.  
 
2)  When one or more blocks of a complex simulation are 
unstable, you can specify a maximum CFL number to use only 
for the problem blocks by setting il =+2 and entering a 
maximum CFL number in the cflm  flag. 

  ibdir  - Specifies the grid direction in which to break single-block 
      problems for parallel execution. Allowable values are:  

1 i-direction 

2 j-direction  
3 k-direction  

Tech Tip: When the simulations has only one master block with 
no zonal interfaces, DPLR can perform the necessary 
decomposition at runtime by breaking the problem into planes in 
the direction chosen with the ibdir flag. Note that DPLR will 
print a warning message if ibdir is set such that the grid is 
broken in the body-normal direction. 

 cflm   - Specifies the maximum CFL number to use in the 
     current master block. (Only used when ilt = + 2).  

  ibc  - Specifies the type of boundary condition to use at each of 
      the six faces of each master block, i.e., imin, imax,  
      jmin, jmax, kmin, kmax. Allowable values for each 
      face are:  

---------------------------------------------------------------- 
Basic Boundaries: 0-29 
---------------------------------------------------------------- 
 0 Pointwise boundary condition read from input 
  “*.pbca” file 
 1 Fixed at freestream conditions (specified by  
  ifree) 
 2 Fixed at freestream if inflow; extrapolate if  
  outflow (used in rapid analysis process) 
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 3 First order extrapolation (supersonic exit) 
 4 Second order extrapolation (supersonic exit) 
 5 RESERVED  
 6 Subsonic reservoir inlet; constant mass flow 
 7 Periodic 
 8 Inviscid wall (flow tangency) 
 9 Viscous adiabatic wall 
    10 Viscous isothermal wall 
    11 180 degree singular axis (u = -u) [3D] 
    12 180 degree singular axis (v = -v) [3D] 
    13 180 degree singular axis (w = -w) [3D] 
    14 Singular x-axis (v = -v)  [axi] 
    15 Singular y-axis (u = -u)   [axi] 
    16 360 degree singular axis  [3D] 
    17 Plane of symmetry (u = -u) 
    18 Plane of symmetry (v = -v) 
    19 Plane of symmetry (w = -w) 
    20 Zone boundary 
    21 90 degree singular axis (v=-v; w=-w)  [3D] 
    22 90 degree singular axis (u=-u; w=-w) [3D] 
    23 90 degree singular axis (u=-u; v=-v)  [3D] 
    24 RESERVED 
    25 Catalytic isothermal wall 
    26 Catalytic radiative equilibrium wall 
    27 Non-catalytic radiative equilibrium wall 
 
---------------------------------------------------------------- 
Blowing Wall Boundaries: 30 - 39 
---------------------------------------------------------------- 
    30  Viscous isothermal wall with blowing  
    35 Catalytic isothermal wall with blowing (Not  
  Working in DPLR 4.01.1) 
    36 Catalytic radiative equilibrium wall with  
  blowing (Not Working in DPLR 4.01.1) 
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    37 Non-catalytic radiative equilibrium wall with 
  blowing (Not Working in DPLR 4.01.1) 
    38 inviscid wall with blowing (Not   
  Working in DPLR 4.01.1) 
    39 viscous adiabatic wall with blowing (Not  
  Working in DPLR 4.01.1) 

---------------------------------------------------------------- 
Slip Wall Boundaries: 40 - 49 
---------------------------------------------------------------- 
    40 Viscous isothermal wall with slip 
    45   Catalytic isothermal wall with slip (Not Working 
  in DPLR 4.01.1) 
    46 Catalytic radiative equilibrium wall with  
  slip (Not Working in DPLR 4.01.1) 
    47 Non-catalytic radiative equilibrium wall with 
  slip (Not Working in DPLR 4.01.1) 
    49 Viscous adiabatic wall with slip 
 
---------------------------------------------------------------- 
Input Profile Boundaries: 60 - 69 
---------------------------------------------------------------- 
    60 Input primitive variables (ρs, u, v, w, Tv, T) 
    61 Input primitive variables (p, cs [2-ns], u, v, w, 
  Tv, T) 
    62 Input conserved variables (ρs, ρu, ρv, ρw, Ev, E) 

Tech Tip: Entering one of these numbers will tell DPLR to look 
in the “*.pcba” file to find values for the indicated variables. If 
such a file does not exist, a runtime error may occur. 

---------------------------------------------------------------- 
Material Response Coupling Boundaries: 70 - 79 
---------------------------------------------------------------- 
    70 Input species mass flow rate & T, extrapolate 
  for p with thermal equilibrium assumed 
    71 Input cs, mass flow rate & T, extrapolate for p 
  with thermal equilibrium assumed 
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    75 Activate surface kinetic mechanism, isothermal 
  (icatmd=1001) 

    76 Activate surface kinetic mechanism, radiative 
  equilibrium (icatmd=1001) 

 
---------------------------------------------------------------- 
Subsonic Inflow/Outflow Boundaries:  80 - 89 
---------------------------------------------------------------- 
    81 Subsonic reservoir inlet; same as #6 
    82 Subsonic inlet; specify mass flow rate   
  (density * M/ReV (normal velocity) ) & T, 
  extrapolate p 
    85 Subsonic exit; specify static pressure (pback), 
  extrapolate others 
    86 Subsonic inlet; specify subsonic temperature 
  (subT0) and subsonic pressure (subp0);  
  Assumed isentropic and T=Tv. Uses methods of 
  characteristics. 
    87 Subsonic exit; specify static pressure (pback), 
  extrapolate others. Uses method of   
  characteristics. Uses methods of characteristics. 
    88 Subsonic exit; specify static pressure (pback), 
  extrapolate others. Uses method of   
  characteristics, disallows backflow.   

 
---------------------------------------------------------------- 
Pointwise Twall Boundaries: 100 – 199 (100 + 
corresponding isothermal boundary condition number) 
---------------------------------------------------------------- 
  110 No slip (viscous) isothermal wall 
  125 Catalytic isothermal wall 
  130 No slip (viscous) isothermal wall with blowing 
  135 Catalytic isothermal wall with blowing (Not  
  Working in DPLR 4.01.1) 
  140 Isothermal wall with slip 

  145 Catalytic isothermal wall with slip (Not Working 
  in DPLR 4.01.1) 
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---------------------------------------------------------------- 
Pointwise Twall and Blowing Boundaries: 200 – 299 (200 
+ corresponding non-blowing boundary condition number) 
---------------------------------------------------------------- 
230 No slip (viscous) isothermal wall  
235 Catalytic isothermal wall (Not Working  
  in DPLR 4.01.1) 
 

---------------------------------------------------------------- 
Pointwise Blowing Boundaries: 300 – 399 (300 + 
corresponding non-blowing boundary condition number) 
---------------------------------------------------------------- 
330 No slip (viscous) isothermal wall with blowing 
335 Catalytic isothermal wall (Not Working in DPLR 
  4.01.1) 

Tech Tip: To specify a pointwise boundary for any cell face, you 
must first set up and include a “*.pbca” with the appropriate 
data in your current working directory. 

---------------------------------------------------------------- 
Overset Grid Boundary: 900 - 999 
---------------------------------------------------------------- 
901 Specifies an overset boundary (supersonic exit 
  1st order extrapolation if iover=0) 

 
---------------------------------------------------------------- 
Mathematically Adjusted Boundaries: 1000 – 1099       
(1011 – 1019 & 1021-1023 currently support augmented 
eigenvalue limiters in the vicinity of standard singular axes or 
symmetry planes when kdg ≠ 0.) 
---------------------------------------------------------------- 
1011 180 degree singular axis (u = -u) [3D] 
1012 180 degree singular axis (v = -v) [3D] 
1013 180 degree singular axis (w = -w) [3D] 
1014 Singular x-axis (v = -v)  [axi] 
1015 Singular y-axis (u = -u)   [axi] 
1016 360 degree singular axis  [3D] 
1017 Plane of symmetry (u = -u) 
1018 Plane of symmetry (v = -v) 
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1019 Plane of symmetry (w = -w) 
1021 90 degree singular axis (v=-v; w=-w)  [3D] 
1022 90 degree singular axis (u=-u; w=-w) [3D] 
1023 90 degree singular axis (u=-u; v=-v)  [3D] 
 

---------------------------------------------------------------- 
Mathematically Adjusted Boundaries: 2000 – 2099       
(2011 – 2019 & 2021-2023 currently support a maximum CFL in 
the vicinity of standard singular axes axes or symmetry planes as 
per cflm in each block when kdg ≠ 0.) 
---------------------------------------------------------------- 
2011 180 degree singular axis (u = -u) [3D] 
2012 180 degree singular axis (v = -v) [3D] 
2013 180 degree singular axis (w = -w) [3D] 
2014 Singular x-axis (v = -v)  [axi] 
2015 Singular y-axis (u = -u)   [axi] 
2016 360 degree singular axis  [3D] 
2017 Plane of symmetry (u = -u) 
2018 Plane of symmetry (v = -v) 
2019 Plane of symmetry (w = -w) 
2021 90 degree singular axis (v=-v; w=-w)  [3D] 
2022 90 degree singular axis (u=-u; w=-w) [3D] 
2023 90 degree singular axis (u=-u; v=-v)  [3D] 

Freestream Specification Flags – The flags in this portion of the DPLR input deck 
define a set of conditions for an area of the flow from which all relevant fluid 
dynamic quantities can be computed. You can define any number of freestream areas 
this way (the total given in nfree)and use them to initialize master blocks and set 
freestream boundary conditions on a block-by-block basis using the initi and 
ifree flags, respectively. (In DPLR, freestream values are always expressed in standard 
international (SI) units.) 

   irm - Specifies whether a velocity, Mach number, or unit  
      Reynolds number will be given as input. Allowable values 
      are:  

1 Mach number (assumed to be the equilibrium - as 
 opposed to frozen - value) 

2 Reynolds number per meter 
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     3  Velocity (recommended value) 

Tech Tip: The most common (and least ambiguous) input for 
most free-flight simulations is velocity, because each of the other 
entries requires the velocity to be derived from the 
thermodynamic and transport models employed in the given 
simulation. 

   density  - Specifies the input freestream mass density.  

     M/Re/V  - Specifies the input Mach number, unit Reynolds number, or  
     velocity depending upon the value of irm.  

Tech Tip: Whichever choice is made in irm, DPLR will 
determine the remaining two values using the input 
thermodynamic and transport models distributed with the code.  

  c(xyz)   - Specifies the input velocity vector direction cosine. Allowable  
     values are: 

      0.0 < value < 1.0 

Tech Tip: These values must be nondimensionalized. 

    Tin, Tvin,  - Specifies the input translational, vibrational, rotational,  
          Trin, Tein  and free electron temperatures, respectively.  

Tech Tips:  
1) The number of unique temperatures depends upon the thermal 
non-equilibrium models chosen with the ivib, irot, ieex, 
and iel flags.  
 
2) At the current time, free electron non-equilibrium is not 
supported in DPLR and so will be silently ignored. 
 
3) Because only one thermal non-equilibrium model may be 
employed in a given simulation, all blocks are assumed to be 
governed by the same model. However, each block can have 
different initial or freestream temperatures by defining multiple 
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freestream specifications and using the initi and ifree flags 
in each block characterization. 

  turbi  - Specifies a freestream turbulence level for the two-equation  
     turbulence models. For SST, specify omega as follows:  

      > 0  use directly to define turbulence level 
      < 0  set turbulence level to default level of 1.0E-4 

Tech Tip: Not used for laminar or Baldwin-Lomax (algebraic) 
turbulent simulations. 

  tkref  - Turbulent viscosity ratio. Initializes the freestream value of  
     turbulent viscosity for Spalart-Allmaras turbulence models  
     (itmod = 1000+n). Recommended value = 0: 

0 (freestream turbulent viscosity specified 
by ) 

>0 (freestream turbulent viscosity specified by 
 

€ 

µT∞ = tkref ) 

<0 (freestream turbulent viscosity specified by 
 

€ 

µT∞ = tkref µL∞) 

Tech Tip Not used for laminar or Baldwin-Lomax (algebraic) 
turbulent simulations. 

 subp0  - Specifies stagnation pressure in simulations where subsonic 
      boundary conditions are identified.  

  subT0  - Specifies stagnation temperature in simulations where subsonic 
     boundary conditions are identified. 

  pback  - Specifies back pressure for subsonic outflow in simulations 
      where subsonic boundary conditions are identified..  

   cs  - An array of input species mass fractions.  
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Tech Tips: 
1) There must be one entry per species in the chosen chemistry 
model as specified in the input *.chem file. 
2) All input mass fractions must sum to 1.0 or DPLR will exit 
with an error message. 
3) Input of mole fractions is not supported at this time. 

CFL Number Listing – The final entries in the DPLR input deck are a list of 
Courant-Friedrichs-Lewy (CFL) numbers to employ during the simulation.  
 
CFL numbers are a measure of the explicit inviscid stability limited time step Δt and 
are used by convention in CFD codes to enable time advancement to a steady state 
solution. In DPLR, the CFL number for a given computational cell is defined as the 
time it takes the fastest wave in the flow to traverse the thinnest dimension of the cell. 
 
Global Timestepping: For implicit (non-time accurate) simulations, this time step is a 
bit different for every cell in the flow. However, most DPLR-based simulations use 
the minimum value of Δt at any cell in the flowfield for all cells in what is called 
global timestepping – a set-up approach that has been shown to result in robust 
solutions and good convergence rates.  
 
Local Timestepping: DPLR does offer you the ability to implement local 
timestepping where the local value of Δt is used for each computational cell by setting 
ilt=1,2, but this approach is recommended only for simulations using the full-
matrix data-parallel method (FMDP), i.e., iextst=-2. 
 
CFL Number Ranges: When you begin a simulation, you should use a very small 
CFL value to verify that your proposed solution will, indeed, converge. After several 
hundred iterations, if you see that the solution is progressing toward convergence, you 
can increase or “ramp” the CFL value to specify a larger timestep and speed up the 
solution process. Between each listed CFL number, DPLR will perform 20 iterations 
of the solution. If you add an integer to a line with a CFL number, DPLR will 
perform 20-times-that-integer iterations. (Note: After the first grid adaption, DPLR 
performs only 10 iterations between CFL numbers and 10-times-the-added-integer 
iteration on the assumption that a post-adaption grid is a better “starting point” and 
justifies more aggressive CFL ramping.) 
 
For example, the following CFL number listing might be appropriate for an initial 
simulation of a problem: 
 
0.01   DPLR performs 20 iterations at a 0.01 timestep 
0.05   DPLR performs 20 iterations at a 0.05 timestep 
0.10  2 DPLR performs 40 iterations at a 0.10 timestep 
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0.15  3 DPLR performs 60 iterations at a 0.15 timestep 
0.25  3 DPLR performs 60 iterations at a 0.25 timestep 
0.50  3 DPLR performs 60 iterations at a 0.50 timestep 
1.0  5  DPLR performs 100 iterations at a 1.0 timestep 
2.0  5 DPLR performs 100 iterations at a 2.0 timestep 
5.0  5 DPLR performs 100 iterations at a 5.0 timestep 
10.0  5 DPLR performs 100 iterations at a 10.0 timestep 
20.0   DPLR performs 20 iterations at a 20.0 timestep 
50.0   DPLR performs 20 iterations at a 50.0 timestep 
100.0   DPLR performs 20 iterations at a 100.0 timestep 
250.0   DPLR performs 20 iterations at a 250.0 timestep 
500.0   DPLR performs 20 iterations at a 500.0 timestep 
1,000.0  DPLR performs 20 iterations at a 1,000.0 timestep 
-1   No more CFL values are available 
 
Although larger CFL numbers imply larger timesteps and faster convergence rates, 
there is usually a maximum CFL number that represents a stability limit for a given 
problem. Using CFL values above this number can result in solution divergence. For 
optimum performance, therefore, you should run at CFL numbers that approach, but 
do not exceed this limit. 
 
Over time and with experience, you will notice that certain classes of problems are 
associated with an approximate range of stable CFL numbers, like those listed above 
that were used for a capsule-shaped problem. By starting your DPLR run with one of 
these stable CFL ranges, you should be able to get close enough to a solution to create 
a restart file that can then be further customized by editing the CFL number range in 
the input deck.  

Tech Tips: 
1) You can adjust the CFL number during a DPLR run by using a runtime control (*.ctrl) 
file. See Section 6.4. 
 
2) You can use exact timesteps (Δt) instead of CFL numbers by entering negative numbers 
into the CFL Number Listing area of the DPLR Input Deck, however you cannot use both 
CFL numbers and Δt values in a single DPLR simulation. Note that the term -1 in the CFL 
number list tells DPLR to stop reading the CFL number list and refer to the istop flag for 
the final iteration number.  

4.3 ‘Neptune’ Sample Case 

The sample case used throughout the DPLR Code User Manual to illustrate how the 
Code Package works describes a Neptune entry type probe with an ellipsoidal body as 



 Using DPLR 

 

DPLR Code Version 4.01.1  User Manual  4-55  10/27/09  

shown in Figure 4.1. This case is an example of aerocapture, where drag from the 
atmosphere is used to decelerate the vehicle and bring it into orbit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2 – Neptune Probe 
 
 

4.3.1  Neptune DPLR Input Deck  

The DPLR input deck below shows the problem-specific entries made before running 
the initial DPLR run was made. 



 Using DPLR 

 

DPLR Code Version 4.01.1  User Manual  4-56  10/27/09  

 
INPUT DECK FOR DPLR2D/DPLR3D CODE 
 
gname,fname,bname,rname,dname,cname 
'neptune-8PE' 
'neptune' 
'none' 
'none' 
‘none’ 
' sde1-fs/twhite/SF/dpcodeV4-00-0/cfdinput/neptune5sp_leibowitz76.chem' 
 
     nblk     igrid     irest      ibcf     iradf     nfree     iinit 
  2,   11,   11,   0,   0,   1,   -1  
 
     ivis       ikt       ikv     ivmod     idmod     itmod     islip  iblow 
  1,   1,   11,   3,   1,   0,   0, -1, 
 
   icatmd    ireqmd     twall      epsr    gamcat     xxxxx     vwall 
  2,    101,  3.0d3,  0.85d0, 1.0d0,  1.01d5,  0 
 
    ichem      ikeq      ivib      irot      ieex       iel      irad   ipen 
  1,   3,   2,   2,   0,   1,   0, 0, 
 
   itrmod    itrans     trloc     trext     itshk 
  0,   0,  1.0d0,  0.1d0,   0, 
 
    istop     nplot     iplot      iaxi      ires 
  500   100,   1   -1   -2 
 
    igdum       kbl       kdg    istate     iresv 
  1,   0,   0,   0,   1, 
 
   xscale       ils     Le/Sc   LeT/ScT      prtl     prtlT 
 1.0d0,   2,   .5d0,  1.00d0,  0.72d0 0.90d0, 
 
   xxxxx      xxxx       rvr    resmin 
   0.0d0      1.0d0     1.3d0,  1.0d-20 
 
 
=========================================== 
Space Marching 1D Implementation 
=========================================== 
 
   ispace    dxmin      slength    nxtot 
      0      1.0d-5      1.0d0      1000 
 
 
============================================ 
TIME ACCURATE & STATISTICAL OPTIONS 
=========================================== 
 
 itime  lmax      dttol      tfinal      tfac 
   0      5      1.0d-3      9.0d99      1.0d15 
 
 ifstat iaero 
   0      0 
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=============================================================== 
 GRID ADJUSTMENT/ALIGNMENT/MORPHING 
================================================================ 
  
  igalign    ngiter    nalign 
 0,   500,   1, 
 
   imedge  imradial     ngeom     ismooth 
  1,  2,     2,    3, 
  
  fs_scale   ds_mult   gmargin 
 0.95,  2.5,  0.0, 
  
      ds1    cellRe     ds1mx     ds2fr 
   0.0,  1.0,   1.0d-4,   0.3 
 
 
================================================================ 
 OVERSET GRID IMPLEMENTATION 
================================================================ 
 
   iover     ioint    xxxxx    
    0         1        0 
 
 
============================================================================ 
 BLOCK #1 
============================================================================ 
 
      ntx      nty      ntz     iconr     isim    ifree    initi    ibadpt 
  32,    16,    64,    -1,   1,    1,    1,      1 
 
     iflx      iord      omgi      ilim     idiss      epsi 
  4,   3,   2.0d0,  1,   1,    0.3, 
 
     jflx      jord      omgj      jlim     jdiss      epsj 
  4,   3,   2.0d0,  1,   1,   0.3, 
 
     kflx      kord      omgk      klim     kdiss      epsk 
  4,   3,   2.0d0,  1,   0,    0.03, 
 
   iextst      nrlx     ildir      ibcu     iblag       ilt    ibdir   cflm 
   -1,   4,    0,   1,    -1,   -1,  1,    1.0d20 
 
  Boundary condition type [ibc]: 
    imin imax jmin jmax kmin kmax 
  20, 20,   20, 19,  26, 1 
 
============================================================================ 
 BLOCK #2 
============================================================================ 
 
      ntx       nty       ntz    iconr   isim    ifree    initi    ibadpt 
  48,   64,   64,   -1,  1,  1,    1,       1 
 
     iflx      iord      omgi      ilim     idiss      epsi 
  4,   3,   2.0d0,  1,   1,    0.3, 
 
     jflx      jord      omgj      jlim     jdiss      epsj 
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  4,   3,   2.0d0,  1,   1,    0.3, 
 
     kflx      kord      omgk      klim     kdiss      epsk 
  4,   3,   2.0d0,  1,   0,    0.03, 
 
   iextst      nrlx     ildir      ibcu     iblag       ilt    ibdir   cflm 
   -1,   4,    0,   1,    -1,   -1,  1,    1.0d20 
 
  Boundary condition type [ibc]: 
    imin imax jmin jmax kmin kmax 
  20, 3,   19, 19,  26, 1 
 
========================================================================== 
 Freestream Specification #1 
========================================================================== 
 
     irm    density     M/Re/V     cx        cy           cz 
  3,   1.6313d-5  3.1045d4, 0.8090160044,  0.5877852523, 0.0d0 
 
     Tin      Trin       Tvin      Tein 
 140.3,  140.3,  140.3,  140.3, 
 
   turbi     tkref 
 0.001d0, 0.00d0 
 
   subp0      subT0      pback 
   2.650d2   2.650d2    1.05d5 
 
      cs        (Species order: H2  H  He) 
0.6822392 
0 
0 
0.3177608 
0 
 
================================================================ 
 List of CFL numbers or timesteps for ramping 
================================================================ 
 
.00001 
.0001 
.001 
.01 
.1 
1 
5 
10 
20 
50 
100 
200 
500 
750 
1000 
2000 
5000 
-1 

 

Figure 4-3  DPLR Input Deck for Neptune Probe 
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4.3.2   Neptune DPLR Input Deck Settings  

This is a three-dimensional problem with one plane of geometric symmetry. The 
original grid consists of two master blocks. The following table explains the meaning 
of the DPLR input deck settings in this sample case. 
 

Global Flags Setting Explanation 

nblk 2 There are 2 master grid blocks in this simulation. 

igrid 11 The input grid file is a parallel archival XDR file. 

irest 11 The restart file to be created from this simulation will be a 
parallel archival XDR file. 

ibcf 0 Do not read a boundary condition file. 

iradf 0 Do not read a radiation file. 

nfree 1 There is one region of the freestream (a.k.a. freestream 
specification) characterized in this DPLR input deck. 

iinit -1 Start all blocks by initializing to the values in the freestream 
specification characterized in this DPLR input deck.  

ivis 1 DPLR will perform a laminar, full Navier-Stokes simulation. 

ikt 1 Translational thermal conductivity is modeled in a manner 
consistent with the baseline model used to compute mixture 
viscosity and thermal conductivity, specified in the ivmod flag. 

ikv 11 Vibrational thermal conductivity is modeled with standard 
expression with Tv gradients. 

 

ivmod 3 The baseline model used to compute mixture viscosity and 
thermal conductivity is the Yos approximate mixing rules 
which is preferred for all reacting gas flows. 

idmod 1 The species diffusion coefficients for this simulation are 
computed with a constant Lewis/Schmidt number. 

itmod 0 This value is ignored because ivis=1, defining the problem 
as a laminar flow simulation and telling DPLR to ignore 
turbulence- and transition-related flags.   

islip 0 Slip-wall calculations will be disabled. 

iblow -1 Blowing-wall calculations will be disabled. 
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Global Flags 
(cont.) 

Setting  
(cont.) 

Explanation  
(cont.) 

icatmd 2 Wall catalysis is calculated with the constant γ, fully catalytic 
to ions but supports homogeneous surface reactions such as 
N + N = N2 & O + O = O2.  

ireqmd 101 The radiative equilibrium wall is modeled with constant wall 
emissivity set by the value in epsr and a maximum wall 
temperature set by value in twall. 

twall 3.0d3 Maximum temperature at the vehicle surface = 3,000 degrees 
Kelvin. 

epsr 0.85d0 The surface material is 85% efficient in emitting energy away 
from the vehicle.  

gamcat 1.0d0 The value of γ  for  the constant γ homogeneous catalysis 
model is 1. 

xxxxx 1.0d5 This flag is currently ignored in DPLR. 

vwall 0 This value is ignored because iblow=-1, telling DPLR to 
disable blowing-wall calculations. 

ichem 1 Finite-rate chemistry is employed for the chemical reactions in 
the gas phase.  

ikeq 3 The equilibrium constants are computed from the Park 1990 
model (n = 1016/cm3). 

ivib 2 Vibrational energy is computed with vibrational equilibrium 
using statistical mechanics. 

irot 2 Rotational energy is computed with rotational equilibrium 
using statistical mechanics. 

ieex 0 Electronic energy of the gas is not modeled. 

iel 1 Free electron energy of the gas is computed using the 
coupled free electron and translational energy model. 

irad 0 No model is used to compute shock layer radiation. 

ipen 0 Not used by DPLR at this time. 

itrmod 0 This value is ignored because ivis=1, defining the problem 
as a laminar flow simulation and telling DPLR to ignore 
turbulence- and transition-related flags. 
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Global Flags 
(cont.) 

Setting  
(cont.) 

Explanation  
(cont.) 

itrans  0 This value is ignored because ivis=1, defining the problem 
as a laminar flow simulation and telling DPLR to ignore 
turbulence- and transition-related flags. 

trloc 1.0d0 This value is ignored because ivis=1, defining the problem 
as a laminar flow simulation and telling DPLR to ignore 
turbulence- and transition-related flags. 

trext 0.1d0 This value is ignored because ivis=1, defining the problem 
as a laminar flow simulation and telling DPLR to ignore 
turbulence- and transition-related flags. 

itshk 0 Not used by DPLR at this time. 

istop 500 DPLR will run 500 iterations before stopping the simulation. 

nplot 100 DPLR will write a restart file every 100 iterations. 

iplot 1 DPLR will save only the most recently written restart file. 

iaxi -1 This is a non-axisymmetric simulation. 

ires -2 Screen output for this simulation will include the iteration 
number, the global residual, and the CFL number being used 
and will include a comparison with these values from the first 
iteration of the simulation. 

igdum 1 DPLR will compute grid dummy cell coordinates. 

kbl 0 DPLR will ignore this flag. 

kdg 0 DPLR will ignore this flag 

istate 0 DPLR will use the equation of state for a perfect gas. 

iresv 1 DPLR will track the total density of all species in the 
simulation. 

xscale 1.0d0 DPLR will not scale the input grid at runtime. 

ils 2 Input numbers governing laminar diffusion coefficients will be 
interpreted as Schmidt Numbers. 

Le/Sc 0.5d0 The Schmidt number to be used in the simulation is 0.5. 

LeT/ScT 1.00d0 This value is ignored because ivis=1, defining the problem 
as a laminar flow simulation and telling DPLR to ignore 
turbulence- and transition-related flags. 

prtl 0.72d0 This value is ignored because ivmod=3 (not 2 or 12). 
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Global Flags 
(cont.) 

Setting  
(cont.) 

Explanation  
(cont.) 

prtlT 0.90d0 This value is ignored because ivis=1, defining the problem 
as a laminar flow simulation and telling DPLR to ignore 
turbulence- and transition-related flags. 

xxxx 0.0d0 Not used by DPLR at this time. 

xxxx 1.0d0 Not used by DPLR at this time. 

rvr 1.3d0 The viscous overrelaxation parameter for this simulation is 
1.3. 

resmin 1.0d-20 When this simulation converges into a solution, the residual 
will be essentially zero. 

 
 

Space 
Marching 1D 

Impementation 
Flags 

Setting Explanation 

ispace 0 Space marching is disabled in this simulation. 

dxmin 1.0d-5 This value is ignored because ispace = 0. 

slength 1.0d0 This value is ignored because ispace = 0. 

nxtot 1000 This value is ignored because ispace = 0. 

 
 
Time Accurate 

& Statistical 
Options Flags 

Setting Explanation 

itime 0 Use a 1st order integration of time accuracy. 

1max 5 This value is ignored because itime ≠ 1. 

dttol 1.0d-3 This value is ignored because itime ≠ 1. 

tfinal 9.0d99 Final flow time is essentially infinity. 

tfac 1.0d15 This value is ignored because itime ≠ 1. 

ifstat 0 Do not compute flow statistics. 

iaero 0 Do not compute aerodynamic variables. 
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Grid 

Adjustment / 
Alignment/ 
Morphing 

Flags 

Setting Explanation 

igalign 0 Grid alignment will not be performed in this simulation. 

ngiter 500 This value is ignored because igalign=0. 

nalign 1 This value is ignored because igalign=0. 

imedge 1 This value is ignored because igalign=0. 

imradial 2 This value is ignored because igalign=0. 

ngeom 2 This value is ignored because igalign=0. 

ismooth 3 This value is ignored because igalign=0.  

fs_scale 0.95 This value is ignored because igalign=0. 

ds_mult 2.5 This value is ignored because igalign=0. 

gmargin 0.0 The outermost radial spacing of the grid will remain as 
specified in the grid file. 

dsl 0.0 This value is ignored because igalign=0. 

cellRe 1.0 This value is ignored because igalign=0. 

dslmx 1.0d-4 This value is ignored because igalign=0. 

ds2fr 0.3 This value is ignored because igalign=0. 
 
 

Overset Grid 
Implementation 

Flags 

Setting Explanation 

iover 0 Overset logic is disabled for this simulation. 

ioint 1 This value is ignored becaue iover=0. 

xxxx 1 This value is not used in DPLR 4.01.0. 
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Block #1 Flags Setting Explanation 

ntx 32 There are 32 computational cells in the x direction in Block #1. 

nty 16 There are 16 computational cells in the y direction in Block #1. 

ntz 64 There are 64 computational cells in the z direction in Block #1. 

iconr -1 This value is ignored because iinit=-1. 

isim 1 This block will be included in the simulation. 

ifree 1 Use freestream specification #1 for this master block. 

initi 1 Use freestream specification #1 to initialize the interior of this 
master block. 

ibadpt 1 Grid adaption will be performed on this block. 

iflx 4 The Euler flux extrapolation method to use in the i direction is 
MUSCL Steger-Warming with Δp. 

iord 3 The Euler flux extrapolation order of accuracy is third-order 
upwind biased. 

omgi 2.0d0 The value of ω to employ in the MUSCL scheme is 2. 

ilim 1 The MinMod flux limiter is used in the Euler flux extrapolation. 

idiss 1 A standard eigenvalue limiter is used in the flux extrapolation. 

epsi 0.3 The magnitude of the eigenvalue limiter is 0.3 in the flow 
direction 

jflx 4 The Euler flux extrapolation method to use in the j direction is 
MUSCL Steger-Warming with Δp. 

jord 3 The Euler flux extrapolation order of accuracy is third-order 
upwind biased. 

omgj 2.0d0 The value of ω to employ in the MUSCL scheme is 2. 

jlim 1 The MinMod flux limiter is used in the Euler flux extrapolation. 

jdiss 1 A standard eigenvalue limiter is used in the flux extrapolation. 

epsj 0.3 The magnitude of the eigenvalue limiter is 0.3 in the j direction 

kflx 4 The Euler flux extrapolation method to use in the k direction is 
MUSCL Steger-Warming with Δp. 

kord 3 The Euler flux extrapolation order of accuracy is third-order 
upwind biased. 
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Block #1 Flags 
(cont.) 

Setting 
(cont.) 

Explanation (cont.) 

omgk 2.0d0 The value of ω to employ in the MUSCL scheme is 2. 

klim 1 The Minmod flux limiter is used in the Euler flux extrapolation. 

kdiss 0 No eigenvalue limiter is used in the flux extrapolation in the k 
direction. 

epsk 0.03 This value is ignored because kdiss=0. 

iextst -1 The time advancement method used when simulating this 
master block will be implicit data parallel line relaxation. 

nrlx 4 Four implicit data parallel line relaxation steps will be used in 
simulating this master block. 

ildir 0 The lines will be formed automatically in an appropriate 
direction when simulating this master block. 

ibcu 1 Implicit boundary conditions will be updated during each line 
relaxation step. 

iblag -1 Implicit boundary conditions will not be lagged when 
simulating this master block. 

ilt -1 Global timestepping will be employed when simulating this 
master block. 

ibdir 1 This value is ignored because nblk=2. 

cflm 1.0d20 This value is ignored because ilt=-1 (not 2 or -2). 

imin 20 Use a zonal interface boundary condition at this computational 
cell face. 

imax 20 Use a zonal interface boundary condition at this computational 
cell face. 

 

jmin 20 Use a zonal interface boundary condition at this computational 
cell face. 

jmax 19 w=-w is the plane of symmetry at this computational cell face. 

kmin 26 The wall at this computational cell face is set to catalytic 
radiative equilibrium. 

kmax 1 The boundary conditions at this computational cell face are 
fixed at freestream conditions. 
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Block #2 Flags Setting Explanation 

ntx 48 There are 48 computational cells in the x direction in Block #2. 

nty 64 There are 64 computational cells in the y direction in Block #2. 

ntz 64 There are 64 computational cells in the z direction in Block #2. 

iconr -1 This value is ignored because iinit=-1. 

isim 1 This block will be included in the simulation. 

ifree 1 Use freestream specification #1 for this master block. 

initi 1 Use freestream specification #1 to initialize the interior of this 
master block. 

ibadpt 1 Grid adaption will be performed on this block.  

iflx 4 The Euler flux extrapolation method to use in the i direction is 
MUSCL Steger-Warming with Δp. 

iord 3 The Euler flux extrapolation order of accuracy is third-order 
upwind biased. 

omgi 2.0d0 The value of ω to employ in the MUSCL scheme is 2. 

ilim 1 The MinMod flux limiter is used in the Euler flux extrapolation. 

idiss 1 A standard eigenvalue limiter is used in the flux extrapolation. 

epsi 0.3 The magnitude of the eigenvalue limiter is 0.3 in the flow 
direction 

jflx 4 The Euler flux extrapolation method to use in the j direction is 
MUSCL Steger-Warming with Δp. 

jord 3 The Euler flux extrapolation order of accuracy is third-order 
upwind biased. 

omgj 2.0d0 The value of ω to employ in the MUSCL scheme is 2. 

jlim 1 The MinMod flux limiter is used in the Euler flux extrapolation. 

jdiss 1 A standard eigenvalue limiter is used in the flux extrapolation. 

epsj 0.3 The magnitude of the eigenvalue limiter is 0.3 in the j direction 

kflx 4 The Euler flux extrapolation method to use in the k direction is 
MUSCL Steger-Warming with Δp. 

kord 3 The Euler flux extrapolation order of accuracy is third-order 
upwind biased. 

omgk 2.0d0 The value of ω to employ in the MUSCL scheme is 2. 
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Block #2 Flags 
(cont) 

Setting 
(cont) 

Explanation  
(cont) 

klim 1 The MinMod flux limiter is used in the Euler flux extrapolation. 

kdiss 0 Flux extrapolation will not be performed in the k direction. 

epsk 0.03 This value is ignored because kdiss=0. 

iextst -1 The time advancement method used when simulating this 
master block will be implicit data parallel line relaxation. 

nrlx 4 Four implicit data parallel line relaxation steps will be used in 
simulating this master block. 

ildir 0 The lines will be formed automatically in an appropriate 
direction when simulating this master block. 

ibcu 1 Implicit boundary conditions will be updated during each line 
relaxation step. 

iblag -1 Implicit boundary conditions will not be lagged when 
simulating this master block. 

ilt 1 Global timestepping will be employed when simulating this 
master block 

ibdir 1 This value is ignored because nblk=2. 

cflm 1.0d20 This value is ignored because ilt=-1  

imin 20 Use a zonal interface boundary condition at this computational 
cell face. 

imax 3 Use a first order extrapolation (supersonic exit) boundary 
condition at this computational face. 

jmin 19 w=-w is the plane of symmetry at this computational cell face. 

jmax 19 w=-w is the plane of symmetry at this computational cell face. 

kmin 26 The wall at this computational cell face is set to catalytic 
radiative equilibrium. 

kmax 1 The boundary conditions at this computational cell face are 
fixed at freestream conditions. 
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Freestream 
Specifications 

Flags 

Setting Explanation 

irm 3 Velocity will be used as input for this area of the freestream.  

density 1.6313d-5 The density of this area of the freestream is 
.000016313kg/m3. 

M/Re/V 3.1045d4 The velocity of this area of the freestream is 31,045 m/sec. 

cx 0.8090160044 The cosine of the velocity vector in the x direction is 
0.8090160044, i.e., cx=8 cos (34.2 degrees) 

cy 0.5877852523 The cosine of the velocity vector in the y direction is 
0.5877852523. 

cz 0 The cosine of the velocity vector in the z direction is 0 
because the flow vector is defined as 34.2 degrees in the x-y 
plane. 

Tin 140.3 The translational temperature in this area of the freestream is 
140.3 degrees Kelvin. 

Trin 140.3 The rotational temperature in this area of the freestream is 
140.3 degrees Kelvin. 

Tvin 140.3 The vibrational temperature in this area of the freestream is 
140.3 degrees Kelvin. 

Tein 140.3 The free electron temperature in this area of the freestream is 
140.3 degrees Kelvin. 

Turbi 0.001d0 This value is ignored because ivis=1, defining the problem 
as a laminar flow simulation and telling DPLR to ignore 
turbulence- and transition-related flags. 

Tkref 0.00d0 This value is ignored because ivis=1, defining the problem 
as a laminar flow simulation and telling DPLR to ignore 
turbulence- and transition-related flags. 

subp0 2.650d2 This value is ignored because no subsonic boundary 
conditions are identified for this simulation. 

subT0 2.650d2 This value is ignored because no subsonic boundary 
conditions are identified for this simulation. 

pback 1.05d5 This value is ignored because no subsonic boundary 
conditions are identified for this simulation. 

Cs  H2 0.6822392 The fraction of the freestream mass contributed by H2 is 
0.6822392. 
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Freestream 
Specifications 
Flags (cont.) 

Setting 
(cont.) 

Explanation (cont.) 

cs  H 0 The fraction of the freestream mass contributed by H is 0. 

cs  H+ 0 The fraction of the freestream mass contributed by H+ is 0. 

cs  He 0.3177608 The fraction of the freestream mass contributed by He is 
0.3177608 

cs  e 0 The fraction of the freestream mass contributed by electrons 
is 0.  

 
CFL numbers 
or timesteps 
for ramping 

Setting 

 

Explanation 

 

 .00001 Perform 20 iterations of the simulation at a CFL setting of 
.00001 

 .0001 Perform 20 iterations of the simulation at a CFL setting of 
.0001 

 .001 Perform 20 iterations of the simulation at a CFL setting of .001 

 .01 Perform 20 iterations of the simulation at a CFL setting of .01 

 .1 Perform 20 iterations of the simulation at a CFL setting of .1 

 1 Perform 20 iterations of the simulation at a CFL setting of 1 

 5 Perform 20 iterations of the simulation at a CFL setting of 5. 

 10 Perform 20 iterations of the simulation at a CFL setting of 10. 

 20 Perform 20 iterations of the simulation at a CFL setting of 20. 

 50 Perform 20 iterations of the simulation at a CFL setting of 50. 

 100 Perform 20 iterations of the simulation at a CFL setting of 100. 

 200 Perform 20 iterations of the simulation at a CFL setting of 200. 

 500 Perform 20 iterations of the simulation at a CFL setting of 500. 

 750 Perform 20 iterations of the simulation at a CFL setting of 750. 

 1000 Perform 20 iterations of the simulation at a CFL setting of 
1000. 

 2000 Perform 20 iterations of the simulation at a CFL setting of 
2000. 



 Using DPLR 

 

DPLR Code Version 4.01.1  User Manual  4-70  10/27/09  

CFL numbers 
or timesteps 
for ramping 

(cont.) 

Setting 
(cont.) 

 

Explanation (cont.) 

 

 5000 Perform 20 iterations of the simulation at a CFL setting of 
5000. 

 -1 Stop reading CFL numbers. 

 

4.3.3   Neptune Output Summary  

To run this problem in DPLR, type a command at the prompt that is similar to: 

  mpirun –np 42 $DPLRBINDIR/dplr3d<neptune.inp 
 
Upon execution, DPLR will create an on-screen summary, also known as a “standard 
out”  of the problem as shown below.  
 
********************************************* 
 dplr3d 
 NASA Ames Version 4.01.0 
 Maintained by Mike Wright;  last modified: 02/05/09 
 ********************************************* 
  
# Running on   8 processors 
# --> Allocating   1 nodes to block   1 
# --> Allocating   7 nodes to block   2 
# --> Total load imbalance =   3.92% 
# --> Input grid file hardwired for   8 processors 
  
Executable Information 
# --> built by twhite on Thurs Feb 5 17:23:43 PST 2009 
# --> at host m100 
# --> running Linux 2.6.9-42.0.2.ELsmp x86_64 
  
Makefile Settings 
# --> LD_LIBRARY_PATH = /opt/intel/fce/9.1.037/lib 
/opt/ompi1.1.2/lib 
# --> LFLAGS = /home/atipa/hpl/libgoto_opteron-64-r0.99-3.so 
/home/atipa/hpl/xerbla.o /home/lib.working/tecio64.a 
/usr/lib/gcc/x86_64-redhat-linux/3.4.5/libstdc++.a 
# --> CPPFLAGS = -cpp -D_i686linuxipf 
# --> FFLAGS = -r8 -extend_source -O3 -pad -ip -W0 -cm 
# --> F77 = /opt/ompi1.1.2/bin/mpif90 
# --> FXDRLIB = /home/lib/libfxdr.a 
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# Summary of enabled CPP compiler directives: 
# --> AMBIPOLAR =  1 
# --> PARKTEXP = 0.50 
# --> NOHTC 
  
 
****WARNING: CPP macro AMBIPOLAR = 1 
             uses a simplistic model for ambipolar diffusion 
 
  
# INFORM: Compiled for 32-bit compatible execution 
 
# Overset Logic is disabled 
  
# Dual time stepping is disabled 
  
# Neptune Mechanism: 5 species, 5 reactions (Liebowitz 1973 & 1976) 
Model 
# --> Species List: H2 H H+ He e 
# --> Reaction rates from: neptune5sp_leibowitz76.chem 
# --> Reaction Status: 1 1 1 1 1 
# --> Keq Fit Used   : 0 0 0 0 0 
# --> Park 1990 fits for Keq (n=10^16) 
# --> Assume molecules created/destroyed at mixture Tve 
 
# Catalytic wall BC enabled 
# --> Constant accomadation coeff;  gamma = 1.000 
# --> Fully catalytic to ion recombination 
 
# Radiative equilibrium BC enabled 
# --> Constant wall emissivity;   epsilon = 0.85 
# --> Maximum wall temperature = 3000.00 K 
 
# Rotational Equilibrium - Fully Excited 
 
# Vibrational Equilibrium - SHO 
 
# Electronic Energy Neglected 
# --> Assuming free electrons are coupled with T 
 
# Laminar Navier-Stokes Simulation 
# -->Gupta-Style Collision Integrals & Yos Mixing Rule 
# -->Fickian Diffusion(Mass Fraction Gradients);Schmidt Number= 0.50 
# -->SCEBD model used to compute diffusive fluxes 
 
# Ideal Gas Equation of State 
 
# 3-Dimensional Flow 
 
# Implicit - Data Parallel Line Relaxation; nrlx =  4 
# --> Using Global Timestepping 
  
# Estimate   187MB stack memory required per PE 
 
# Reading grid file: neptune-8PE.pgrx 
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# --> Reading block   1: grid cell size   32X  16X  64 
# --> Reading block   2: grid cell size   48X  64X  64 
# --> Total number of grid cells =   229376 
# --> Computing grid dummy cells 
  
# Freestream Reynolds    Number = 8.024E+04 (1/m) 
# Freestream Frozen Mach Number = 3.715E+01 
# Freestream Equil. Mach Number = 3.715E+01 
 
  
nit =      1 rmsres =  1.0000000000000E+00  cfl = 1.0E-05 
nit =      2 rmsres =  9.9999996847695E-01  cfl = 1.0E-05 
nit =      3 rmsres =  9.9999993691276E-01  cfl = 1.0E-05 
. 
. 
. 
nit =     98 rmsres =  3.8595952079619E-01  cfl = 1.0E-01 
nit =     99 rmsres =  3.8034985848052E-01  cfl = 1.0E-01 
nit =    100 rmsres =  3.7508579577703E-01  cfl = 1.0E-01 
  
# writing restart file: neptune.pslx 
# solution written at: Thurs Feb  5 07:21:13 2009 
  
 
nit =    101 rmsres =  3.7017658887905E-01  cfl = 1.0E+00 
nit =    102 rmsres =  3.2830292631577E-01  cfl = 1.0E+00 
nit =    103 rmsres =  3.0949864923525E-01  cfl = 1.0E+00 
. 
. 
. 
nit =    198 rmsres =  1.5724959884754E-02  cfl = 5.0E+01 
nit =    199 rmsres =  1.5236815979400E-02  cfl = 5.0E+01 
nit =    200 rmsres =  1.4743944713869E-02  cfl = 5.0E+01 
  
# writing restart file: neptune.pslx 
# solution written at: Thurs Feb  5 07:35:27 2009 
  
 
nit =    201 rmsres =  1.4303718730322E-02  cfl = 1.0E+02 
nit =    202 rmsres =  1.7744774664322E-02  cfl = 1.0E+02 
nit =    203 rmsres =  1.7218162636161E-02  cfl = 1.0E+02 
. 
. 
. 
nit =    298 rmsres =  2.3267700178866E-05  cfl = 1.0E+03 
nit =    299 rmsres =  2.1545250679943E-05  cfl = 1.0E+03 
nit =    300 rmsres =  2.0022263684723E-05  cfl = 1.0E+03 
  
# writing restart file: neptune.pslx 
# solution written at: Thurs Feb  5 07:49:42 2009 
  
 
nit =    301 rmsres =  1.8676626863417E-05  cfl = 2.0E+03 
nit =    302 rmsres =  1.9613965114431E-05  cfl = 2.0E+03 
nit =    303 rmsres =  2.1038915489521E-05  cfl = 2.0E+03, 
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. 

. 

. 
nit =    398 rmsres =  1.4656581391990E-08  cfl = 5.0E+03 
nit =    399 rmsres =  1.3612594864547E-08  cfl = 5.0E+03 
nit =    400 rmsres =  1.2656218641573E-08  cfl = 5.0E+03 
  
# writing restart file: neptune.pslx 
# solution written at: Thurs Feb  5 08:03:56 2009 
  
 
nit =    401 rmsres =  1.1780771213662E-08  cfl = 5.0E+03 
nit =    402 rmsres =  1.0979147316707E-08  cfl = 5.0E+03 
nit =    403 rmsres =  1.0245683275129E-08  cfl = 5.0E+03 
. 
. 
. 
nit =    498 rmsres =  2.1745095792356E-10  cfl = 5.0E+03 
nit =    499 rmsres =  2.0982611245646E-10  cfl = 5.0E+03 
nit =    500 rmsres =  2.0246851605138E-10  cfl = 5.0E+03 
  
# writing restart file: neptune.pslx 
# solution written at: Thurs Feb  5 08:18:10 2009 
  
 
  
# Loop time =    4227.63 seconds on   8 processors 
 
 

Figure 4-4  Standard Out for DPLR Run of Neptune Probe 
 
 

4.3.4  Neptune Output Summary Information 

In addition to verifying the values entered into the DPLR input deck, the DPLR 
output summary displays information about computing resources required for the run, 
values calculated by code, and an initial snapshot of the set of iterations that are being 
performed as the problem converges to a solution.  

In this sample case, DPLR estimates that 187 megabytes of stack memory will be 
required for each of the 8 processors, calculates the Reynolds and Mach numbers 
used in the simulation, shows that the early iterations of the run began with very large 
residuals and and very small CFL timesteps, writes restart files every 100 iterations, 
and ends the run with a very small residual at iteration 500 when the neptune.pslx 
solution file is written.  (Note that this estimate may not include additional memory 
requirements for turbulence models.) 



 Using DPLR 

 

DPLR Code Version 4.01.1  User Manual  4-74  10/27/09  

4.4 Monitoring the DPLR Run  

When DPLR begins its execution of a simulation run, the screen will display the 
standard out as discussed above in Section 4.3.4.  

In addition to the standard out, you can actively monitor the simulation run by setting 
up a POSTFLOW input deck to read restart files as they are being saved during the 
DPLR run. As the simulation progresses, you can extract the data you want to 
examine and launch Tecplot (or some other graphics visualization program) to read 
the POSTFLOW output files and create a graphic representation of the state of your 
solution at specific iterations or timesteps. (See Chapter 5 for more information on 
Using POSTFLOW) 

This workflow set-up can help you monitor the progress of your simulation run early 
enough to see if you are accurately capturing flow conditions along the shock wave. 
If not, you may be able to use a runtime control file to implement a grid adaption 
process during the run to improve the quality of the simulation. (See Section 6.4 for 
more information on runtime control files). 

Ideally, your simulation will achieve convergence when the residual from the latest 
iteration in your solution approaches zero and the resulting data visualization 
accurately represents the flow conditions you are simulating as shown in the standard 
out for the Neptune simulation at the 500th iteration. However, each case will have its 
own set of unique convergence parameters to tell you when you have achieved an 
acceptable solution. In practice, if your solution progresses far enough for the residual 
to stop dropping by orders of magnitude over time and appears to level out, you may 
have achieved an acceptable result.  
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Figure 4-5  Graphic Representation of Mach Contours and  
    Convective Heating at the Wall in the Neptune  

Simulation after 500 Iterations. 
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5.0 Introduction 

Restart files generated by DPLR contain all the input deck settings and physical 
modeling parameters that were used in the simulation. These data exist independently 
of the original input files used to run the simulation.  
Using POSTFLOW, you can identify and extract specific data from a DPLR restart 
file to use in a presentation or further process with graphics software (such as 
Tecplot) to create appropriate visualizations of the results of your CFD simulation. 

POSTFLOW always runs in serial mode on a single processor, regardless of the 
number of processors used to run the simulation that generated the restart file.  

Because DPLR maintains backward compatibility, the current version of 
POSTFLOW can be used to post-process restart files generated with earlier versions 
of the DPLR Code Package. 

5.1 Running POSTFLOW 

Step 1:  Open the text editor program for your system.  
Action:  At the command line prompt, type: 

  /[path to your post directory]/post_flow3d_mb.inp 

Result:  An input file appears on screen with placeholder  
   default values. To start with a blank deck, delete the  
   default values as shown on the following page. 
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Input file for postflow 

 
imemmode itruev  ifstat 
           
 
inrest   ingrid  inbcf   ouform  iwrtd 
  
 
interp   nzones   isep  istyp   iunits 
   
 
lref   aref   xmc   ymc   zmc   imrx  imry  imrz 
  
 
iwind   cxs   cys   czs 
   
 
iexbc   <== list of BC numbers to extract from dataset 
 
 
ivarp <== list of variable numbers to extract from dataset 
  
 
Tecplot/plot3d zone information: 
iwrt ifac imin imax jmin jmax kmin kmax  bkmin  bkmax  zonetitle 
            'stag2d' 
          'body2d' 
          'flow2d' 
          'terminator' 
 
fname,pname,(gname),(bname) 
 
 

Figure 5-1 POSTFLOW Input Deck 
 
 
Step 2:  Enter problem-specific values for each of the input variables or “flags”. 

(See Section 5.2 for a description of input flags and a list of allowable 
values.) 

Step 3:  Rename and Save your POSTFLOW input file to your working directory.   

Step 4:  Run POSTFLOW.  

Action:  At the command line prompt, type: 
    postflow < yourpostflowfilename.inp 

Result:  An output file that can be processed by a third-party  
   graphics program (such as Tecplot) is created according to 
   your specifications along with an on-screen summary of 
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   actions performed by POSTFLOW. (See Section 5.3 for an 
   example of a problem-specific POSTFLOW input deck and 
   the  output summary.) 

5.2 Input Flags for POSTFLOW 

Input variables for POSTFLOW are discussed below in the order they appear in the 
deck. 
 
 imemmode - Specifies the memory mode selected for running POSTFLOW. 
     Allowable values are: 

 1 low memory mode 
 2 high memory mode (Recommended) 

Tech Tip: Using high memory mode makes all the features 
of POSTFLOW available and is the recommended setting. If 
your computing resources are insufficient for running in this 
mode, i.e., capable of holding all flow variables for the 
largest physical block in the simulation at any one point in 
time, then choosing the low memory mode will enable you to 
use the program, but will require significantly longer 
processing times.  

 itruev - Specifies the method to use to compute derivative values, such 
     as skin friction or heat transfer.  Allowable values are: 

 0 evaluate derivatives using a 1st-order approximation 
 1 evaluate derivatives using accurate 2nd-order  
  expressions (Recommended) 

Tech Tip: When immode=1 (low memory), extraction of 
true derivatives is not possible. In this case, POSTFLOW 
automatically sets itruev=0, then echoes a warning to the 
screen. 

 ifstat - Specifies the type of statistical processing POSTFLOW  
    performs on flow variables (if available). Allowable values are: 

 0 process instantaneous flow variables (default) 
 1 compute mean (exact for primitive quantities only) 
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 2 compute root mean square (RMS) (exact for primitive 
  quantities only) 

3 compute standard deviation (not available in DPLR  
  4.01.1)   

 inrest - Specifies the format of the restart file to be read by   
    POSTFLOW. Allowable values are: 

 1 parallel archival file (native unformatted) 
 11 parallel archival file (XDR format) 
   21  Parallel archival file (ASCII) 

 ingrid - Specifies the format of the grid file to be used when  
     post-processing the simulation data. Allowable values are: 

 0 get format from restart file (Recommended) 
 1 parallel archival file (native unformatted) 
 11 parallel archival file (XDR format) 
   21  parallel archival file (ASCII) 

Tech Tip: Setting igrid=0 ensures that the grid file being used to 
post-process the data is the same as the one used to generate the 
data in the first place. However, if the name of the grid file, or its 
location relative to the restart file is ever changed, you must use one 
of the other settings in igrid to point POSTFLOW to the original 
grid file, 

 inbcf  - Specifies the format of the boundary condition file, if any, that 
     was used to generate the data in the restart file being read by 
     POSTFLOW. Allowable values are: 

0  get format from restart file (Recommended) 
 1 parallel archival file (native unformatted) 
 11 parallel archival file (XDR format) 
   21  parallel archival file (ASCII) 

Tech Tip: POSTFLOW will automatically look at the restart file to 
determine if any boundary condition file is required and what the 
format is. If no BC file was used during the simulation, the value of 
inbcf is ignored. 
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 ouform - Specifies the desired format of the output data. Allowable  
     values are:  

 2 plot3d grid or q-file (native unformatted)  
 3 plot3d grid or function file (native unformatted) 
 5 Tecplot block ordered data binary 
 6 Tecplot point ordered data binary 
   7  compute max/min values for variables and output to 
     STDOUT 
   8  integrate variables over given surface(s) and output to 
     STDOUT 
   9  RESERVED 
       10  print selected freestream quantities to STDOUT 
   11  output datasets for Moment calculations 
   17  compute max/min & maxloc/minloc and output to  
     STDOUT 
   18  print a list of NaN locations to STDOUT 
   22  plot3d grid or q-file (ASCII) 
   23  plot3d grid or function file (ASCII) 
   25  Tecplot block ordered data ASCII 
   26  Tecplot point ordered data ASCII 
   28  RADEQUIL LOS file (ASCII) 
   32  gzipped plot3d grid or q-file (ASCII) 
   33  gzipped plot3d grid or function file (ASCII) 
          110  print freestream quantities to STDOUT in tabular  
     format  

Tech Tips:  
1). Formats for the output files will usually be plot3d 
(ouform=3,23,33) - standard CFD output formats that can be 
read by most commercial post-processing tools -  and Tecplot 
(ouform=5,6,25,26) – a file format used only by Amtec’s 
Tecplot post processing visualization software .  
 
2) The plot3d q file output option (ouform=2) is included 
primarily for historical purposes. Although still technically 
available, writing data to a q file requires the user to know and 
include the specific variable set specified by that file format. With no 
error checking performed by DPLR, data file validity becomes the 
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entire responsibility of the user.  
 
3). To generate Tecplot binary files (ouform=5,6), the Amtec-
provided “tecio.a” (or “tecio64.a”) runtime library must be 
installed on your system.    

 iwrtd  - Specifies whether a subdirectory called INPUTDECKS  
     containing reconstructions of  the DPLR input decks (including 
     the physical property data decks) used to run the simulation 
     will be created in your working directory. Allowable values 
     are: 

0  do not create a subdirectory containing reconstructed 
  input decks 

 1 create a subdirectory containing reconstruct input decks 
  (recommended) 

Tech Tip: One of the more powerful features of POSTFLOW is the 
ability to recreate usable DPLR input and physical data decks 
directly from the restart file. Because of this, it is always possible to 
determine the settings and physical constants used to generate the 
simulation, even if the original DPLR input deck has been altered or 
misplaced. (Note: Although POSTFLOW can process restart files 
generated by previous versions of DPLR, DPLR input decks 
reconstructed and saved in the subdirectory created by POSTFLOW 
will always be generated in the format of the current version of the 
DPLR Code Package.)  

 interp - Specifies how cell-centered finite-volume flow data are  
     represented on a node-centered grid. Allowable values are: 

0  move flow data to the lower-left cell (least accurate) 
 1 interpolate grid points to cell centers (See Tech Tip #1) 
 2 interpolate flow data to grid points (See Tech Tip #2) 
 11 interpolate grid points to cell centers; no boundary  
  points (See Tech Tip #3) 
   21  interpolate grid points to cell centers; even at  
     boundaries (See Tech Tip #4) 
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Tech Tips:  
1).  Generates cell-centered grids adding additional face-centered 
points to the boundaries. Flow quantities are not interpolated to the 
interior of the grid, thereby holding distortion of output data to a 
minimum. Because output grid points lie at the cell centers of the 
original CFD grid, the output grid resulting from interp=1 cannot 
be used to run further CFD simulations. 
 
2)  Preserves the location of the CFD grid points and interpolates 
finite-volume data onto these mesh points.  Best to use when output 
data is to be processed using SAGe or a utility such as Outbound to 
move the outer boundary of the grid or adapt the grid to the 
computed flowfield. 
 
3)  Identical to interp=1 except that additional points are not 
added at the block boundaries, so the output grid will have “holes” 
in it along those boundaries. Best to use for computing integrated 
forces and moments, or for outputting pointwise forces for later 
offline integration using the Moment utility program. See Section 
9.1.5 for more information on Moment. 
 
4). Identical to interp=1 except that even the points at the 
boundaries are located using cell-centered interpolation. Maximum 
output dimensions using this option is the number of cells in each 
computational direction, plus two points in each direction 
representing the points added within the boundaries. Primarily used 
for debugging by code developers to gain access to the cell-centered 
values of quantities in the grid dummy cells rather than the face-
centered values available using interp=1. 

 nzones - Specifies the  maximum number of output data zones to be  
    generated.   

    Recommended value = 20. 

Tech Tip: Used by POSTFLOW to size certain output arrays, a 
moderate value such as the recommended 20 should be sufficient. 
However, if this value is too small for the output arrays you ask 
POSTFLOW to generate, the program will abort and generate an 
error message prompting you to increase the nzones value. 
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 isep  - Specifies whether multiple output datasets are to be written to a 
    single or multiple files  Allowable values are: 

 0 all active output datasets are written to a single file 
 1 each active output dataset is written to its own file 

 istyp  - Specifies how to extract boundary condition data with iexbc. 
    Allowable values are:  (Not working in DPLR 4.01.1)  

 -1 extract entire volume of data for each boundary  
  condition 
     1  extract a single plane of data for each boundary  
      condition 

     -2  extract 2 planes of data for each boundary condition  

 iunits - Specifies whether a POSTFLOW will include SI units  
     associated with data in output files formatted for Tecplot  
     (ouform=5:6, 25:26). Allowable values are: 

0  do not include units in the output file  
    1  include SI units in the output file  

Tech Tip: If outform is set to create output files NOT specifically 
formatted for Tecplot, this flag will be ignored 

 lref  - Specifies the reference length, in SI units (meters), used for the 
    normalization of moment coefficients. 

Tech Tip: The extraction of moments and moment coefficients can 
either be performed directly in POSTFLOW or with an included 
utility program Moment. If Moment is used, the value you enter into 
1ref will be passed to the ultility for use in computation. 

 aref  - Specifies the reference area, in SI units (square meters), used 
    for the  normalization of force and moment coefficients. 

xmc, ymc, zmc - Indicates the x, y, z position, in meters, as specified in the input 
    plot3d grid file of the moment reference center used for  
    extracting moments and moment coefficients.  
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Tech Tip: Although extraction of hinge moments for control surfaces 
is not currently supported in POSTFLOW, it can be accomplished 
using the Moment utility. 

imrx,imry,imrz- Specifies planes of symmetry used in the simulation.  
    Allowable values are: 

0  do not enforce symmetry about this plane 
1  enforce symmetry about this plane 

Tech Tips:  
1). Possible planes of symmetry are defined as: 
 imrx – body is symmetric about the yz-plane 
 imry – body is symmetric about the xz plane 
 imrz – body is symmetric about the xy plane 
 
2)  POSTFLOW currently supports bilateral symmetry ( any one of 
the above flags =1) and quadrilateral symmetry ( any two of the 
above flags =1) . 
 
3)  If the symmetry of the vehicle is more complex than a simple 
bilateral or quadrilateral representation, set all of the above flags=0 
and compute the symmetry relations off-line after post-processing is 
complete. 
 
4)  If ouform=8 requesting integrated variable reporting over given 
surface(s) and ivarp=600:673; 700:773 requesting force or moment 
coefficients, it is important to set aref to specify the full reference 
area when normalizing these computed forces if the symmetry flags 
are also used. 
 
5)  All three symmetry flags are valid for 3D flows, and none are 
valid for a 2D or axisymmetric flow.   

 iwind  - Specifies the velocity vector orientation axis (aka global  
    “wind”) for calculation of certain output variables (i.e., ivarp 
    values). Allowable values are: 

 0 do not alter the raw output data 
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 1 determine sign by a dot product with freestream vector 
  (recommended for simulations with only one freestream  
  specification) 
    2  determine sign by a dot product with supplied wind  
      vector (recommended for simulations with more than one 
      freestream specification) 

Tech Tip: Because the global wind axis is used either to determine 
the sign of the output skin friction (shear stress) or to convert output 
forces into a wind-oriented (lift and drag) coordinate system, iwind 
will be ignored unless ivarp=600:673; 700:773.  

cxs, cys, czs - Specifies the direction cosines of the global wind axis in the 
    xyz directions when iwind=2.  

Tech Tips:  
1)  These are defined as unit metrics, such that: 
    cxs2 + cys2 + czs2 = 1 
and the components u, v, and w of the freestream velocity vector V 
are given by u = V•cxs;       v = V•cxy;       w = V• cxz 
 
2)  User input values are always normalized by POSTFLOW to 
ensure that these expressions are valid. 

 iexbc  - Boundary condition number(s) for the wall or surface from  
    which data will be extracted. Allowable values, listed in  
    Section 4.2 for the DPLR input flag ibc, must be an array of 
    comma or space separated entries. Entering a value of -1  
    disables this feature. 

Tech Tips: 
1) To extract data from the intersection of two surfaces, enter a 
reference boundary value, then a forward slash, then the boundary 
condition that is desired to intersect with the reference boundary. 
This expression becomes one value and can then be added to the 
array of numbers on this input line. For example: 
     iexbc 
     26/18 3 
would extract data from the intersection between a catalytic 
radiative equilibrium wall (ibc=26) and the y symmetry plane 



 Using POSTFLOW 

 

DPLR Code Version 4.01.1  User Manual 5-12 10/27/09  

(ibc=18) in addition to extracting data from the supersonic exit 
plane (ibc=3).( Note that the order of the two numbers is 
important as the wall must be defined before an intersecting plane of 
symmetry can be specified.) 
 
2) If the simulation contains multiple instances of a boundary 
condition specified in iexbc, the resulting data extraction will be 
saved as separate “blocks” for a plot3d output file or “zones” for a 
Tecplot output file. Both designations refer to the same regions in the 
simulation and will be named by the iexbc setting. For example, if 
iexbc=19, POSTFLOW will display the words zone t=BC19 for 
each block in which that boundary condition is extracted.  
 
3) Entering appropriate values into iexbc is a quick and easy way 
to extract defined surface data from a complex multiblock grid and 
can be used with, or instead of, zone specification extraction as 
defined below.  

 ivarp  - Specifies the flow variables to be extracted from the restart file. 
    Entries must be an array of comma- or space-separated  
    integers. Allowable values are: 
 Grid Coordinates 
 0 all grid coordinates 
 1 x-coordinate (x) 
 2 y-coordinate (y) 
 3 z-coordinate (z) 
 
 Grid-Related Variables 
 10 all path-lengths 
 11 path length along grid lines in i-direction (si) 
 12 path length along grid lines in j-direction (sj) 
 13 path length along grid lines in k-direction (sk) 
 14 *unit outward normal x-direction cosine (sx) 
 15 *unit outward normal y-direction cosine (sy) 
 16 *unit outward normal z-direction cosine (sz) 
 21 *body normal distance (dn) 
 22 *deviation from orthogonality [deg.] (dev) 
 23 *face area (Area) 
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 25 cell aspect ratio (dmax/dmin) (CAR) 
 
 Mixture Transport Properties 
 50 total viscosity (mu) 
 51 total kinematic viscosity (nu) 
 52 total translational thermal conductivity (kap) 
 53 total rotational thermal conductivity (kapr) 
 54 total vibrational thermal conductivity (kapv) 
 55 free electron thermal conductivity (kape) 
 56 total binary diffusion coefficient (D) 
 57 mixture mean free path (mfp) 
 58 unit Reynolds number (Re/L) 
 59 cell Reynolds number (Re_c) 
 
 Thermodynamic Properties 
 60 ratio of frozen specific heats cp/cv (G) 
 61 frozen specific heat at constant volume (cv) 
 62 frozen specific heat at constant pressure (cp) 
 63 translational specific heat at constant volume (cvt) 
 64 rotational specific heat at constant volume (cvr) 
 65 vibrational specific heat at constant volume (cvv) 
 66 electronic specific heat at constant volume (cve) 
 68 mixture gas constant (R) 
 69 mixture molecular weight (Mw) 
 
 Turbulence Quantities 
 70 turbulent kinetic energy (TKE) 
 71 turbulent omega (omega_t) 
 72 RESERVED 
 73 RESERVED 
 75 Spalart-Almaras conserved variable (mu_SA) 
 
 Laminar Transport Properties 
 80 laminar viscosity (mu_l) 
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 81 laminar kinematic viscosity (nu_l) 
 82 laminar thermal conductivity (kap_l) 
 83 laminar rotational thermal conductivity (kapr_l) 
 84 laminar vibrational thermal conductivity (kapv_l) 
 85 laminar free electron thermal conductivity (kape_l) 
 86 laminar binary diffusion coefficient (D_l) 
 87 laminar Lewis number (Le) 
 88 laminar Schmidt number (Sc) 
 89 laminar Prandtl number (Pr) 
 
 Turbulent Transport Properties 
 90 turbulent eddy viscosity (mu_t) 
 91 turbulent kinematic eddy viscosity (nu_t) 
 92 turbulent thermal conductivity (kap_t) 
 93 turbulent rotational thermal conductivity (kapr_t) 
 94 turbulent vibrational thermal conductivity (kapv_t) 
 95 turbulent free electron thermal conductivity (kape_t) 
 96 turbulent binary diffusion coefficient (D_t) 
 97 turbulent Lewis number (Le_t) 
 98 turbulent Schmidt number (Sc_t) 
 99 turbulent Prandtl number (Pr_t) 
 
 Mixture Flow Properties 

(Note that stagnation quantities (density, pressure, and 
temperature) are computed assuming isentropic relations, 
and thus are not valid for a chemically reacting flowfield.) 

 100 mixture density (rho) 
 101 mixture number density (N_tot) 
 102 stagnation mixture density (r_o) 
 110 pressure (p) 
 111 dynamic pressure (Q) 
 112 stagnation pressure (p_o) 
 113 Pitot pressure (p_pitot) 
 114 pressure coefficient (C_p) 
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 120 translational temperature (T) 
 121 bulk temperature (T_b) 
 122 stagnation temperature (T_o) 
 124 rotational temperature (Tr) 
 125 vibrational temperature (Tv) 
 126 electronic temperature (Te) 
 127 free electron temperature (Tel) 
 132 total  enthalpy per unit mass (h) 
 133 static enthalpy per unit mass (h_s) 
 134 total  enthalpy per unit volume (rh) 
 135 static enthalpy per unit volume (rh_s) 
 142 total energy per unit mass (e) 
 143 total translational energy per unit mass (et) 
 144 total rotational energy per unit mass (er) 
 145 total vibrational energy per unit mass (ev) 
 146 total electronic energy per unit mass (ee) 
 147 total free electron energy per unit mass (eel) 
 148 total chemical formation energy per unit mass (eh) 
 149 total kinetic energy per unit mass (eU) 
 150 velocity in the x-direction (u) 
 151 velocity in the y-direction (v) 
 152 velocity in the z-direction (w) 
 153 velocity magnitude (Vel) 
 154 frozen Mach number (M) 
 155 frozen speed of sound (a) 
 156 mean thermal speed (cbar) 
 157 normalized velocity in the x-direction (u/Vel) 
 158 normalized velocity in the y-direction (v/Vel) 
 159 normalized velocity in the z-direction (w/Vel) 
 160 momentum per unit volume in the x-direction (rhou) 
 161 momentum per unit volume in the y-direction (rhov) 
 162 momentum per unit volume in the z-direction (rhow) 
 163 total energy per unit volume (re) 
 164 total rotational energy per unit volume (rer) 
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 165 total vibrational energy per unit volume (rev) 
 166 total electronic energy per unit volume (ree) 
 167 total free electron energy per unit volume (rel) 
 168 total chemical formation energy per unit volume (reh) 
 169 total kinetic energy per unit volume (reU) 
 170 entropy (S) 
 175 pointwise unit radiative emission (Erad) 
 180 degree of ionization (zeta) 
 181 debye length (lam_D) 
 182 Tstar (Tstar) 
 183 electron charge (ec) 
 184 plasma frequency (wpe) 
 185 critical transmission frequency (wpecrit) 
 194 total energy per unit mass in rotational  Eqn. (er_B) 
 195 total energy per unit mass in vibrational Eqn. (ev_B) 
 196 total energy per unit mass in electronic  Eqn. (ee_B) 
 197 total energy per unit mass in free electron Eqn. (el_B) 
 202 *delta velocity at wall (Del_V) 
 204 *delta temperature at wall (Del_T) 
 250 velocity in the x-direction normalized by V∞ (u/Vin) 
 251 velocity in the y-direction normalized by V∞ (v/Vin) 
 252 velocity in the z-direction normalized by V∞ (w/Vin) 
 324     limited rotational temperature (Tr_l) 
 325     limited vibrational temperature (Tv_l) 
 326     limited electronic temperature (Te_l) 
 327     limited free electron temperature (Tel_l) 
 
 Viscous Derivative-Based Quantities 
 501 *skin friction coefficient (Cf) 
 502 *unit viscous force on a face in x-direction (tau_x) 
 503 *unit viscous force on a face in y-direction (tau_y) 
 504 *unit viscous force on a face in z-direction (tau_z) 
 507 *total wall shear stress (tau) 
 511 *Stanton number [based on wall enthalpy] (Ch) 
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 512     *Heat transfer coefficient in mass flux units (Chm) 
 517 *Stanton number [based on freestream conditions] (St) 
 518 *Convective heating coefficient (Ct) 
 520 radiative equilibrium heat transfer (Qeq) 
 521 *total wall heat transfer (qw) 
 522 *translational wall heat transfer (qT) 
 523 *rotational wall heat transfer (qR) 
 524 *vibrational wall heat transfer (qV) 
 525 *free electron wall heat transfer (qEl) 
 526 *catalytic wall heat transfer (qD) 
 527 *velocity wall heat transfer (qU) 
 531 *total wall heating (qwi) 
 581 *spacing in wall units y+ (yp) 
 584 *tangential velocity in wall units u+ (up) 
 585 *normal velocity in wall unites v+ (vp) 
 591 *blowing velocity through face (vb) 
 594 *mass flow rate through face (mdot) 
 595 *unit mass flow rate through face (mdotU) 
 596 *thrust through face (Thrust) 
 
 Aerodynamic Forces and Moments 

Force and moment variables (ivarp=600:673, 700:773) are 
usually extracted in conjunction with surface integration in order to 
generate integrated aerodynamic data and/or coefficients. Because 
an accurate surface integration cannot be performed if the data are 
extrapolated to zone edges, POSTFLOW will automatically set 
interp =11 whenever one or more force and moment variables are 
specified as output. This will result in a surface mesh with gaps 
along all block boundaries if pointwise surface data are requested 
unless you perform an off-line integration using a utility program 
such as Moment. 

 600 *total force on a face in all directions 
 601 *total force on a face in x-direction (Fx) 
 602 *total force on a face in y-direction (Fy) 
 603 *total force on a face in z-direction (Fz) 
 604 *total force on a face in x-direction per unit area (Fx_a) 



 Using POSTFLOW 

 

DPLR Code Version 4.01.1  User Manual 5-18 10/27/09  

 605 *total force on a face in y-direction per unit area (Fy_a) 
 606 *total force on a face in z-direction per unit area (Fz_a) 
 610 *pressure force on a face in all directions 
 611 *pressure force on a face in x-direction (Fx_P) 
 612 *pressure force on a face in y-direction (Fy_P) 
 613 *pressure force on a face in z-direction (Fz_P) 
 614 *pressure force on a face in x-direction per unit area 
  (Fx_Pa) 
 615 *pressure force on a face in y-direction per unit area 
  (Fy_Pa) 
 616 *pressure force on a face in z-direction per unit area 
  (Fz_Pa) 
 620 *viscous force on a face in all directions 
 621 *viscous force on a face in x-direction (Fx_V) 
 622 *viscous force on a face in y-direction (Fy_V) 
 623 *viscous force on a face in z-direction (Fz_V) 
 624 *viscous force on a face in x-direction per unit area  
  (Fx_Va) 
 625 *viscous force on a face in y-direction per unit area  
  (Fy_Va) 
 626 *viscous force on a face in z-direction per unit area  
  (Fz_Va) 
 650 *total force coefficient on a face in all directions 
 651 *total force coefficient on a face in x-direction (Cx) 
 652 *total force coefficient on a face in y-direction (Cy) 
 653 *total force coefficient on a face in z-direction (Cz) 
 660 *pressure force coefficient on a face in all direction 
 661 *pressure force coefficient on a face in x-direction  
  (Cx_P) 
 662 *pressure force coefficient on a face in y-direction  
  (Cy_P) 
 663 *pressure force coefficient on a face in z-direction  
  (Cz_P) 
 670 *viscous force coefficient on a face in all direction 
 671 *viscous force coefficient on a face in x-direction  
  (Cx_V) 
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 672 *viscous force coefficient on a face in y-direction  
  (Cy_V) 
 673 *viscous force coefficient on a face in z-direction  
  (Cz_V) 
 700 *total moment on a face in all directions 
 701 *total moment on a face in x-direction (Mx) 
 702 *total moment on a face in y-direction (My) 
 703 *total moment on a face in z-direction (Mz) 
 710 *pressure moment on a face in all directions 
 711 *pressure moment on a face in x-direction (Mx_P) 
 712 *pressure moment on a face in y-direction (My_P) 
 713 *pressure moment on a face in z-direction (Mz_P) 
 720 *viscous moment on a face in all directions 
 721 *viscous moment on a face in x-direction (Mx_V) 
 722 *viscous moment on a face in y-direction (My_V) 
 723 *viscous moment on a face in z-direction (Mz_V) 
 750 *total moment coefficient on a face in all directions 
 751 *total moment coefficient on a face in x-direction  
  (Cmx) 
 752 *total moment coefficient on a face in y-direction  
  (Cmy) 
 753 *total moment coefficient on a face in z-direction  
  (Cmz) 
 760 *pressure moment coefficient on a face in all directions 
 761 *pressure moment coefficient on a face in x-direction 
  (Cmx_P) 
 762 *pressure moment coefficient on a face in y-direction 
  (Cmy_P) 
 763 *pressure moment coefficient on a face in z-direction 
  (Cmz_P) 
 770 *viscous moment coefficient on a face in all directions 
 771 *viscous moment coefficient on a face in x-direction 
  (Cmx_V) 
 772 *viscous moment coefficient on a face in y-direction 
  (Cmy_V) 
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 773 *viscous moment coefficient on a face in z-direction 
  (Cmz_V) 
 
 Debugging/Status Information 
 980 pointwise icatmd numbers along block edges (icatmd) 
 981 pointwise ireqmd numbers along block edges (ireqmd) 
 990 pointwise BC numbers along block edges (ibcp) 
 991 net charge [should always be zero] (Qnet) 
 992 sum of mass fractions [should always be one] (Csum) 
 998 zero (zero) 
 999 pointwise L2Norm residual (res) 
 
 Species Data 

The following variables are species-specific data. In each 
case the user can choose to extract data for either a subset 
of the species by entering just the desired variable numbers, 
or data for all species by entering the appropriate” macro” 
value. (See Tech Tip #2) 

 1000  all species densities 
 1000+n density of species n (n) 

 1200  all species number densities 
 1200+n number density of species n (N_n) 

 1400  all species mass fractions 
 1400+n mass fraction of species n (C_n) 

 1600  all species mole fractions 
 1600+n mole fraction of species n (X_n)  

 1800  all species densities, normalized by ρ∞ 
 1800+n normalized density of species n (RnD_n)  

 3400  all species rotational temperatures 
 3400+n rotational temperature of species n (Tr_n)  

 3600  all species vibrational temperatures 
 3600+n vibrational temperature of species n (Tv_n)  
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 4000  all species total internal energies per unit mass 
 4000+n total internal energy per unit mass of species n 
   (e_n)  

 4200  all species translational internal energies per 
   unit mass 
 4200+n trans. internal energy per unit mass of species n 
   (et_n)  

 4400  all species rotational internal energies per unit 
   mass 
 4400+n rotational internal energy per unit mass of  
   species n (er_n)  

 4600  all species vibrational energies per unit mass 
 4600+n vibrational energy per unit mass of species n 
   (ev_n)  

 4800  all species electronic energies per unit mass 
 4800+n electronic internal energy per unit mass of  
   species n (ee_n)  

 5000  *all species mass flow rates through surface 
 5000+n *mass flow rate through surface of species n 
   (mdot_n)  

 5200  *all species mass flow rates through surface 
   [per unit area] 
 5200+n *mass flow rate through surface of species n 
   (mdotU_n)  

 6000  all species total specific heats at constant  
   volume 
 6000+n total specific heat at constant volume of species 
   n (cvx_n)  

 6200  all species translational specific heats at  
   constant volume 
 6200+n translational specific heat at const. vol. of  
   species n (cvt_n)  
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 6400  all species rotational specific heats at constant 
   volume 
 6400+n rotational specific heat at const. vol. of species n 
   (cvr_n)  

 6600  all species vibrational specific heats at constant 
   volume 
 6600+n vibrational specific heat at const. vol. of species 
   n (cvv_n)  

 6800  all species electronic specific heats at constant 
   volume 
 6800+n electronic specific heat at const. vol. of species 
   n (cve_n)  

 7000  all species frozen specific heats at constant  
   pressure 
 7000+n specific heat at constant pressure of species n 
   (cp_n)  

 7200  all species frozen specific heats at constant  
   volume 
 7200+n specific heat at constant volume of species n 
   (cv_n)  

 8000  all species gas constants 
 8000+n gas constant of species n (R_n)  

 8200  all species equivalent degrees of freedom [nkT] 
 8200+n equivalent degrees of freedom of species n  
   (dof_n)  

 8400  all species partial pressures 
 8400+n partial pressure of species n (p_n)  

 8600  all species mean thermal speeds 
 8600+n mean thermal speed of species n (cbar_n)  

 8800  all species chemical formation energies per unit 
   mass 
 8800+n formation energy per unit mass of species n  
   (eh_n)  
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 10000  all species diffusion coefficients 
 10000+n diffusion coefficient of species n (D_n)  

 10200  all species ambipolar diffusion effectiveness 
 10200+n ambipolar diffusion effectiveness of species n 
   (DaC_n)  

 10400  all species effective Schmidt numbers 
 10400+n effective Schmidt number of species n (Sc_n)  

 10800  all species unit diffusion mass fluxes 
 10800+n unit diffusion mass flux of species n (MD_n)  

Tech Tips: 
1) A single set of output variables may be specified for a given run of 
POSTFLOW. If a variable that is not permitted by the simulation 
specifications is selected for extraction, such as the coefficient of 
viscosity from an Euler simulation, POSTFLOW will remove it from 
the ivarp array and echo a message to the screen. 
 
2) The list of species-specific variables includes some italicized 
“macro” selections that allow extraction of several related items. 
For example, ivarp=1000 tells POSTFLOW to output species 
densities for all species in the simulation, relieving you of the need to 
identify each species by its order number in the .chem file. Whenever 
macro values are used, only those variable relevant to the simulation 
will be extracted, so ivarp=0 will automatically extract x,y, and z 
coordinates for a 3D flow, but only x and y for a 2D or axisymmetric 
flow. 
 
3, Variables prefaced with an asterisk (*) are defined as surface-
specific quantities and are extracted with respect to a given surface 
direction as defined either with the ifac flag in the zone 
specifications (see below) or automatically determined when 
extracting surfaces with the iexbc flag. 
 
4). All extracted variables are output in SI units. Units for 
dimensional output variables are echoed to the screen when one of 
the standard output formats are specified. 
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Tecplot/Plot3D Zone Specification Flags – The flags in this section of the 
POSTFLOW input deck define the extent of data extraction required for specified 
flow volumes or “zones”. In general, one row of data defines each desired extraction. 
The last line in this group is the “terminator” line in which iwtr=-1 instructs the 
code to stop reading zone specification information. A terminator line must be present 
or a run time error will occur.  

  iwrt - Specifies whether or not POSTFLOW will perform data  
     extractions for that line of the zone specification array.  
     Allowable values are:  

0  do not extract the data defined by this zone   
  specification 

1  extract the data defined by this zone specification 
       -1  terminator line 

Tech Tip: You can enter any number of zone specification lines in 
the POSTFLOW input deck. However, only those that are turned on 
by iwrt=1 will actually be extracted at runtime. This way, you can 
set up a default input deck with multiple zone specification lines for 
all possible desired output. Then, each time POSTFLOW is run, only 
the data that are actually required can be “turned on” while the rest 
are left inactive. 

  ifac - Specifies the ijk orientation of the surface being extracted.             
     Allowable values are:  

0  No face selected 

1  i-face 
2  j-face 

   3  k-face 

Tech Tips: 
1)  ifac is only needed when surface-oriented variables are 
specified in ivarp (i.e., those marked with an asterisk, such as skin 
friction or heat transfer). 
 
2)  If ifac=0 in one or more “turned on”  zone specifications and 
one or more surface-oriented variables are specified in ivarp, the 
variables will be removed from the output dataset and a warning 
message will be echoed to the screen.   
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imin, imax, jmin, jmax, kmin, kmax - Specifies the extent of the desired 
     extraction in the ijk directions. Numbering depends on the  
     value of interp or the “shorthand” value as explained below. 
            

interp=1 (interpolate grid points to cell centers) 
 i, j, k min = cell # in that direction to start with 
 i, j, k max =  cell # in that direction to end with +2 

interp=2 (interpolate flow data to grid points) 
 i, j, k min = grid point # in that direction to start with 
 i, j, k max =  grid points  # that direction to end with 

shorthand values independent of interp setting 

 i, j, k min = cell or grid point # to start with  
 i, j, k max = -1 (extract all values in this direction) 
     -2 (extract all values in this direction less 1) 
     -3 (extract all values up to the midpoint in 
      this direction) 

Tech Tip: To extract data from a plane, set the min and max values 
in that direction to be the same. 

bkmin, bkmax - Specifies the range of master block numbers from which to  
     extract data. Entering the shorthand value of “-1”  in the bkmax 
     flag tells POSTFLOW that the value of bkmax is the number of 
     the last block in the simulation. For example, in a simulation 
     composed of four master grid blocks: 

       bkmin=2  bkmax=-1 

   tells POSTFLOW to extract data from master blocks #2, #3, & 
   #4.  

  zonetitle - An ASCII string surrounded by single or double quotes that 
     will be used to name the zone if Tecplot output is specified. If a 
     zone name is not desired, this flag should contain an empty  
     string as shown below.  

Tecplot output   “name of the zone”  

Non-Tecplot output  “”  
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I/O Filenames – All filenames must be enclosed with single or double quotes 

 fname  - Specifies the name of the restart file to process. (Required) 

 pname  - Specifies the name of the output file to create. (Required) 

 gname  - Specifies the name of the grid file to process. (Optional. Only 
     needed if ingrid is > 0 ).  

 bname  - Specifies the name of the boundary condition file to process. 
     (Optional. Only needed if inbcf > 0 ). 

5.3 Neptune Sample Case 

The sample case used throughout the DPLR Code User Manual to illustrate how the 
Code Package works describes a Neptune entry type probe with an ellipsoidal body as 
shown in Figure 5-2. This case is an example of aerocapture, where drag from the 
atmosphere is used to decelerate the vehicle and bring it into orbit. 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 

Figure 5-2   Neptune Probe 
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5.3.1 Neptune Input Deck 

The input deck below shows two problem-specific entries to make for POSTFLOW 
to process a restart file generated during the DPLR simulation of the Neptune case. 
One input deck focuses on data generated at the surface of the probe (postsurf.inp) 
and one examines data on the pitchplane (postpitch). 
 
 
 
 

Input file for postflow 
 
imemmode itruev  ifstat 
  2        1       0 
 
inrest   ingrid  inbcf   ouform  iwrtd 
 11        0       0       26      0 
 
interp   nzones   isep    istyp   iunits 
  1       10       0        1       1 
 
lref   aref   xmc   ymc   zmc   imrx  imry  imrz 
 1.0    1.0   0.0   0.0   0.0    0     0     0 
 
iwind   cxs   cys   czs 
  0     1.0   0.0   0.0 
 
iexbc   <== list of BC numbers to extract from dataset 
 19 
 
ivarp   <== list of variable numbers to extract from 
dataset 
 0 110 120 154 150 151 152 
 
Tecplot/plot3d zone information: 
iwrt ifac imin imax jmin jmax kmin kmax  bkmin  bkmax  zonetitle 
  0,   1,   1,   1,   1,  -1,   1,   1,    1,    -1    'stag2d' 
  0,   2,   1,  -1,   1,   1,   1,   1,    1,    -1    'body2d' 
  0,   0,   1,  -1,   1,  -1,   1,  -1,    1,    -1    'flow2d' 
 -1,   0,   1,  -1,   1,  -1,   1,  -1,    1,    -1    'terminator' 
 
fname,pname,(gname),(bname) 
'neptune' 
'postpitch' 
 

 
 
 

Figure 5-3   POSTFLOW Input Deck for Pitchplane Analysis of 
 Neptune Probe 
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nput file for postflow 
 
imemmode itruev  ifstat 
  2        1       0 
 
inrest   ingrid  inbcf   ouform  iwrtd 
 11        0       0       26      0 
 
interp   nzones   isep  istyp    iunits 
  1       10       0       1        1 
 
lref   aref   xmc   ymc   zmc   imrx  imry  imrz 
 1.0    1.0   0.0   0.0   0.0    0     0     0 
 
iwind   cxs   cys   czs 
  0     1.0   0.0   0.0 
 
iexbc   <== list of BC numbers to extract from dataset 
 25,26 
 
ivarp   <== list of variable numbers to extract from 
dataset 
 0 110 120 507 521 
 
Tecplot/plot3d zone information: 
iwrt ifac imin imax jmin jmax kmin kmax  bkmin  bkmax  zonetitle 
  0,   1,   1,   1,   1,  -1,   1,   1,    1,    -1    'stag2d' 
  0,   2,   1,  -1,   1,   1,   1,   1,    1,    -1    'body2d' 
  0,   0,   1,  -1,   1,  -1,   1,  -1,    1,    -1    'flow2d' 
 -1,   0,   1,  -1,   1,  -1,   1,  -1,    1,    -1    'terminator' 
 
fname,pname,(gname),(bname) 
'neptune' 
'postsurf' 
 

 
 

Figure 5-4 POSTFLOW Input Deck for Surface Analysis of  
Neptune Probe 
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5.3.2 Neptune Input Deck Settings 

The following table explains the meaning of the input deck settings in this sample 
case. 
 
 

Input Flag Setting Explanation 

imemmode 2 Run POSTFLOW in high memory mode so that all the 
features of the program are available. 

itruev 1 Use accurate 2nd order expressions to compute derivative 
values. 

ifstat 0 Process flow variables instantaneously. 

inrest 11 The restart file to process is an XDR parallel archival file. 

ingrid 0 Use grid information found in the restart file. 

inbcf 0 Use boundary condition information found in the restart file. 

ouform 6 Output post-processed data into a Tecplot point binary file. 

iwrtd 0 Do not reconstruct DPLR input decks from the restart file for 
storage in a subdirectory of your working directory. 

interp 1 Interpolate grid points to cell centers. 

nzones 10 The maximum number of output data zones to be generated 
is 10. 

isep 0 All active output datasets are written to a single file. 

istyp 1 This flag is ignored in DPLR 4.01.0. 

iunits 1 Include SI units in the output file 

lref 1.0 Use 1 meter as the reference length to normalize moment 
coefficients. 

aref 1.0 Use 1 square meter as the reference area to normalize force 
and moment coefficients 

xmc 0.0 The moment reference center is located at 0.0 on the x axis. 

ymc 0.0 The moment reference center is located at 0.0 on the y axis. 

zmc 0.0 The moment reference center is located at 0.0 on the z axis. 

imrx 0 Do not enforce symmetry about the yz plane. 
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Input Flag  
(cont) 

Setting 
(cont) 

Explanation (cont) 

imry 0 Do not enforce symmetry about the xz plane. 

imrz 0 Do not enforce symmetry about the xy plane. 

iwind 0 Do not alter the raw output data (Ignored). 

cxs 1 Cosine of the global wind axis in the x direction = 1 (Ignored) 

cys 0 (Ignored) 

czs 0 (Ignored) 

iexbc 19 

 

25 

26 

Extract the boundary conditions from the z symmetry plane 
(pitch plane). 

Extract data from the intersection between a catalytic 
isothermal wall (ibc=25) and a catalytic radiative equilibrium 
wall (ibc=26) i.e. the probe surface. 

ivarp 0 Extract all grid coordinates. 

 110 Extract pressure data. 

 120 Extract translational temperature data. 

 150 Extract velocity in the x-direction (u) 

 151 Extract velocity in the y-direction (v) 

 152 Extract velocity in the z-direction (w) 

 154 Extract the frozen Mach number. 

 507 Extract the total wall shear stress (tau) 

 521 Extract total wall heat transfer. 

iwert 0 Do not extract data in these zones 

fname neptune The restart file to be post-processed by POSTFLOW is named 
‘neptune’ 

pname postsurf 

postpitch 

The output files created by POSTFLOW for use by Tecplot 
are named ‘postsurf’ and ‘postpitch’. 

 

5.3.3 Neptune Output Summary  

Upon execution, POSTFLOW will create an on-screen summary of the problem for 
each input deck run as shown below: 
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 postflow 
 NASA Ames Version 4.01.0 
 Maintained by Mike Wright;  last modified: 02/05/09 
 ********************************************* 
  
 
Parsing the restart file to get physical modeling data... 
 restart file format: NASA Ames Version 4.01.0 
 solution run at: Thurs Feb  5 08:18:10 2009 
  
 run in   500 iterations in 4.23E+03 seconds 
 
 CPP-macro settings enabled during run: 
       AMBIPOLAR=1 
       PARKTEXP=0.50 
       NOHTC 
 
 Keq limiter set at  100.00 
 
 input  ns =  5;  ner =  0;  nev =  0;  net =  0 
 number of blocks =   2 
 file dimension   =  3 
 
 extracting the following BCs :    17   18   19 
 note that extraction of pointwise BCs not supported yet 
  
 output variables=x,y,z,p,T,M,u,v,w 
 
 running in high memory mode 
  
 interpolating grid to cell centers 
 
 processing grid variable  1  2  3 
 processing flow variable  1  2  3  4  5  6  7  8  9 10  
 
 block #  1: nx =   32; ny =   16; nz =   64 
      zone t=BC19         i=  34 j=   1 k=  66 
 
 processing grid variable  1  2  3 
 processing flow variable  1  2  3  4  5  6  7  8  9 10  
 
 block #  2: nx =   48; ny =   64; nz =   64 
      zone t=BC19         i=  50 j=   1 k=  66 
 
      zone t=BC19         i=  50 j=   1 k=  66 
 
 
 writing tecplot file: postpitch.dat 
 
 using grid file: neptune-8PE.pgrx    
 using flow file: neptune.pslx    

  
 

 
Figure 5-5   POSTFLOW Onscreen Summary for Pitchplane Analysis of 

Neptune Probe 
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 ********************************************* 
 postflow 
 NASA Ames Version 4.01.0 
 Maintained by Mike Wright;  last modified: 02/05/09 
 ********************************************* 
  
 
Parsing the restart file to get physical modeling data... 
 restart file format: NASA Ames Version 4.01.0 
 solution run at: Thurs Feb  5 08:18:10 2009 
  
 run in   500 iterations in 4.23E+03 seconds 
 
 CPP-macro settings enabled during run: 
       AMBIPOLAR=1 
       PARKTEXP=0.50 
       NOHTC 
 
 Keq limiter set at  100.00 
 
 input  ns =  5;  ner =  0;  nev =  0;  net =  0 
 number of blocks =   2 
 file dimension   =  3 
 
 extracting the following BCs :    25   26 
 note that extraction of pointwise BCs not supported yet 
  
 output variables=x,y,z,p,T,tau,qw 
 
 running in high memory mode 
  
 processing grid variable  1  2  3 
 interpolating grid to cell centers 
 
 processing flow variable  1  2  3  4  5  6  7  8  9 10  
 
 block #  1: nx =   32; ny =   16; nz =   64 
  ==> extracted derivative data from the KMIN-surface 
  ==> derivative data computed using full viscous fluxes 
      zone t=BC26         i=  34 j=  18 k=   1 
 
 processing grid variable  1  2  3 
 processing flow variable  1  2  3  4  5  6  7  8  9 10  
 
 block #  2: nx =   48; ny =   64; nz =   64 
  ==> extracted derivative data from the KMIN-surface 
  ==> derivative data computed using full viscous fluxes 
      zone t=BC26         i=  50 j=  66 k=   1 
 
 
 writing tecplot file: postsurf.dat 
 
 using grid file: neptune-8PE.pgrx    
 using flow file: neptune.pslx    
 
 
 

Figure 5-6  POSTFLOW Onscreen Summary for Surface Analysis of 
Neptune Probe 
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5.3.4 Neptune Output Information 

In addition to verifying the values entered into the POSTFLOW input deck, the 
POSTFLOW output summary displays information about the grid and the flow 
solution components of the restart file being extracted for processing.  

In this sample case, POSTFLOW displays the Keq (equilibrium constant) limiter that 
DPLR calculated from ikeq setting in the DPLR input deck, restates that the number 
of species  used in the simulation was 5, confirms that the rotational, vibrational, and 
translational energies of the flow were ignored for this simulation, and verifies that 
this solution for the Neptune entry probe is based upon a 2 block, 3D simulation. 
POSTFLOW then names the output variables that were specified by ivarp in the 
input deck and confirms that post-processing of the restart file is taking place in high 
memory mode.  

Next, POSTFLOW displays a running indicator of block-by-block progress in 
processing the restart file, while verifying block dimensions. 

Finally, the summaries show the name of the output files, in this case 
postpitch.dat and postsurf.dat, while displaying the names of the grid file 
and the restart file that were used to create the output.  

5.4 Extracting Datasets 

The primary use of POSTFLOW is to extract volume or surface data from the restart 
file for further post-processing or visualization.  

Using the ouform flag in the POSTFLOW input deck, data can be saved in two 
primary output file formats: 

• plot3d (ouform = 2, 3, 22, 23, 32, 33)  

• Tecplot (ouform = 5, 6, 25, 26)  
 
The plot3d format is a standard CFD output format that can be read by most 
commercial post-processing tools while the Tecplot format is specific for use with 
Amtec’s  Tecplot data visualization software.   

POSTFLOW can write Tecplot ASCII (“*.dat”) files as well as binary (“*.plt”) 
files, although Tecplot binary output requires linking to the Amtec-provided “tecio.a” 
(or “tecio64.a”) runtime library. If this library is not available on your machine, 
Tecplot binary files cannot be generated.  
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Gzipped plot3d output (ouform=32,33) is generated via a system call to the gzip 
utility provided with UNIX and LINUX systems. This option may not be available on 
Windows systems. 

5.4.1 Volume Data 

Volume data can be extracted from a restart file using the zone specification lines in 
the POSTFLOW input deck.  

For example, assume that a simulation was performed on a five-block, 3D volume 
grid, and the desired output variables are pressure (ivarp = 110), temperature 
(ivarp = 120), Mach number (ivarp = 154), and pointwise residual (ivarp 
= 999). The ivarp array would be: 

ivarp 

110 120 154 999 

The following zone specification lines could then be used to extract data from the 
entire volume:  

iwrt ifac imin imax jmin jmax kmin kmax  bkmin  bkmax  zonetitle 

 1,   0,    1,  -1,   1,  -1,   1,  -1,    1,    -1    'volume' 

-1,   0,    1,  -1,   1,  -1,   1,  -1,    1,    -1 'terminator' 

Using the shorthand code of -1 to mean “maximum” or “all”, these lines tell 
POSTFLOW to read the “volume” line (iwrt=1), ignore surface data (ifac=0), 
extract all points in the i (imin=1, imax=-1), j (jmin=1, jmax=-1) and k 
(kmin=1, kmax=-1) directions from all master blocks (bkmin=1, bkmax=-1).  
Then, with iwrt=-1, the terminator line tells POSTFLOW to stop reading zone 
specification information. 

POSTFLOW will now generate five output zones (one for each block) which contain 
the entire volume. Each zone will be called “volume” if a Tecplot output file format is 
selected by setting ouform=5:6,25:26 in the POSTFLOW input deck.  

5.4.2 Surface Data 

Surface data can be extracted from a restart file in two ways: 
• Using zone specification lines 
• Using the iexbc flag 
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Zone Specification Lines 

Continuing with the 5 block 3D example in Section 5.4.1, assume that all blocks have 
a body surface at j = 1, and that these five surfaces completely define the body. The 
following zone specification lines could then be used to extract data from the entire 
body surface:  

iwrt ifac imin imax jmin jmax kmin kmax  bkmin  bkmax  zonetitle 

 1,   2,    1,  -1,   1,   1,   1,  -1,    1,    -1    'body' 

-1,   0,    1,  -1,   1,  -1,   1,  -1,    1,    -1 'terminator' 

Using the shorthand code of -1 to mean “everything” or “all”, these lines tell 
POSTFLOW to read the “body” line (iwrt=1), extract the j face (ifac=2), and 
extract the j surface (jmin=1, jmax=1) from all blocks (bkmin=1, bkmax=-1).  
Then, with iwrt=-1, the terminator line tells POSTFLOW to stop reading zone 
specification information. 

Now, assume further that the exit (outflow) plane of the problem can be completely 
defined as the imax surface of block #5. You can tell POSTFLOW to extract data 
from this surface by creating the following zone specification lines: 

iwrt ifac imin imax jmin jmax kmin kmax  bkmin  bkmax  zonetitle 

 1,   1,   -1,  -1,   1,  -1,   1,  -1,    5,     5    'outflow' 

-1,   0,    1,  -1,   1,  -1,   1,  -1,    1,    -1 'terminator' 

These lines tell POSTFLOW to read the “outflow” line (iwrt=1), extract the i face 
(ifac=1), and extract the i surface (imin=-1, imax=-1) from block #5 (bkmin=5, 
bkmax=5).  Then, with iwrt=-1, the terminator line tells POSTFLOW to stop 
reading zone specification information. 

iexbc Flag 
Instead of using zone specification lines to extract surface data from a restart file ( a 
process that can be cumbersome to set up and which requires you to pre-determine 
the locations of all surface sub-zones in the simulation), you can use the iexbc flag 
to accomplish the same result.  

To extract data from all six surfaces of each master block in the simulation, simply set 
iexbc to one or more values of the boundary condition settings allowed for the ibc 
flag in the DPLR Input deck (See Section 4.2).  
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For example, if you want to extract ivarp-specified data from all possible symmetry 
planes and outflow boundaries of a multiblock grid, the iexbc setting would be as 
follows: 

iexbc 

17 18 19 3 

This setting tells POSTFLOW to extract the ivarp-specified variables for the x, y, z 
planes of symmetry and the first order extrapolation of the supersonic exit surface.  

Extracting data via the iexbc flag is a powerful tool within POSTFLOW and should 
be used whenever possible to simplify extraction of complex surface datasets. 

Tech Tip: Note that the iexbc flag can be used together with the zone specification lines in 
a single POSTFLOW run to extract BOTH surface and volume datasets. By using a 
combination of these methods, it should be possible to extract almost any desired subset of 
flowfield data. 

5.4.3 Line Data at the Intersection of Two Boundaries 

The iexbc flag can also be used to extract data at the intersection of two surfaces, 
such as along the vehicle centerline. To extract surface intersections, specify your two 
desired boundary conditions and separate them with a forward slash.  

For example, if you want to extract quantities on a radiative equilibrium catalytic 
surface (ibc=26) along the xz-symmetry plane (ibc=18) you would enter: 

iexbc 

26/18 

The first number is always the “reference” boundary, telling POSTFLOW how to 
extract desired derivative quantities (such as heat flux and shear stress). The second 
number is the boundary condition that you want to intersect with the reference 
boundary.  

You can request multiple intersections in a single POSTFLOW run if you present 
them in a space or comma-separated list. For example, the following iexbc entry 
will extract intersections between a radiative equilibrium catalytic surface (26) and all 
180° symmetry planes: 

iexbc 

26/17 26/18 26/19 

You can extract boundary intersection data in conjunction with extracting standard 
boundary conditions and volume data. For example: 
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iexbc 

26/18 3 

would extract the intersection between boundary condition 26 and 18 as well as data 
for the exit plane.  

Tech Tip: Intersection extraction does not currently work properly with pointwise specified 
boundary conditions. However, you can extract the intersection with all pointwise specified 
boundary conditions by using ibc = 0 in an intersection specifier. 

5.4.4 Zone Minima or Maxima 

POSTFLOW can extract the minimum or maximum values of selected output 
variables in each output dataset, and, if desired, the ijk location of these values.  

You can accomplish this by setting the value of ouform in the POSTFLOW input 
deck either to 7 or to 17. In both cases, however, the results of this operation are only 
written to the screen in the standard out, (STOUT) not to an output datafile. 

For example, if you set ouform=7 in the Neptune Sample Case described in Section 
5.3, the on-screen output summary would be show: 

 
block # 1: nx =   32; ny =   16; nz =   64 
      zone t=BC19         i=  34 j=   1 k=  66 
 
 Zone Maximum and Minimum Values: 
 p       [max] =  5.0043E+04;   [min] =  3.5910E+01 
 T       [max] =  1.5345E+04;   [min] =  1.2807E+02 
 M       [max] =  3.2322E+01;   [min] =  0.0000E+00 
  
 processing grid variable  1  2  3 
 processing flow variable  1  2  3  4  5  6  7  8  9  
 
 block # 2: nx =   48; ny =   64; nz =   64 
      zone t=BC19         i=  50 j=   1 k=  66 
 
 Zone Maximum and Minimum Values: 
p       [max] =  4.4431E+04;   [min] =  3.5910E+01 
T       [max] =  1.4203E+04;   [min] =  1.2807E+02 
M       [max] =  3.2322E+01;   [min] =  0.0000E+00 
 
 

If you set ouform = 17, POSTFLOW displays a longer listing to this onscreen 
summary which includes the ijk locations of these maximum and minimum values in 
the zone.  
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Tech Tip: Note that the ijk location is computed relative to the output zone. If  ijk values for 
all blocks are required, the entire volume should be selected as output.  

 

5.4.5 Integrated Surface Data 

POSTFLOW can integrate data for the following surface variables:  

• face area (ivarp = 23) 
• total heating (ivarp = 531) 
• mass flow rate (ivarp = 594) 
• thrust (ivarp = 596) 
• aerodynamic forces (ivarp = 600:673 
• aerodynamic moments (ivarp = 700:773) 
• species mass flow rate (ivarp = 5000+n) 

You can accomplish this by setting outform=8 and interp=11 and making sure 
that all output datasets define surfaces, either with the iexbc or the ifac flag. 
As with the computation of minimum and maximum values, the results of this 
operation are only written to the screen in the standard out (STOUT) where results for 
each zone and a sum for all zones are shown, not to an output datafile.  

For example, if you set ouform=8 and interp=11 in the Neptune Sample Case 
described in Section 5.3, the on-screen output summary might show: 

block # 1: nx =   32; ny =   16; nz =   64 
  ==> extracted derivative data from the KMIN-surface 
  ==> derivative data computed using full viscous fluxes 
      zone t=BC19         i=  32 j=  16 k=   1 
 
        Fx      =  9.872234694840E+02   (N) 
        Fy      =  3.249055280159E+02   (N) 
        Fz      = -3.865734146780E+02   (N) 
  
 processing grid variable  1  2  3 
 processing flow variable  1  2  3  4  5  6  7  8  9  
 
 block # 2: nx =   48; ny =   64; nz =   64 
  ==> extracted derivative data from the KMIN-surface 
  ==> derivative data computed using full viscous fluxes 
      zone t=BC19         i=  48 j=  64 k=   1 
 
        Fx      =  2.919904481514E+03   (N) 
        Fy      =  1.605495325835E+04   (N) 
        Fz      = -9.258734449289E+03   (N) 
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 Integrated Surface Quantities 
 Summary Over All Output Surfaces: 
 XZ-Symmetry Enforced During Final Summation 
  
        Fx      =  7.814255901995E+03   (N) 
        Fy      =  0.000000000000E+00   (N) 
        Fz      = -1.929061572793E+04   (N) 

Tech Tips:  
1)  Any ivarp values not included in the list above will be removed from the input deck 
when ouform=8. 
 
2)  If aerodynamic forces are selected and iwind is set to either 1 or 2, output forces will be 
rotated into the wind coordinate system based on either the internal (iwind = 1) or 
provided (iwind = 2) velocity cosines, and will be output as lift, drag, and side forces in 
addition to the xyz forces otherwise reported. Note that this option assumes that the employed 
grid is in standard aircraft coordinates. 

5.4.6 Freestream Data 

POSTFLOW can extract freestream data from the restart file.  

You can accomplish this by setting the value of ouform in the POSTFLOW input 
deck either to 10 to display requested ivarp values with their SI units or to 110 to 
display a tabular listing of data better suited for direct import to a spreadsheet 
application. In both cases, however, the results of this operation are only written to 
the screen in the standard out, (STOUT) not to an output datafile. 

Freestream data are calculated and output for each grid block in the simulation, 
irrespective of any surface extraction or zone specification flags that have been set. 
Separate freestream data are presented for each grid block, since DPLR allows 
multiple freestream specifications to be applied when a simulation is run. However, in 
most cases, all blocks will have the same freestream information. 

For example, if you set ouform=10 and ivarp=110,120,154,58 in the Neptune 
Sample Case described in Section 5.3, the on-screen output summary might show: 

block # 1: nx =   32; ny =   16; nz =   64 
  
 Freestream Quantities:  
  
     Block # 1 
  
        p       =  3.591044259306E+01   (Pa) 
        T       =  1.280700000000E+02   (K) 
        M       =  3.232180261501E+01   () 
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        Re/L    =  3.151858720834E+05   (1/m) 
  
 block # 2: nx =   48; ny =   64; nz =   64 
  
     Block # 2 
  
        p       =  3.591044259306E+01   (Pa) 
        T       =  1.280700000000E+02   (K) 
        M       =  3.232180261501E+01   () 
        Re/L    =  3.151858720834E+05   (1/m) 

5.4.7 Extracting Data for External Codes 

Several of the output format options (ouform) in POSTFLOW create files intended 
for use with third-party codes or provided post-processing utilities. In these cases, 
options are hardwired to the values required by the particular third party software.  

Extraction for Moment 
As of release version 3.05, POSTFLOW can directly compute moments or moment 
coefficients. However, the Moment utility, provided as part of the DPLR Code 
Package, can also do this computation. Moment requires plot3d grid and function 
files along with an input “moment.inp” file to be created by POSTFLOW (See 
Section 9.1.6).  

To tell POSTFLOW to create these files: 

• set ouform=11 
• set interp=11 
• set ivarp to either total forces (604:606), pressure forces (614:616), or viscous 

forces (624:626) 
• set output datasets to define surfaces either with iexbc or ifac 

At the current time the only function of Moment that is not built into POSTFLOW is 
for the extraction of hinge moments. 

Extraction for RADEQUIL 
To tell POSTFLOW to output a line-of-sight file for further processing with the shock 
layer radiation code RADEQUIL, set ouform=28.  

POSTFLOW will then automatically assume the following (hardwired) settings:  
interp  = 1 
ivarp  = 11 12 13 110 120 125 1600 
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The output will be an ASCII format file with the suffix “.los”.  

When using this option, you must specify “single body-normal line of sight” either 
with the iexbc flag (e.g., iexbc = 14 will extract the stagnation line of an 
axisymmetric body), or by specifying a 1D line for extraction with the Tecplot 
specifier flags.  

Because RADEQUIL requires a certain set of species mole fractions in a certain 
order, POSTFLOW will compare the input mole fractions with the expected set in 
RADEQUIL and reorder as necessary. Species expected by RADEQUIL that are not 
in the current CFD dataset will be filled in with zeros as required. The resulting file 
should then be ready for direct processing in RADEQUIL. 

5.4.8 NaN’s (Not A Number) 

POSTFLOW can extract the locations of any NaN’s in the restart file to help you 
determine where the simulation begins to diverge. Although rarely used in practice, 
this option can be a handy tool to use in locating the occasional evil bug.  

You can accomplish this by setting ouform=18.  

The output data generated by this operation consists of a list of ijk locations of all 
NaN's in the volume, listed block-by-block. However, the results are only written to 
the screen in the standard out, (STOUT) not to an output datafile. 

Tech Tip: Note that once a NaN is generated by DPLR, it will quickly be convected 
throughout the solution domain, so if you want to view the location where the NaN first 
occurred, you need to stop the simulation and write a restart file at the conclusion of the 
iteration in which the NaN was first generated, typically the iteration PRIOR to when the 
residual itself becomes NaN. 
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6.0 Introduction 

This chapter of the DPLR Code User Manual discusses the 11 types of input and 
output files created and/or used by the DPLR Code Package Version 4.01.1: grid 
files, zonal interface files, boundary condition files, runtime control files, restart files, 
chemistry files, radiation files, convergence files, aerodynamic files, log files and 
Tecplot files.  
Although each file type can be written in two or more different formats, not all 
formats are compatible with all parts of the DPLR Code. For example, FCONVERT 
can read plot3d formatted grid and function files as input, but DPLR2D, DPLR3D, 
and POSTFLOW cannot. (See Section 9.2 for more information on file formats.) 

6.1 Grid Files 

Grid files define the discretized computational geometry of the CFD problem. Grid 
files can exist in the following formats: 

Description Suffix 

unformatted parallel pgrd 

XDR parallel pgrx 

ASCII parallel pgra 

unformatted plot3d gu 

XDR plot3d gx 

ASCII plot3d g 

gzipped ASCII plot3d gz 

The plot3d files created by third-party grid-generation software packages such as 
GridGen or GridPro can be read as input by FCONVERT, which typically converts 
them to the XDR parallel grid file format “*.pgrx” to be used in a DPLR simulation 
run. 

Tech Tip: Although FCONVERT can write grid files in all of the formats listed above, the 
preferred format for use in the DPLR working environment is XDR parallel (“*.pgrx”) - 
a binary, machine-readable file. 
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6.2 Zonal Interface Files 

A zonal interface, or zonal boundary, is a region where two grid blocks abut, sharing 
the same grid points. Information about these areas of abutment, in the form of an 
ASCII zonal interface file, must be provided as input for DPLR to ensure that data are 
mapped correctly across grid blocks during the CFD computation.  

Zonal interface files can be prepared in three ways: 
• manually, through direct observation of the serial plot3D input grid (init=1) 
• automatically, by FCONVERT (init=2-4 
• automatically, by using the TEMPLATE utility (See Section 8.1.5) 

When the plot3D input grid describes a relatively simple set of master blocks and 
resulting zonal boundaries, developing the information for a zonal interface file by 
hand may be a straightforward way to proceed. However, when a multi-block input 
grid contains a large number of blocks or describes complex geometries (as is often 
the case in aerospace problems), using FCONVERT or TEMPLATE to develop the 
detailed data required to accurately describe each zonal interface is likely to be the 
more productive approach.  

6.2.1 Creating Zonal Interface Files by Hand 

Step 1:  Examine the plot3D input grid to determine the location of all zonal  
   interfaces, making note of how the points in each master block abut those 
   in another block.  

Step 2:  Open the text editor program for your system, and create an ASCII file 
   with the format shown below. 

ZONAL BOUNDARY INFORMATION 

Cell Matching - No dummy cells 

----------------------------------------- 

zvers izdum 

 

nblk ninta nintc 

 

----------------------------------------- 

Zonal Boundary # 

nz nface ndr1 nst1 nen1 ndr2 nst2 nen2 
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Step 3:  Enter values that describe the number, location, extent direction, and  
   range of each zonal interface identified in the input plot3D grid file. 

Step 4:  Save the file.  

Action:  At the command line, type: 
    save ‘filename.inter’  

Result:  The ASCII zonal interface file required by DPLR (and  
  identified by the xname flag in the FCONVERT input  
  deck) is saved.  

6.2.2 Input Variables for Zonal Interface Files 

Input variables required in a zonal interface file are discussed below in the order they 
appear in the file.  

 zvers - Specifies the version number of the interface file. This is used by 
    FCONVERT to automatically upconvert older interface files when 
    they are read, thus assuring full backward compatibility. Allowable 
    values are the real numbers of the major and minor releases of the 
    DPLR Code Package, from 2.31 through the current version  
    number, 4.01.1. 

 izdum  - Specifies whether dummy cells are accounted for in the interface 
    file. Allowable values are: 

 0 Input file does not include dummy cells 
 1 Input file includes dummy cells 
  

Tech Tip: This option is meant for developers to use in 
debugging. If izdum=1, FCONVERT will automatically 
strip the dummy cell information before processing the zonal 
interface file, which could have unwanted results.  

 nblk  - Specifies the number of master blocks in the input plot3D grid. 

 ninta - Specifies the number of zonal interfaces in the input plot3D input 
    grid. 
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 nintc - Specifies the number of corner/edge zonal interfaces in the input 
    plot3D grid.  Allowable values are: 

 0 Input grid  contains no corner/edge zonal interfaces. 
 Non-zero value – meant for debugging 
  

Tech Tip: This option is meant for developers to use in 
debugging. If nintc>0, FCONVERT will automatically 
strip the corner/edge zonal interface information before 
processing the file.  

 nz  - Specifies the grid blocks that define the common face of the zonal 
    boundary being described.  

 nface  - Specifies the block faces that abut, thereby indicating the plane in 
    which the zonal boundary lies. Allowable values are: 

 1 imin face 
 2 imax face 
 3 jmin face 
 4 jmax face 
 5 kmin face 
 6 kmax face 
 

Tech Tip: If the grid is for a 2D or axisymmetric problem, 
nface must =1-4, since such problems are assumed to lie 
in the ij plane.  

  ndr1 - Specifies the first extent direction of the zonal boundary being  
     described. Allowable values are: 

 1 i-direction 
 2 j-direction 
 3 k-direction 

 nst1 - Specifies the starting point of the interface range (from cell center 
    to cell center) in the direction indicated by the value in ndr1.  

 nen1 - Specifies the ending point  of the interface range (from cell center 
    to cell center) in the direction indicated by the value in ndr1. 
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  ndr2 - Specifies the second extent direction of the zonal boundary being 
     described. Allowable values are: 

 1 i-direction 
 2 j-direction 
 3 k-direction 

 nst2 - Specifies the starting point of the interface range in the direction 
    indicated by the value in ndr2.  

 nen2 - Specifies the ending point of the interface range in the direction 
    indicated by the value in ndr2.      

6.2.3 Neptune Zonal Interface File  

The following zonal interface file was created by hand for the Neptune sample case 
(inint=1).  
 

ZONAL BOUNDARY INFORMATION 

Cell Matching - No dummy cells 

 ----------------------------------------- 

   zvers izdum 

   3.05    0 

 

   nblk ninta nintc 

    2  3     0 

----------------------------------------- 

Zonal Boundary #  1 

  nz  nface ndr1  nst1  nen1 ndr2 nst2  nen2 

 1  1  2   1  16  3  1  64 

 2  1  2  16   1  3  1  64 

 

----------------------------------------- 

Zonal Boundary #  2 

  nz  nface ndr1  nst1  nen1 ndr2 nst2 nen2 

 1  2  2   1  16  3  1  64 

 2  1  2  49  64  3  1  64 

----------------------------------------- 
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Zonal Boundary #  3 

  nz  nface ndr1 nst1   nen1 ndr2 nst2 nen2 

 1  3  3  1  64  1   1  32 

 2  1  3  1  64  2  17  48 

========================================= 

 

6.2.4  Input Values in Neptune Zonal Interface File  

The input plot-3D grid for this problem consists of two master blocks and three 
interfaces between these two blocks. Each interface (zonal boundary) is described by 
two lines of data in the interface file. The following table explains the meaning of the 
values entered into the zonal interface file for this sample case. 

Input Value Setting Explanation 

zvers 3.05 The 3.05 version of the DPLR Code package is being used. 

izdum 0 There are no dummy cells accounted for in this interface file. 

nblk 2 There are 2 master blocks in the input grid file. 

ninta 3 There are 3 zonal interfaces in the input grid file. 

nintc 0 Input grid contains no corner/edge zonal interfaces. 

nz 1,2; 1,2; 1,2 Master blocks #1 and #2 participate in the three zonal 
boundaries being described. 

nface 1,1; 2,1; 3,1 The first zonal interface is located at the imin of both blocks, 
placing it in the kj plane. The second zonal interface is located 
at the imax of one block and the imin of the other, placing it in 
the jk plane. The third zonal interface is located at the jmin of 
one block and the imin of the other, placing it in the ik plane,  

ndr1 2,2; 2,2; 3,3 The first extent direction for the first interface zone is j. The 
first extent direction for the second interface zone is also j. 
The first extent direction for the third interface zone is k.   

nst1 1, 16; 1,49; 
1,1 

The starting point in the first extent direction for one block in 
the first zonal interface is 1 and for the abutting block it is 16. 
The starting point in the first extent direction for one block in 
the second zonal interface is 1 and for the abutting block it is 
49. The starting point in the first extent direction for one block 
in the third zonal interface is 1 and for the abutting block it is 
also 1. 
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Input Value 
(cont) 

Setting 
(cont) 

Explanation  

(cont) 

nen1 16,1; 16,64; 
64,64 

The ending point in the first extent direction for one block in 
the first zonal interface is 16 and for the abutting block it is 1. 
The ending point in the first extent direction for one block in 
the second zonal interface is 16 and for the abutting block it is 
64. The ending point in the first extent direction for one block 
in the third zonal interface is 64 and for the abutting block it is 
also 64. 
 

ndr2 3,3; 3,3; 1,2 The second extent direction for the first interface zone is k. 
The second extent direction for the second interface zone is 
also k. The second extent direction for the third interface zone 
is i to j.   

 

nst2 1, 1; 1,1; 1,17 The starting point in the second extent direction for one block 
in the first zonal interface is 1 and for the abutting block it is 
also 1. The starting point in the second extent direction for 
one block in the second zonal interface is 1 and for the 
abutting block it is also 1. The starting point in the second 
extent direction for one block in the third zonal interface is 1 
and for the abutting block it is 17. 

nen2 64,64; 64,64; 
32,48 

The ending point in the second extent direction for one block 
in the first zonal interface is 64 and for the abutting block it is 
also 64. The ending point in the second extent direction for 
one block in the second zonal interface is 64 and for the 
abutting block it is also 64. The ending point in the second 
extent direction for one block in the third zonal interface is 32 
and for the abutting block it is 48. 

 

 

 

6.2.5  Creating Zonal Interface Files Automatically  

Although it is valuable to fully understand the meaning and origin of data in the zonal 
interface files, it is likely that day-to-day use of the DPLR Code Package will more 
often involve automatic generation of these files.  
Currently, there are three tools available to automatically compute and generate zonal 
interface files that are readable by DPLR: 
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1. GASP® / zbconvert 
2. Template 
3. FCONVERT 

GASP / zbconvert  
Some commercial grid generation tools are capable of automatically generating 
interface information in a format that is readable by the commercial CFD code GASP 
Version 3. For this reason, a utility (zbconvert) is included with the DPLR Code  

Package that can convert zonal interface information from GASP® Version 3 to 
DPLR –readable zonal interface files. See Section 9.1.1 for more information about 
the utility zbconvert. 

Template  
Zonal interface files can also be created by the software tool Template, developed by 
Scott Thomas and David Saunders, which automatically generates a DPLR input deck 
and interface file from a multi-block grid. Template is supplied as a utility with the 
DPLR 4.01.1 Code Package. (For more information about Template, see Section 
9.1.5.) 

FCONVERT  
As previously discussed in Section 3.2, setting inint=2-4 in the FCONVERT input 
deck tells the program to automatically generate the type of zonal interface data 
required by DPLR for grid processing. However, each inint setting option offers 
different levels of computational speed and accuracy. 

Setting inint=2 results in a rapid detection of full-face zonal interfaces as shown in 
Figure 6-1 by comparing the centroid of each master block face (where the centroid is 
computed by averaging all cells in that face). Index directions of the two faces can be 
arbitrary as long as the centroids of a face pair are within a tolerance (determined 
internally based on grid dimensions and clustering). Because this method detects full-
face interfaces only, this option should only be used if it is known that the input grid 
does not contain sub-face interfaces, i.e., areas where one block face abuts only a 
portion of another block face as shown in Figure 6-2. It is useful to note that the 
computational accuracy of this setting is comparable to that achieved using the 
Template software utility. 
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Figure 6-1 Full Face Zonal Interface  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-2 Sub-Face Zonal Interface  
 



 DPLR Input / Output Files 
 

DPLR Code Version 4.01.1  User Manual 6-11 10/27/09  

Setting inint=3 results in moderately rapid detection of both full-face and sub-face 
zonal interfaces and is the recommended option for most DPLR cases. Using a 
modern (2007-era) computer and working at a speed of approximately one minute per 
million grid cells analyzed, this option works by examining all edge cells of all block 
faces for interfaces. Figure 6-3 shows a typical block where edge cells that are 
checked are highlighted in red. The only type of interface that will not be detectable 
using the inint=3 option is a case where an interior sub-face of a 3D block face 
touches another interior sub-face of the same block as shown in Figure 6-4. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-3 Edge Cells Checked with inint = 3 (shown in red). 
 
 
 
 

Setting inint=4 results in accurate detection of all zonal interfaces, including the 
interior-to-interior zonal boundaries that a setting of inint=3 would miss as shown 
in Figure 6-3. As might be expected, this setting employs a slow search algorithm 
where every single exposed face cell is compared with every other exposed face cell, 
requiring on the order of 15 minutes of 2007-era computer time for every million grid 
cells analyzed. Cases requiring the use of this option are likely to be infrequent, 
although it is a useful tool to have when needed. 
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Figure 6-4 Interior-to-Interior Zonal Interface Detectable Only  

with inint = 4. 
  

Tech Tips: 

1) All intra-zonal interface boundaries (singularity or 
degenerate axes, self-closing blocks, etc.) will be detected 
using any of the detection options inint = 2-4. 

2) Some grid generation programs and post-processors 
introduce round-off error in the xyz grid coordinates that 
can result in the points on either side of an interface being 
slightly different. FCONVERT has a built-in tolerance factor 
to determine when two slightly different points are likely the 
same, but this is not foolproof. To determine if all interfaces 
have been accurately detected, you can (1) compute them all 
by hand as a check case, or (2) run the resulting case and 
look for mismatched interfaces in the resulting solution, or 
(3) monitor the tolerance of each interface found in the input 
grid as reported by FCONVERT or (4) look for a large 
number of small patchy interfaces between two faces 
resulting from an FCONVERT run .  
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 6.3 Boundary Condition Files 

Boundary condition files (also called “pointwise boundary condition files”) provide 
information to DPLR about the chemical, radiation, and turbulence conditions that 
exist at each point on a specified face of a master grid block.   

Pointwise boundary condition files are optional. If you prepare one for your 
simulation, you must enter the filename in the bname flag in the DPLR input deck. 
Boundary condition files typically have the suffix “*.pbca”. If a boundary 
condition file is not prepared for your simulation, you should set bname =none. 

A generic boundary condition file named pointwise.pbca is distributed with the 
DPLR Code Package Version 4.01.1 can be found in the cfdinput directory.  

6.3.1 Creating a Pointwise Boundary Condition File 

Step 1:  Open the text editor program for your system.  
Action:  At the command line prompt, type: 

        /[path to your cfdinput directory]/ pointwise.pbca 

Result:  A generic input file appears on screen, with place-holder 
   default values as shown below. To customize the file for 
   your simulation, remove the default values but take special 
   care to preserve the line spacing. Specifically, there must 
   be three lines (shown with # signs) between lines with  
   value entries.  

Step 2:  Enter appropriate, problem-specific values for the input variables as 
described in Section 6.3.2.  

Step 3:  Save your boundary condition file to your working directory.   
 

Tech Tip: Although you can add as many lines as you need to 
specify the sizes and ibc numbers for each master block in your 
input grid, preserve the line spacing within each section and 
throughout the global areas of the input deck. If lines are added to 
or subtracted inappropriately within these areas, DPLR will not be 
able to read the file accurately.  
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-2  4.01  0  #Pointwise PBCA File template, Version 4.01 

# 

# nblk  idim  

# 

     2   3 

# 

#  neq  ns ner nev nee net 

# 

    13   8   0   1   0   0 

# 

#  nmc nme nmt nmv  f2  f3  f4 

# 

     0   0   0   0   0   0   0 

# 

#  block sizes 

# 

    16  12  78 

    40  40  78 

# 

#  ibc numbers for each block 

# 

    20  20  18  20  26  60 

    20   3  18  18  26  60 

# 

#  Profile Data for Block #  1; Face #  6 

# 

  1.632708000000000E-01   1.632708000000000E-01   1.632708000000000E-01 

  and so on... 

# 

#  Profile Data for Block #  2; Face #  6 

# 

  1.632708000000000E-01   1.632708000000000E-01   1.632708000000000E-01 

  and so on... 

# End PBCA Data 
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6.3.2 Input Flags for Pointwise Boundary Condition Files 

Input flags for a pointwise boundary condition file are discussed below in the order 
they appear in the file. (Note that the first three flags that appear in the file are not 
labeled.) 

Flag#1 (ibtyp) - It is always -2 and should not be changed.  

Flag#2 (bvers) - Specifies the version number of the DPLR Code Package 
      that contained the file template.  

Flag#3 (ibdum) - Specifies if the file contains values for dummy cells.  
      Allowable values are:  

0 The file does not contain values for dummy cells. 
1 The file does contain values for dummy cells. 

  nblk  - Specifies the number of master blocks in the input grid.  

  idim  - Specifies the dimensions of the simulation. Allowable  
      values are:.  

2 Two dimensional simulation 
3 Three dimensional simulation 

  neq   -  Specifies the total number of coupled equations included 
      in the matrix expression of the boundary conditions. The 
      value is calculated as follows: 

    neq = ns+ner+nev+nee+idim+1 

   where:  ns = number of chemical species in the flow 
     ner =  number of rotational energy equations 
     nev =number of vibrational energy equations 
     nee =  number of electron/electronic energy 
       equations 

  net  - Specifies the number of uncoupled turbulence equations.  

  nmc  - Specifies whether there is a catalytic material map.  
      Allowable  values are: 
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0 No, a catalytic material map does not exist 
1 Yes, a catalytic material map does exist 

  nme  - Specifies whether a surface radiation map exists. Allowable 
      values are:  

0 No, a surface radiation map does not exist 
1 Yes, a surface radiation map does exist 

  nmt  - Specifies whether a transition map exists. Allowable  
      values are:  

0 No, a transition map does not exist 
1 Yes, a transition map does exist 

  nmv  - Specifies whether a view factor map exists. Allowable  
      values are:  

0 No, a view factor map does not exist 
1 Yes, a view factor map does exist  

Tech Tip: A view factor map is used to account for the ability of 
concave block faces to “see” each other and thus describing 
how energy behaves within a concave surface geometry. 

  f2   - Not used by DPLR at this time.  

  f3   - Not used by DPLR at this time.  

  f4   - Not used by DPLR at this time.  

block sizes- Specifies the total number of computational cells in the i, j, 
      k directions, respectively, for a master block.  

Tech Tips:  
1) Although unlabeled, each line of values corresponds to one 
 master block. 
2) Values also found in the ntx, nty, and ntz flags in the 
 block-specific areas of the DPLR input deck. 
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ibc numbers for each block -Specifies the boundary condition values  
       entered for each face of a master block in the DPLR 
       input deck -  imin, imax, jmin, jmax, kmin, 
       kmax – respectively.  

Tech Tip: Although unlabeled, one line of values corresponds to 
one master block. 

Optional Lines 

Catalytic material map specifiers, if nmc=1.  

Surface radiation map specifiers, if nme=1.  

Transition map specifiers, if nmt=1.  

View Factor map specifiers, if nmv=1.  

Profile Data for Block #; Face # - Listing of variable values specified by 
      the ibc number for a particular master block face.  For  
      example, if Block #1, Face #6 has a value of 60, DPLR 
      will look at this file, in this place for numeric values for ρs, 
      u, v, w, Tv, T.  

Tech Tips: 
1) For boundary conditions to be accurately simulated, the 
data in this area must appear in the exact order the variable 
listing appears in the corresponding ibc flag entry 
. 
2) DPLR reads data in this file in the following order: 
 1. Any pointwise boundary condition numbers (first) and 
     input profiles (second) 
 2. Any surface material maps 
 3. Any surface radiation maps 
 4. Any surface transition maps 
 5. Any surface view factor maps. 
 
3) DPLR then loops in the following order: 
 Inner loop over the face number (1-6), followed by a loop 
 over the block number (1-nblk), then repeat the outer loop 
 over read order listed above. 
 
4) Data should be written in standard “plot3d-like” format, in 
the order shown in the file above. 
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6.4 Runtime Control Files 

As you are monitoring a DPLR run, you may notice that your solution is not working 
the way you anticipated. In version 4.01.1 of DPLR Code Package, you can 
dynamically interact with a simulation mid-run to change timestep settings and 
DPLR’s grid adaption values to correct problems without having to stop the run and 
start over through the use of a runtime control file.  

A generic runtime control file named generic.ctrl is distributed with the DPLR 
Code Package Version 4.01.1 and can be found in the cfdinput directory.  

6.4.1 Creating a Runtime Control File 

Step 1:  Open the text editor program for your system.  
Action:  At the command line prompt, type: 

        /[path to your cfdinput directory]/ generic.ctrl 

Result:  A generic input file appears on screen, with placeholder 
   default values as shown below. To customize the file for 
   your simulation, replace flags and values with those you 
   want to change. Note that whenever a # sign appears in this 
   file, DPLR considers whatever follows to be comments and 
   will not parse the information.  

Step 2:  Save your control file to your working directory after giving it the same 
prefix as your solution file and adding the suffix “.ctrl”.   

DPLR will check for the existence of a control file in your working directory, by 
default, every 100 iterations during the solution run. If a control file exists and is 
correctly formatted, DPLR will read the new settings for the grid flags and/or 
timestepping flags and continue the simulation using those values.  
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# Run-time control example 

nplot = 200;  iplot = 1 

@iteration  500 ngiter=500 nalign=4, gmargin 2.5     # Trailing comment 

@iteration 1000 igalign=1 nalign=3, gmargin 3.        # Another comment 

@end 

################################################################# 

# Iteration-number-dependent controls 

################################################################# 

# istop 

# nplot 

# iplot 

# nruntime_freq 

################################################################# 

# Grid-tailoring controls 

################################################################# 

# igalign 

# ngiter 

# nalign 

# imedge 

# imradial 

# ngeom 

# ismooth 

# fs_scale 

# ds_mult 

# gmargin 

# ds1 

# cellRe 

# ds1mx 

# ds2fr 

################################################################# 

# Miscellaneous controls 

################################################################# 

# cfl 

Figure 6-5 Example of Runtime Control File  
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6.4.2 Input Flags for Runtime Control Files 

In DPLR Code Version 4.01.1, the following input flags can be dynamically changed 
in a runtime control file (see Section 4.2 for more information on each flag): 

 Global Flags:  istop, nplot, iplot, nruntime_freq  

Tech Tip: nruntime_freq is not found in the standard DPLR input deck. It is used to 
specify how often the control file is to be read by DPLR,  i.e., after n iterations. Default 
value = 100. 

 Grid-Adaption Flags: igalign, ngiter, nalign, imedge, imradial, 
       ngeom, ismooth, fs_scale, ds_mult, gmargin,
       ds1, cellRe, ds1mx, ds2fr 

 Timestepping Flags: cfl 

Tech Tip: Note that changes to the cfl number list should be 
made via an iteration-specific command as illustrated below. 

6.4.3 Syntax for Runtime Control Files 

Unlike other DPLR file formats, you do not have to use any of the control file input 
flags in any particular order. Also, the syntax for this type of input file is as follows: 

• For comments, type a # sign first, and everything after that on that line will 
not be “seen” by the code. For example:  

    #   I am expanding this grid. 
 
 would not cause DPLR to change the running simulation in any way. 

• For a generic command, type the name of the flag you want to change 
followed by an  = sign followed by a numeric value. More than one generic 
command can appear on a line, but they should be separated by a comma or 
colon or semicolon. For example: 

   nplot=300;  iplot=2 
 
 would result in DPLR changing the value of those flags when it reads the 
 control file after 100 more iterations. 

• For an iteration-specific command, type an @ sign, followed by the word 
‘iteration’ , followed by an = sign, followed by a numeric value. Then type the 
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name of the flag you want to change at that iteration, an “=”, then a numeric 
value. An iteration-specific command can also have several flags associated 
with it, but they should be separated by a comma, colon or semicolon. For 
example: 

   @iteration 2000 igalign=3; imradial=2 
 
 would result in DPLR changing the value of those flags when it reaches 
 iteration 2000, assuming that iteration had not already been passed when the 
 control file was read. 

 When changing a cfl number listing, the following syntax should be used: 

 

   @iteration 2000 cfl = 100 

   @iteration 2100 cfl = 250 

   @iteration 2500 cfl = 500 

 This entry in a control file in your working directory will tell DPLR that when 
 it reaches the first iteration in this list that has not yet been passed, it will  
 adopt this timestepping schedule in place of the one in the DPLR input deck 
 and not refer back to that original listing unless the run is stopped and 
 restarted. 

6.5 Restart Files 

The restart file is the DPLR solution file. It is named via fname in the DPLR Input 
Deck and typically has the suffix “*.pslx”. 

The first time a simulation is run, DPLR writes a restart file as frequently as specified 
in the nplot input flag and saves as many restart files as specified in the iplot input 
flag.  

Restart files contain all the input deck values and physical modeling parameters that 
were used in the simulation. Once written, a restart file is linked within DPLR to the 
binary, machine-readable  “*.pgrx” grid file that was used for the simulation.  

Tech Tip: Although restart files can be written in unformatted parallel (“*.psln”) and 
ASCII parallel (“*.psla”) formats, the preferred format in the DPLR working 
environment is XDR parallel (“*.pslx”) - a binary, machine-readable file. 

6.5.1 Converting Function Files to Restart Files 

The only CFD solution file (aka “function” file) that can be used as direct input to 
DPLR is a “*.pslx” restart file. Thus, if you want to rerun a solution in DPLR that 
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was originally created in another CFD solver application such as radial_interp or 
SAGe, you must first convert the function file from that program (in these cases a 
plot3d  file) into a “*.pslx” restart file – a task that can be accomplished using 
FCONVERT. 

Step 1:  Make sure: 
   1)  the input function file contains the following variables in the  
    following order: 
   

€ 

ρs,u,v,(w),T,(TR ),(TV ),(Te ),(turb)  

    where rs are the species densities, u, v, and w are the velocity  
    components, T is the translational temperature, Tr is the rotational  
    temperature, Tv is the vibrational temperature, Tel is the free electron 
    temperature, and turb are the turbulence variables. 
 
   2) the input function file has dimensions of the number of internal cells in 
    each grid block if idummy = 0, or the number of internal cells + 2 to 
    account for a single row of dummy cells if idummy = 1.  

Tech Tip: The second layer of dummy cells, used for high order flux 
extrapolations, should never be included in the input function file. Either style 
can be used to create restart files. If dummy cell information is not provided in 
the function file, values in the dummy cells will be extrapolated from the interior, 
and then overwritten by the corrected values when DPLR is run. If the dummy 
cells are included in the file, the values contained in the dummy cells should be 
face centered values at all solid surfaces. This allows for an exact specification 
of the viscous wall boundary condition. If dummy cells are not included, the 
boundary condition at any viscous walls will be reinitialized on restart, which 
will lead to a significant perturbation to the flowfield and L2norm residual 

Step 2:  Open an FCONVERT input deck file (See Section 3.1) and set   
   iaction=10, ifile=2, inform=3 or 23, nsin = # of chemical 
   species, nerin, nevin, necin = # of independent temperatures in  
   each mode, ntbin = # of  turbulence variables, and the rest of the flags to 
   problem-specific values. 

Step 3:  Save the input deck file.   
Step 4:  Run FCONVERT. 

Tech Tip: During the conversion process, FCONVERT will generate all 
necessary header elements and format the file properly for DPLR. However, the 
resulting restart file does not contain all of the CFD modeling flags, and thus 
cannot be post-processed with POSTFLOW until it has been run at least 1 
iteration and re-saved in DPLR. 
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6.6 Chemistry Files 

The DPLR Code Package contains a large number of chemistry model files that are 
automatically placed in the cfdinput directory when the software is installed along 
with other physical property databases. (See Section 2.4 for more information on the 
contents of directories installed with the DPLR Code Package Version 4.01.1). 

Chemistry files contain the input information DPLR needs to define species lists, 
chemical kinetic reactions, and reaction rates for a simulation. A chemistry file is 
required input for all simulations and should be specified to DPLR by the cname 
variable in the DPLR input deck along with an absolute pathname. 

To help you choose the chemistry file that is most appropriate for your simulation, 
file names typically contain a descriptive indication of the flow environment being 
modeled, the number of chemical species included in the model, the personal or 
institutional source of the model and the year the model was published, followed by a 
“*.chem” suffix.  For example, the file name: 

    air7sp-park93.chem  

tells you that it is a model of earth “air” containing seven chemical species, that it was 
developed by Park, and that it was published in 1993.  

Tech Tip: For a more complete description of the model contents, reference publication, and 
author(s), see the legend at the end of each “*.chem” file.  

6.7 Radiation Files 

The radiation coupling file is an optional input file used to input pointwise 

€ 

∇ ⋅QR  
information obtained from an offline radiation transport code. This  plot3D-formatted 
file name typically has a “*.pdrx” suffix and is specified by the rname variable in 
the DPLR input deck.  

An example of a radiation file for a 2 block grid where one block size is 32x64x64 
points and a second block size is 64x32x64 points is given below: 

 2    

32 64 64 1 

64 32 64 1 

 

[block radiation data in the i, j, and k 
 directions] 
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The first integer in the first line is the number of blocks. The four integers in the next 
line is the number of points in the first block in the i,j,k directions followed by a “1” 
for one variable, then repeated for the points in the second block on the next line. This 
is followed by the real block radiation data supplied by the offline radiation transport 
code.  

Tech Tip: Although optional, if an “rname” is specified in the DPLR input deck, a 
“*.pdrx” file must exist in the cfdinput directory to avoid a runtime error. 

6.8 Convergence Files 

When ires >0 in the DPLR input deck, DPLR automatically creates a convergence 
file when a simulation is run and places it in your working directory.  

The convergence file contains information on the iteration number, CFL number or 
timestep, and L2norm of the flow variable specified by the iresv flag of the DPLR 
input deck.  

An example of a convergence file where ires=2 and iresv=1 is given below. 

# Summary of enabled CPP compiler directives: 

# --> AMBIPOLAR=1,PARKTEXP=0.50,SCEI=1.00,NOHTC 

 

# computing L2norm residual of density 

   # nit     global resid            cfl 

      1   1.000000000000000E+00   1.0E-03 

      2   9.999989632126156E-01   1.0E-03 

      3   9.999980913475810E-01   1.0E-03 

      4   9.999975461771219E-01   1.0E-03 

      5   9.999973229450715E-01   1.0E-03 

   ………… 

   …………   etc.  

     98   8.653047974124419E-01   2.5E+00 

     99   8.637292011393368E-01   2.5E+00 

    100   8.621722044117890E-01   2.5E+00 

  

# Loop time =  8.75 seconds on  8 processors 
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Convergence files, named with the same prefix as the restart file and the suffix 
“*.con”, are usually retained for archival purposes and can be used to plot the rate of 
convergence of a specified variable in a given simulation.  

Tech Tip: If the current job began with a restart file, DPLR appends the new convergence 
data to the existing file (if any). If the current job is a fresh start, a new file is created and any 
previous file with the same name is automatically overwritten.  

6.9 Aerodynamic Files 

When ires=5 or 15 in the DPLR input deck, DPLR automatically creates an 
aerodynamic datafile when a simulation is run and places it in your working 
directory.  

The aerodynamic file contains information on the iteration number and the three force 
and moment coefficients computed as dimensional quantities. Moments are computed 
about the origin (0, 0, 0), and vehicle symmetries are not incorporated. 

An example of an aerodynamic file where ires=5 is given below. 

 

# nit  Fx    Fy   Fz    Mx    My    Mz 

   2001  2.5777E+05  4.706E+04 8.5400E-02 -1.0967E-01  -6.2569E-02  2.7165E+05 

   2002  2.5777E+05  4.706E+04 8.5075E-02 -1.0972E-01  -5.8149E-02 2.7165E+05 

   2003  2.5777E+05  4.706E+04 8.4872E-02 -1.0975E-01  -5.4368E-02 2.7165E+05 

 

………… etc. 

 

 

Aerodynamic files, named with the same prefix as the restart file and the suffix 
“*.aero”. Typically used as an additional means of monitoring the progress of a 
simulation run toward convergence, these files are usually retained for archival 
purposes and can be used to plot the rate of convergence of a given aerodynamic 
simulation.  

6.10 Log Files 

DPLR automatically creates a log file or standard out when a simulation is run and 
places it in your working directory. Log files, names with the same prefix as the 
restart file and the suffix “*.log”, are usually retained for archival purposes and 
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can be parsed to automatically fill out quality check forms if those are used as part of 
your CFD process.  

The log file contains a subset of the same information that is echoed to your screen in 
a standard out (STDOUT).  

An example of a log file is given below. 

 

# Summary of enabled CPP compiler directives: 

# --> AMBIPOLAR =  1 

# --> PARKTEXP = 0.50 

# --> NOHTC 

  

# Air Mechanism: 5 species, 5 reactions (Park 1990) Model 

# --> Species List: N2 O2 NO N O 

# --> Reaction rates from: air5sp_park90.chem 

# --> Reaction Status: 1 1 1 1 1 

# --> Keq Fit Used   : 0 0 0 0 0 

# --> NASA Lewis thermo fits used to find Keq 

# --> Assume molecules created/destroyed at mixture Tve 

 

# Catalytic wall BC enabled 

# --> Constant accomadation coeff;  gamma = 1.000 

 

# Rotational Equilibrium - Fully Excited 

 

# Vibrational Non-Equilibrium - SHO 

 

# Electronic Energy Neglected 

 

# Laminar Navier-Stokes Simulation 

# --> Gupta-Style Collision Integrals & Yos Mixing Rule 

# --> Taking gradients of ev 

# --> Multi-Species Binary Diffusion (Mole Fraction Gradients) 

# --> Binary diffusion coefficients from Gupta Collision Integrals 
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# --> SCEBD model used to compute diffusive fluxes 

 

# Ideal Gas Equation of State 

 

# Axisymmetric Flow - rotate about x-axis 

 

# Implicit - Data Parallel Line Relaxation; kmax =  4 

# --> Using Global Timestepping 

 

# INFORM: saving  2 previous restarts 

  

  

# Freestream Reynolds    Number = 8.260E+06 (1/m) 

# Freestream Frozen Mach Number = 1.087E+00 

# Freestream Equil. Mach Number = 1.133E+00 

 

 

 

Figure 6-6 Example of Log File  

Tech Tip: To avoid having DPLR overwrite archival output files with files generated by re-
runs of simulation, rename your restart file before beginning each run so that all the 
automatically created output files will indicate which simulation run created them.  

6.11 Tecplot Files 

Amtec’s Tecplot® visualization software is a tool often used to process results of 
DPLR simulations. For this reason, POSTFLOW has the capability of writing dataset 
files in two Tecplot-specific formats: 

• Tecplot binary (“*.plt”) 
• Tecplot ASCII (“*.dat”) 

As noted in Section 2.2, 5.2, and 5.4, however, the Amtec-provided “tecio.a” (or 
“tecio64.a”) runtime library must be installed on your system to generate binary 
“*.plt” files and may be available from the Tecplot website at:  
 http://www.tecplot.com.  
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7.0 Introduction 

Using the DPLR Code Package to achieve hypersonic flow simulation solutions can 
be a complex undertaking. Although the main tasks, i.e., grid file generation, grid file 
conversion, solution processing, and data extraction, are essentially sequential in 
nature, they are also iterative and often require concurrent execution to make the most 
productive use of your time, your tool, and your computing resources. 

This chapter will suggest a set of actions or “flow of work” that may help you achieve 
solutions in a more timely manner. Once you become familiar with the use and robust 
capabilities of the DPLR Code Package, however, it is likely that you will develop 
your own customized workflow.  
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7.1 DPLR Work Flow Chart 
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7.1.1 Initial Simulation Run 
Geometry of Interest            GridGen  plot3d grid file 

This first time you run a flow simulation problem for a geometry of interest (most 
likely a vehicle of some sort) using the DPLR Code Version 4.01.1 Package, you will 
need to generate a new (or adapt an existing) structured computational grid that you 
believe will capture the shock wave the object will encounter at hypersonic speeds 
within a specified flow environment. This “first guess” can be created from 
specifications in a CAD design or from scratch. In either case, you will need to use a 
grid generation program such as GridGen or GridPro to develop the grid file for use 
with DPLR. In most cases, the preferred form of the structured grid file you create 
will be plot3d.  

With DPLR Code Version 4.01.1, you have the option of processing your plot3d 
grid file through SUGGAR to enable overset grid capabilities with your simulation, 
assuming you have successfully installed the required third-party software 
(SUGGAR) and data libraries (DirTlib) before compiling the DPLR Code Package as 
discussed in Chapter 8. After processing with SUGGAR, you will have an overset-
capable version of your plot3d grid file which may (or may not) have an altered 
block order along with a domain connectivity file (.dci) in your home directory.  

plot3d grid file + fconvert.inp            FCONVERT          pgrx grid file, standard out  

Once you have created your structured grid file, you will need to create an input file 
for FCONVERT that specifies, among other things, how many processors will be 
used to run your simulation and how your grid file should be “decomposed” for 
parallel processing. When both files are available, you will run the DPLR file 
conversion executable, FCONVERT, to create a structured grid file that can be read 
by DPLR. In most cases, the recommended form of the structured grid file you create 
through this file conversion process will be pgrx. In addition to the new grid file, 
FCONVERT will create a screen report called a “standard out” of the actions taken to 
create the pgrx file. This report file can be saved for archival purposes. 

pgrx grid file + dplr.inp          DPLR        pslx file, log file, convergence file, standard out 

When the pgrx file for your problem is prepared, you will then create an input file for 
DPLR that specifies a variety of information about the flow environment your object 
will encounter, conditions of flow entry, conditions at the surface of different portions 
of your object, and the timestepping regimen you want DPLR to employ during its 
solution calculations. When both files are available, you will run the appropriate 
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DPLR executable, DPLR2D or DPLR3D, to create a solution or restart file. In most 
cases, the recommended form of the solution file will be pslx. In addition to the 
restart file, DPLR will also create a log file, a convergence file, and another standard 
out file to capture various aspects of the progress of the solution run. All three of 
these report files can be saved for archival purposes.  

pslx file + postflow.inp               POSTFLOW               flow.plt, standard out  

When DPLR completes the specified number of iterations to achieve a solution and 
write a restart file, you will need to create an input file for POSTFLOW that specifies 
the data you want extract from the solution and the format of the file you want 
POSTFLOW to write – something that will depend upon the third-party data 
reporting or visualization program, such as Tecplot, you are using. When both files 
are available, you will run the DPLR data extraction executable POSTFLOW, to 
create an input file for your flow simulation graphics program. If you are using 
Tecplot, the form of this file will be .plt. In addition to the new input file, 
POSTFLOW will create a screen report called a “standard out” of the actions taken to 
create the file which, again, can be saved for archival purposes.  

flow.plt  Tecplot           graphic representation of simulation solution 

When the post-process data file is available from POSTFLOW, you can launch your 
data visualization program to read in the information and create a graphic 
representation of your simulation run.  

7.1.2 Subsequent Simulation Runs 

Although you began your solution run with a structured grid that represented your 
“best guess” for capturing the shock wave in a hypersonic flow simulation problem, it 
is common to find that some adjustment of this grid is needed for your solution to 
adequately converge. These adjustments can be accomplished in subsequent runs of 
your simulations using the following technique. 

pslx file + revised DPLR.inp          DPLR        revised pslx file, log file, convergence file,  
        standard out 

After DPLR has created a restart file (pslx) that represents a solution needing some 
“adjustments”, create a revised DPLR input file by creating and renaming a copy of 
the dplr.inp file you used for your initial run. In your new input file, enter the 
following input flag settings:  iinit=1 ; igalign=1; nalign=4; ngiter=500. 
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These new settings tell DPLR that the run will be using a restart file, that grid 
alignment is to take place, that four such alignments will take place during the 
simulation, and that they will occur every 500 iterations of the run.  

When the revised pslx file is created and data is extracted by POSTFLOW and 
visualized by a graphics program, you can decide if further “adjustment” to your 
structured grid is needed to capture the shock wave. If so, repeat the process above, 
but consider setting a more aggressive CFL ramping schedule  (i.e., greater time 
stepping intervals) as you approach a converged solution. 

7.2 Workflow Shortcuts 

Over the years, a variety of tools and procedures have been developed to decrease the 
time spent in creating and running DPLR simulations. This section describes several 
of the more commonly used of these workflow shortcuts.  

7.2.1 Sequence the Grid 

As discussed in Section 3.5, computational grids composed of a large number of data 
points typically take longer to solve than grids with fewer points. As a result, grids 
used for initial solutions of CFD problems are sometimes coarsened or “sequenced” 
to reduce the number of points while maintaining the topology of the mesh. After an 
acceptable “first guess” is acquired, the grid is restored in a step-wise fashion to its 
original number of points for final solution and post-solution data reporting.  

To sequence or coarsen an input grid, open the fconvert.inp file, and enter the 
following settings:  imseq=1; iseq=n; jseq=n; kseq=n where n is the number of times the 
grid for that block should be coarsened in the i, j, k directions. (See Section 3.5.1 for 
more information on this technique). 

To restore grid points and refine your solution, use FCONVERT to upsequence your 
restart file and create a new pgrx file that matches the refined level of your 
upsequenced restart file. 

“coarsened” restart file + 1st revised fconvert.inp         FCONVERT         upsequenced 
            restart file 

plot3d grid file + 2nd revised fconvert.inp        FCONVERT      refined pgrx grid file  
                that matches points in the  
                upsequenced restart file  

This can be accomplished by following the steps below: 
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Step 1:  Open and name a new fconvert.inp file. 

Step 2:  Set  ifile=2, inform=11, imseq=-2, iseq, jseq, kseq to 
values used during sequencing, iname= coarsened 
restart file name, oname= new (less sequenced) restart 
file name (*.pslx). 

Step 3:  Save file to your working directory. 

Step 4:  Run FCONVERT < new FCONVERT input file. 

Step 5:  Open and name another new FCONVERT input file. 

Step 6:  Set  ifile=1, inform=2, imseq=0, iname= original plot3d 
grid filename, oname= new (less sequenced) XDR 
parallel grid file name (*.pgrx). 

Step 7:  Save file to your working directory. 

Step 8:  Run FCONVERT < second new FCONVERT input file. 

Your working directory now contains an upsequenced restart file that can be used to 
start a new solution run along with the DPLR-readable grid file containing the same 
number of data points as the upsequenced solution file. See Section 3.5.2 for more 
information on Mesh Sequencing. 

7.2.2 Use Runtime Control Files to Adjust Grids and CFL Schedules  

With DPLR Code Version 4.01.1, you no longer need to wait until your initial 
solution run is complete to adjust your “first guess” grid or change your CFL 
timestepping schedule, and then re-run the simulation. Using a runtime control file, 
you can dynamically interact with a simulation mid-run while monitoring the 
progress of convergence with concurrently running graphic visualizations of restart 
files as they are being written during your DPLR run.  

By using this option, you may avoid the need to repetitively stop and restart 
simulation runs. (See Section 6.4 for more information on creating and managing 
Runtime Control Files). 
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7.2.3 Use Template To Create DPLR Input and Zonal Interface Files 

Manually creating DPLR input and zonal interface files can be a time-consuming 
task. However, by using the Template utility, created by Scott Thomas and David 
Saunders and distributed  with the DPLR Code Package Version 4.01.1, these two 
tasks can be automated. 

plot 3d grid file + sample.inputs file           TEMPLATE            dplr.interfaces,  
                dplr.inputs, gasp.inp, 
                template.con 

To use Template to automatically create zonal interface files and block-specific areas 
of the DPLR input file, perform the following steps: 

Step 1:  Rename the ‘generic.inp’ file in the cfdinput directory as  ‘sample.inputs’ 
and save it to your working directory.  

Step 2:  Place the structured plot3d grid file of your object of interest in your 
working directory. 

Step 3:  Run Template. 

Your working directory now contains four new files: dplr.inputs; dplr.interfaces; 
gasp.inputs, template.con.  

When you open the dplr.inputs file, you will see that Template has created content for 
the block-specific areas of your DPLR input file. You may use this content as a guide 
to enter the values manually or simply copy and paste it into the DPLR input file you 
are creating for your simulation run. 

When you open the dplr.interfaces file, you will see that Template has created a zonal 
interface file for use in your simulation. This method detects full-face interfaces only, 
unlike FCONVERT which has the option of detecting subfacing through different 
settings of inint. Thus, the zonal interface file generated by Template should only 
be used when no sub-face interfaces exist in the computational grid.  

See Section 9.1.5 for a more complete discussion of the Template utility.  

7.2.4 Understand Your Computing Resources 

The efficiency of the DPLR Code Package as a CFD solver depends, in part, on the 
number of processors available for parallel solution of your flow problem. Thus, the 
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more processors you can allocate to your simulation run, the less time it will take to 
achieve a solution.  

In addition to raw computing power, however, knowing the exact number of 
processors that can be dedicated to your solution will allow you decompose the 
plot3d input grid into computational blocks that can be most efficiently handled by 
your computing resources. This is accomplished in the FCONVERT input file by 
setting iaction=2; nbreak=n where n is the number of available processors. 
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8.0 Introduction  

 An overset grid capability has been added to the DPLR Code Package beginning with 
Version 4.01.1. Overset grid techniques can extend traditional structured grid 
approaches to problems with greater geometric complexity and can be used to 
facilitate automated grid-generation or rapid analysis of configurations during design. 

This chapter will describe modifications to the installation process required to enable 
the overset grid capability in the DPLR Code Package as well as modifications to the 
typical DPLR workflow that arise due to the use of overset grids. 

8.1  Installation 

This section details special installation steps required to make the overset logic 
available within the DPLR Code Package, as well as the steps necessary to compile 
several utilities that may be useful for pre- and post-processing. 

8.1.1 Installation of the DPLR Code Package 

The overset capability in DPLR is built upon the DiRT and P3D libraries [1], which 
must be compiled separately and included in the link step for the DPLR Code 
Package executables. Each makefile in DPLR has been modified to access these 
libraries via environment variables, DIRTLIB_DIR and DIRTINC_DIR for the DiRT 
library (DiRTlib) and P3DLIB_DIR for the accompanying Plot3D library (P3Dlib). 
Therefore, for the overset grid capability to be available in DPLR, these two libraries 
must be compiled, and the assoicated environment variables must be defined.1  

Step 1:  Define the environment variables. 

Action:  Depending on your environment, include in your login 
script (e.g. .cshrc file) commands such as the following: 

   setenv DIRT_HOME $(HOME)/src/DiRTlibV1.36/src 

   setenv DIRTINC_DIR $(DIRT_HOME) 

   setenv DIRTLIB_DIR $(DIRT_HOME) 

                                                

1 DPLR Version 4.01.1 requires DiRTlib version 1.36 or greater. 
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   setenv P3D_HOME $(HOME)/src/P3Dlib/src 

   setenv P3DLIB_DIR $(P3D_HOME) 

Result:  DIRTINC_DIR will specify the directory containing the 
drt_version.h header file, DIRTLIB_DIR will specify the 
directory containing the DiRT library file, and 
P3DLIB_DIR will specify the directory containing the P3D 
library file (see below). 

Step 2:  Compile the P3D library. 

Action:  At the command line prompt, type the following 
commands: 

    cd $P3D_HOME 

    rm *.o *.a 

    make 

    mv libp3d.a $P3DLIB_DIR 

Result:  Assuming there were no problems, the archive file 
libp3d.a is created and stored in the directory specified 
by the P3DLIB_DIR environment variable. Also created is 
the executable file p3dconvert, which will be used later 
in this chapter. 

Step 3:  Compile the serial version of the DiRT library. 

Action:  At the command line prompt, type the following 
commands: 

    cd $DIRT_HOME 

    make serial 

    mv libdirt.a $DIRTLIB_DIR 

    mv drt_version.h $DIRTINC_DIR 
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Result:  Assuming there were no problems, the archive file 
libdirt.a is created and stored in the directory specified 
by the DIRTLIB_DIR environment variable. 

Step 4:  Compile the parallel version of the DiRT library. 

Action:  At the command line prompt, type the following 
commands: 

    cd $DIRT_HOME 

    make mpich 

    mv libdirt_mpich.a $DIRTLIB_DIR 

Result:  Assuming there were no problems, the archive file 
libdirt_mpich.a is created and stored in the directory 
specified by the DIRTLIB_DIR environment variable. 

Tech Tip: The compilation command for the parallel version of the DiRT 
library may vary considerably from platform to platform. On systems using 
mpicc, the build process for the current step may be simplified considerably by 
defining the environment variable MPICH_ROOT to specify the directory in 
which bin/mpicc is located (such that $MPICH_ROOT/bin/mpicc specifies the 
full path). On other systems, the mpich target in $DIRT_HOME/Makefile will 
need to be edited appropriately. Refer to the $DIRT_HOME/README file for 
further instruction. 

Step 5:  Compile the DPLR Code Package. (See Section 2.3 for instructions on 
   installing the baseline DPLR Code Package.)  Ensure that the   
   DIRTINC_DIR, DIRTLIB_DIR and P3DLIB_DIR environment variables 
   are defined as described in Step 1 above. Then compile (or recompile) the 
   DPLR Code Package. 

Action:  At the command line prompt, type: 

    cd $DPLR_HOME 

    make clean 

    make 
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Result:  Assuming there were no problems, all executable files in 
the package are created. Links to executables dplr2d, 
dplr3d, fconvert, and postflow are located in the bin 
directory. 

Tech Tip: The DPLR makefile.comm file includes logic to define the 
OVERSET CPP flag as part of the CPPFLAGS variable when the environment 
variables described in Step 1 above are defined. If OVERSET is not defined, 
most if not all of the overset logic is stripped from the code prior to creation of 
the object files. As a result, a make clean on the entire DPLR Code Package is 
required when switching between non-overset and overset compilations. 

Step 6:  Compile additional overset utilities. 

Action:  At the command line prompt, type: 

    cd $DPLR_HOME/utilities/overset 

    make 

Result:  Assuming there were no problems, all executable files in 
the overset utilities directory are created. Examples include 
merge_dplr and merge_usurp, which will be used later 
in this chapter. All of the utilities are listed and briefly 
described in Section 8.2. 

 

Tech Tips: 
1). The Makefile in $DPLR_HOME/utilities/overset specifies the Fortran 90 
compiler and compiler flags. These can be modified directly or on the command 
line by specifying the FORT and FFLAGS variables. 
 
2). Adding $DPLR_HOME/utilities/overset to your path is recommended in 
order to simplify access to the executables in that directory. 
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8.1.2 Installation of USURP 

USURP is a separately packaged utility that allows for accurate surface integration in 
grid systems that contain overlapping surface meshes [2]. It is written in Fortran 
90/95 and thus requires a working f90 compiler on the destination machine. USURP 
also utilizes some third-party routines written in C. 

USURP is distributed as a gzipped tar file named for the specific version of the code 
and date of release; e.g. usurp_v244_02242009.tgz. Version 2.44 of USURP is 
the first that includes support for DPLR Version 4.01.0 input files. 

Step 1:  Define the environment variables. In order to read the preferred FXDR-
   formatted DPLR grid files, USURP must be linked with FXDR at compile 
   time. For this to occur, the environment variable FXDR_HOME must be  
   defined to specify the full path of the FXDR library (including the name of 
   the library file itself, e.g. libfxdr.a). 

Action:  Depending on your environment, include in your login 
script (e.g. .cshrc file) commands such as the following: 

      setenv FXDR_HOME $HOME/src/fxdr_2.1c/libfxdr.a 

Result:  FXDR_HOME will specify the full path of the filename of 
the FXDR library. 

Step 2:  Unpack the USURP files. 

Action:  At the command line prompt, type: 

    tar xvzf usurp_v244_02242009.tgz 

Result:  A directory structure is created with the new directory 
SOURCE2.44 as the root. 

Step 3:  Print the usage for the USURP make file. 

Action:  At the command line prompt, type: 

    cd SOURCE2.44/src 

    make 
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Result:  The USURP Makefile prints a list of targets that can be 
used to compile the executable, drawing from the 
Make.sys file. 

Step 4:  Create the executable file. 

Action:  Select an option from the result of Step 3 and type the 
respective command. For example, in an environment that 
contains the Intel Fortran 90 compiler ifort, type the 
following at the command line prompt: 

    make intel8_little 

Result:  Assuming there were no problems, the executable file 
usurp is created. 

8.2 Utilities 

The following codes or scripts are provided with the DPLR Code Package in the 
utilities/overset directory: 

• calc_dirt_ijk 

• convert_to_2d 

• dplr_grid_to_suggar 

• gg2dplr 

• gg2suggar 

• interrogate_dplr 

• merge_dplr 

• merge_usurp 

• overflowdnamelist2xml 

• peg2xml 

• plot_suggar_2d 

• plot_suggar_3d 
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• run_suggar_2d 

• run_suggar_3d 

• scan_orphans 

• update_suggar_2d 

• update_suggar_3d 

calc_dirt_ijk - a Fortran 90 code that converts i,j,k indices from DPLR into a 1D 
index used by SUGGAR or vice versa. Input is interactive in response to prompts. 

convert_to_2d - a Fortran 90 code that can be used to convert 2D grids from an 
unformatted multiblock PLOT3D file containing ni, nj, and nk values in the header 
(where nk=1) to an ASCII 2D PLOT3D format containing only ni and nj values in the 
header. (The latter format may be more to the liking of FCONVERT.) Input is 
interactive in response to prompts. 

dplr_grid_to_suggar - a Fortran 90 code that can be used to convert 2D grids 
from an unformatted multiblock PLOT3D file containing only ni and nj values in the 
header to an unformatted multiblock PLOT3D file containing ni, nj, and nk values in 
the header (where nk=1). (The latter format is required by SUGGAR.) Input is 
interactive in response to prompts. 

gg2dplr  - a rudimentary Fortran 90 code that uses a generic Gridgen boundary 
condition file to generate a baseline DPLR input file. Input is interactive in response 
to prompts. 

gg2suggar  - a Fortran 90 code that uses a generic Gridgen boundary condition file 
to generate a baseline SUGGAR input file. Input is interactive in response to prompts. 

interrogate_dplr   -  a Fortran 90 code that allows the user to manually interrogate 
the values written by POSTFLOW to a cell-centered Tecplot file. The output format 
in POSTFLOW should be specified with ouform=25 and interp=11, with ivarp 
consisting of any desired dependent variables. Input is interactive in response to 
prompts. 

merge_dplr   -  a Fortran 90 code that combines vertex-based grid coordinates with 
cell-centered values of iblank (obtained from the DCI file) and any primitive 
variables output from POSTFLOW. See Section 8.6 for more details. 
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merge_usurp   -  a Fortran 90 code that combines output data from POSTFLOW 
with a unique surface definition output from USURP (i.e. having removed any 
overlapping regions from the surface mesh). See Section 8.6 for more details. 

overflowdnamelist2xml  -  a Fortran 90 code that uses an OVERFLOW-D input 
file (redirected from stdin) to generate a baseline SUGGAR input file (output to 
stdout). Usage: 

 overflowdnamelist2xml < [input namelist] 

peg2xml  -  a Fortran 90 code that uses a PEGASUS input file (redirected from 
stdin) to generate a baseline SUGGAR input file (output to stdout). Usage: 

 peg2xml < [input namelist] 

plot_suggar_2d  -  a Fortran 90 code that converts the results from SUGGAR (the 
composite grid and iblank information) into a Tecplot data file. Input is interactive in 
response to prompts. 

plot_suggar_3d  -  a Fortran 90 code that converts the results from SUGGAR (the 
composite grid and iblank information) into a Tecplot data file. Input is interactive in 
response to prompts. 

run_suggar_2d   -  a shell script containing the commands typically needed to run 
SUGGAR for a 2D case. The script assumes that the suggar_2d.linux executable 
is in the user's path. 

run_suggar_3d   -  a shell script containing the commands typically needed to run 
SUGGAR for a 3D case. The script assumes that the suggar_3d_opt.linux and 
surfasm executables are in the user's path. 

scan_orphans   -  a Fortran 90 code that writes out regions of orphans from a 
SUGGAR DCI file. 

update_suggar_2d   -  a shell script containing the commands typically needed 
for grid adaption in a 2D case. In order to be used by DPLR, it must be copied to a 
file named update_suggar and placed in the main DPLR working directory. 

update_suggar_3d   -  a shell script containing the commands typically needed 
for grid adaption in a 3D case. In order to be used by DPLR, it must be copied to a 
file named update_suggar and placed in the main DPLR working directory. 
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8.3 Pre-Processing 

The primary change brought about by the use of overset grids is in the grid generation 
step and in the necessity to generate the domain connectivity information, or DCI, for 
the overset assembly. Both of these subjects are outside of the scope of the current 
document beyond a few brief remarks. 

The overset grid generation methods for DPLR are in theory no different than for any 
other code, and in that respect, the usual grid generation packages such as 
Gridgen/Pointwise and Chimera Grid Tools may be applied. It is recommended that 
users who are new to overset grids refer to the paper “Best Practices in Overset Grid 
Generation” [3] for a valuable introduction to the topic. Users must bear in mind that 
cell-centered solvers such as DPLR will require more overlap than vertex-based 
solvers such as OVERFLOW, and this must be accounted for when the grids are first 
created. 

The domain connectivity information is generally comprised of an iblank array which 
designates each cell in the grid as either IN, OUT, FRINGE, or ORPHAN, along with 
the interpolation stencil and interpolation weights associated with each FRINGE cell 
that specify how data is communicated at overset boundaries. This information is 
normally generated by grid assembly software, of which there are many options. 

NASA has long been a lead organization for the development of overset methods and 
supports a wide array of overset tools popular in government and industry. Among 
these is Pegasus, a grid assembly tool that targets vertex-based flow solvers such as 
OVERFLOW. 

Compared to OVERFLOW, DPLR simulations are characterized by several features 
that require special attention during the overset assembly process. For example, 
DPLR generally utilizes a cell-centered, full-viscous stencil on grids that may include 
point-matched, block-to-block interfaces. As of this writing, the only overset grid 
assembly tool known by the current authors to explicitly support all of these 
requirements is SUGGAR [4], which is therefore the recommended grid assembly 
tool for DPLR. 

8.3.1 Special Considerations for SUGGAR 

Detailed instructions for running SUGGAR are beyond the scope of the current 
document beyond a few brief remarks regarding the grid specification and SUGGAR 
input file. 

For DPLR users, the easiest way to import grids into SUGGAR is using the PLOT3D 
format. Gridgen users, for example, should export the grid as a double-precision, 
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unformatted, PLOT3D volume grid. (Note that a volume grid should be created and 
exported even for 2D grids.) 

SUGGAR currently requires that any PLOT3D-formatted input grid files be separated 
into single-block grid files. The p3dconvert utility included with P3Dlib provides a 
simple mechanism to split an existing multiblock grid file using the command 

 p3dconvert [input name] -sp3dudl [output name] 

As an example, specifying an output name of Grids/block.grd results in a series of files 
with the names Grids/block_1.grd, Grids/block_2.grd, etc. 

Several utilities have been provided in the $DPLR_HOME/utilities/overset directory to 
facilitate the creation of a baseline SUGGAR input file. Gridgen users, for example, 
should export the boundary conditions from Gridgen using the generic analyis 
software (AS/W) format and convert the resulting file to a SUGGAR Input.xml file 
format using the provided gg2suggar utility. Users of Pegasus or OVERFLOW may 
want to investigate the provided peg2xml or overflowdnamelist2xml utilities. Users of 
Chimera Grid Tools may be able to export a SUGGAR input file directly using a Tcl 
script written for CGT. 

The following settings in the SUGGAR input file are recommended for DPLR users: 

<cell_centered marking_using_neighbors="y"/> 

<fringe_stencil type="diag+planar_first_offdiag"/> 

If the thin-layer approximation to the viscous terms is applied in DPLR, then the 
fringe_stencil element may be omitted. 

Run SUGGAR using one of provided utility scripts or the appropriate command line 
syntax. For 2D cases, the provided run_suggar_2d script is recommended, or the user 
may execute directly from the command line using a command such as: 

  suggar_2d.linux Input/Input.xml 

For 3D cases, the provided run_suggar_3d script is recommended, or the user may 
execute directly from the command line using a command such as 

 suggar_3d_opt.linux -run_surfasm "" Input/Input.xml 
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8.3.2 Special Considerations for FCONVERT 

Generally speaking, no modifications are necessary to the steps normally taken with 
FCONVERT during DPLR set-up. When using FCONVERT to convert the grid 
format or split the grid for parallel processing, there is no need to specify in any way 
that the grid is overset. Two items that do require some discussion, however, are the 
grid file and grid file format used as input to FCONVERT. 

When using SUGGAR, it is recommended that the output grid from SUGGAR be 
used as the input grid to FCONVERT. In this way, any grid modifications that occur 
during the grid assembly process will be properly reflected in DPLR, and the grid 
system in DPLR will be consistent with the information contained in the DCI file. 

For example, SUGGAR allows for grid blocks to be independently transformed 
(scaled, translated, and/or rotated) via the SUGGAR input file, a feature that is 
enabled by and sometimes useful during overset gridding. SUGGAR may also require 
that blocks be re-ordered within the SUGGAR input file in order to achieve the 
correct hole-cutting and assembly. In both cases, the composite grid that is output by 
SUGGAR would differ from the original grid that was input to SUGGAR, and it is 
the output composite grid that should be input to FCONVERT. 

For 3D cases, specifying inform=2 in the FCONVERT input file will allow 
FCONVERT to read the unformatted PLOT3D composite grid file output by 
SUGGAR (e.g. SUGGAR/allgrids.p3dudl). For 2D cases, SUGGAR outputs 
a 3D PLOT3D grid file that specifies nk=1 in all blocks. A recent modification to 
FCONVERT (released with DPLR Code Package Version 4.01.1) should allow 
FCONVERT to read such a file correctly by specifying idim=2 and inform=2, for 
example. Alternatively, the provided convert_to_2d utility can be used to convert 
the SUGGAR composite grid file to a formatted 2D PLOT3D file acceptable to 
FCONVERT, at which point inform=22 can be used in FCONVERT to read the 
resulting formatted file (e.g. SUGGAR/allgrids.g. 

Generally speaking, run FCONVERT as usual, using iaction=10 to convert the 
grid to FXDR format (ouform=11), for example, or iaction=1 if any block 
splitting is desired (See Chapter 3 for more information on Using FCONVERT). 

8.4 Running DPLR 

Once the grid and DCI files have been generated, only a few considerations are 
necessary when running the DPLR flow solver for overset grids. 

• For the overset logic to be available in DPLR, the DPLR Code Package must 
be linked with DiRTlib at compile time (see Section 8.1). 
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• For the overset logic to be activated, the iover flag must be set to 1 in the 
DPLR input file, and the name of the DCI file must be specified. (See the 
discussion for the Input Filenames and Overset Grid Implementation portions 
of the DPLR input file in Section 4.2.) 

• The boundary condition on overset boundaries should be specified using 
boundary flag 901. 

Tech Tips: 
1). Currently, the only DCI file format that is supported is the flex file generated 
by SUGGAR. (DiRTlib can automatically detect and read both ASCII and 
unformatted versions of this file.) As such, the ioint flag in the Overset Grid 
Implementation section of the DPLR input file is presently ignored. 
 
2). The boundary condition on overset boundaries should have no influence on 
the flow solution. First-order extrapolation is recommended on these 
boundaries simply to provide reasonable values to the post-processing and 
visualization codes. Boundary flag 901 has been added beginning with DPLR 
Code Package Version 4.01.1 to designate this specification for overset 
boundaries, but within DPLR, boundary flags 3 and 901 are treated identically. 

8.5 Grid Adaption 

Extra steps are required when grid adaption is performed on overset grids. Each time 
that the grid is adapted in DPLR, the domain connectivity information must be 
recalculated and imported. DPLR currently executes SUGGAR via a system call to a 
script named update_suggar, which must be placed in the main working directory. 
Example scripts named update_suggar_2d and update_suggar_3d, to be used 
with 2D and 3D cases respectively, are provided in the utilities/overset 
directory. Each script performs the following basic steps: 

Step 1:  Convert the adapted output grid from DPLR to a form suitable for  
   SUGGAR using fconvert. In 2D cases, this requires the extra step of 
   converting the 2D file to a pseudo-2D file that specifies nk=1 for all  
   blocks. 

Step 2:  Split the grid into single block files using p3dconvert. 

Step 3:  Re-run SUGGAR. 
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8.6 Post-Processing 

Tecplot is the preferred visualization software for overset DPLR solutions due to its 
ability to handle cell-centered (or primary value) blanking explicitly. Retaining the 
iblank information at the cell centers is recommended because of the fact that the 
iblank values cannot be transferred from the cell centers to the vertices in an 
entirely meaningful way. 

Modifications to the steps normally taken with POSTFLOW during post-processing 
may be necessary when overlapping grids are involved. The following sections 
discuss several such recommendations. 

8.6.1 Field Plots 

Ideally, some variables (e.g. the grid coordinates) should be stored at the vertices 
while others (e.g. the iblank array and possibly the dependent variables) should be 
stored at the cell centers. Tecplot accommodates this mixed-mode method of storage, 
but POSTFLOW currently does not. In the meantime, such a file can be created by 
the provided merge_dplr utility. 

Therefore, for 2D or 3D plots of the flow field, run POSTFLOW, choosing 
ouform=25 (Tecplot block ASCII format) and interp=11 (cell centers, no 
boundaries). Do not include the grid coordinates (ivarp=0), and do not include the 
iblank values (ivarp=26) in the variable list. Write all volumes points, and then use 
the provided merge_dplr utility to combine the composite grid (from SUGGAR), 
iblank values (from the DCI file) and dependent variables (from the POSTFLOW 
output file). Within Tecplot, activate primary value blanking, blanking cells in which 
the primary value of iblank is zero (which will disable the OUT cells, possibly 
leaving some overlap between grids) or less than or equal to zero (which will disable 
the OUT and FRINGE cells, possibly leaving some gaps between grids). 

8.6.2 Surface Integration 

If overlapping surface grids are present in the grid system, the panel weights 
calculated by USURP must be incorporated into any surface integration (e.g. for the 
calculation of aerodynamic forces or heat transfer). 

Step 1:  Run USURP, providing the DPLR input file by redirection; e.g. 

   usurp < dplr.inp 

where dplr.inp is the name of the DPLR input file of interest. Assuming there were 
no problems, a panel_weights.dat file is created. 
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Tech Tip: USURP will obtain the name and format of the grid file, the name of 
the DCI file (if the iover flag is set to 1), and the identity of all solid wall 
boundaries from the DPLR input file. 

Step 2:  Run POSTFLOW, specifying the normal flags for surface integration,  
   such as ouform=8, interp=11, and an appropriate value for ivarp (e.g. 
   ivarp=521; see Chapter 5). If the panel_weights.dat file is present, 
   POSTFLOW will automatically read it and apply it to the integrand of any 
   surface integration operation. 

Tech Tip: Hiding the panel_weights.dat file from POSTFLOW (by temporarily 
changing its name) is one way to verify that the panel weights are being applied 
to the surface integrations. Comparing values of the wetted surface area 
calculated by USURP and by POSTFLOW (e.g. by specifying ouform=8, 
interp=11, iexbc=26 and ivarp=23 in the POSTFLOW input file) is one way to 
verify that the USURP panel weights are being applied correctly. 

8.6.3 Surface Plots 

Contour plots on surfaces comprised of overlapping surface grids can be cleaned up 
considerably if the overlapping portions are removed. USURP has the ability to 
remove the overlapping portions and produce a singly-defined surface mesh in its 
place. The output surface quantities from POSTFLOW can then be transferred to this 
new surface representation for visualization purposes. 

The provided merge_usurp utility merges the derived variables from POSTFLOW 
with the surface mesh definition from USURP to try to generate improved surface 
plots. 

Step 1:  Run POSTFLOW, specifying interp=11 (cell-centered values, no  
   boundary points) and ouform=26 (Tecplot point ASCII format). 

Step 2:  Run USURP, specifying these command line options: 

   --tecformat=ascii (required by merge_usurp) 

   --watertight (if possible) 

   --basis=patch (optional) 

e.g., 

usurp --tecformat=ascii --watertight --basis=patch < dplr.inp 
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(See the documentation included with the USURP distribution for more information.) 

Step 3:  Run merge_usurp. If USURP succeeded in generating a watertight  
   triangulation in Step 2 above, then the resulting usurp-triangles.dat 
   file should be provided as input to merge_usurp. Failing that, the  
   usurp-surfaces.dat file can be used instead. 

Step 4:  Load the resulting merged_surfaces.dat file into Tecplot to view  
   surface contours of the selected dependent variables. 

8.7 Examples 

A few simple examples will serve to demonstrate the basic functionality of the 
overset version of DPLR and the procedures required to set-up, run, and post-process 
the cases.2 

8.7.1 Overset 2D Cylinder Case with Tilted Hole Patch 

A simple 2D case for testing the overset logic was generated beginning from the 
cylinder-ivib1 sample case distributed with DPLR.  

Step 1:  Prepare the grid files. The left-most panel of Figure 8-1 shows the  
   original 101 x 101 mesh for that case (with every other grid point removed 
   in each direction for better clarity). An overset case was manufactured by 
   manipulating the original grid in Gridgen and then using SUGGAR to cut 
   a hole in the original mesh, as shown in the center panel of Figure 8-1. To 
   obtain a continuous solution over the domain, the hole was covered by a 
   patch grid created from a subset of the original grid but rotated 5 degrees, 
   as shown in the right-most panel of Figure 8-1. 

 

 

 

 

 

                                                

2 All examples were conducted using SUGGAR Version 2.57 and, where applicable, the accompanying version of 

surfasm, which was version 1.24. 
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Figure 8-1  Overset Grid for 2D Cylinder Example 

Step 2:  Prepare the SUGGAR input file. The SUGGAR input file was first  
   generated using gg2suggar, and then the hole, which is shown in the  
   right-hand panel of Figure 8-1, was created by adding the following line: 

<blank_region range1="46:54" 

 range2="64:80" range3="1:1" mark_centers="yes"/> 

where range1 and range2 refer to the cells (due to the mark_centers command) 
in the i-direction and j-direction respectively. The final SUGGAR input file is shown 
in Figure 8-2. Because all four boundaries of the patch grid are overset boundaries, no 
boundary conditions are specified for the patch grid in the SUGGAR input file, as can 
be seen in the definition for block1 in Figure 8-2. 

Step 3:  Run SUGGAR. 

Action:  At the command line, type: 

    run_suggar_2d 

Result:  SUGGAR generates the domain connectivity information 
with no orphans. As specified in the SUGGAR input file, 
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the domain connectivity information is stored in 
gen_dirt.dci, and the composite grid is stored in 
allgrids.p3dudl as an unformatted, double-precision, 
PLOT3D file. 

Tech Tip: SUGGAR marks the cells in the hole region with iblank=0 and then 
marks two layers of fringe cells (iblank < 0) around the hole, where values for 
the dependent variables must be interpolated. The solution for the governing 
equations must be obtained in the remaining "active" cells, where iblank=1. The 
iblank values for the grid assembly are shown in Figure 8-3. 
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<global> 
<cell_centered mark_using_neighbors="y"/> 
<fringe_stencil type="diag+planar_first_offdiag"/> 
<output> 
   <structured_grid filename="allgrids.p3dudl" style="p3dudl"/> 
   <donor_receptor_file filename="gen_dirt.dci"  
         style="ascii_gen_drt_pairs"/> 
</output> 
<body name="root body"> 

   <volume_grid name="block1" 
       style="p3d" filename="Grids/block_1.grd"> 
   </volume_grid> 
   <volume_grid name="block2" 
       style="p3d" filename="Grids/block_2.grd"> 
      <blank_region range1="46:54" range2="64:80" range3="1:1" 
                    mark_centers="yes"/> 
      <boundary_surface name="jmin"> 
         <region range1="all" range2="min" range3="all"/> 
         <boundary_condition type="solid"/> 
      </boundary_surface> 
      <boundary_surface name="imax"> 
         <region range1="max" range2="all" range3="all"/> 
         <boundary_condition type="farfield"/> 
      </boundary_surface> 
      <boundary_surface name="jmax"> 
         <region range1="all" range2="max" range3="all"/> 
         <boundary_condition type="farfield"/> 
      </boundary_surface> 
      <boundary_surface name="imin"> 
         <region range1="min" range2="all" range3="all"/> 
         <boundary_condition type="farfield"/> 
      </boundary_surface> 
   </volume_grid> 
</body> 
</global> 

 

Figure 8-2  SUGGAR Input File for 2D Cylinder Example 
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Figure 8-3  Iblank Values for 2D Cylinder Example 

 

Step 4:  Run FCONVERT (with iaction=1, idim=2, inform=2, ouform=11, 
   and ibrk=jbrk=2 in each block) to convert the    
   SUGGAR/allgrids.p3dudl file into an FXDR-formatted grid file  
   named dplr.pgrx suitable for parallel execution on 8 processors. (Note 
   that a modification to FCONVERT introduced in DPLR Code Package 
   4.01.1 is necessary to read this 3D grid with nk=1 as a 2D grid in  
   FCONVERT.) 

Step 5:  Prepare the DPLR input file. In this case, the DPLR input file was  
   constructed by starting with the cylinder-ivib1.inp file that was  
   provided with the “Cylinder” sample case. The input file describes laminar 
   flow of a five-species air model in vibrational non-equilibrium, resulting 
   in nine coupled partial differential equations. The primary modifications to 
   the input file involved changing the number of blocks from 1 to 2 and  
   adding a block-specific section for the patch grid, using ibc=901 on the 
   overset boundaries. The maximum CFL number was set to 100,000. The 
   overset logic was activated by setting iover=1 and specifying the name 
   of the DCI file as SUGGAR/gen_dirt.dci. 
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Step 6:  Run DPLR. In this case, DPLR was executed with the command 

   mpirun -np 8 dplr2d < dplr.inp 

   Over 1000 iterations, the RMS residual dropped 14 orders of magnitude. 

Step 7:  Run POSTFLOW (with ouform=25, interp=11, and   
   ivarp=150,151) to generate ASCII Tecplot data. The POSTFLOW  
   output was combined with the composite grid and DCI files from  
   SUGGAR using merge_dplr. Velocity contours are shown for the final 
   solution in Figure 8-4. It can be seen that the contours vary smoothly  
   across the overset region. In the center and right-hand panel of Figure 8-4, 
   the velocity contours are shown again, this time showing each block  
   separately and using a piecewise-constant coloring scheme based on the 
   local value of the velocity in each cell. The values of the dependent  
   variables in the hole cells do not influence the solution in the active cells, 
   so these cells are not shown in the center panel. 

 

 

 

 

 

 

 

 

 

 

Figure 8-4 Velocity Contours for 2D Cylinder Example 
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8.7.2 3D MSL Flight Case with Overset Nose Patch 

The Mars Science Laboratory Flight sample case that was distributed with DPLR 
Version 3.05.0 consisted of a two-block point-matched grid, with one rectangular 
mesh on the nose surrounded by an O-type grid covering the rest of the heat shield, 
and with both blocks extruded away to the far field. In the example presented here, 
the central block was removed and replaced by an overset nose patch, which was 
extruded away to the original far field boundary location, as shown in Figure 8-5. 

 

 

 

 

 

 

 

 

 

 

Figure 8-5  Overset Surface Grid for MSL Flight Example 

 

Step 1:  Prepare the grid files. Working from Gridgen, the 3D volume grid was 
   exported as an unformatted, double-precision, PLOT3D file named msl-
   flight-3.grd, and the generic AS/W boundary conditions were  
   exported to a file named bc.dat. The grid file was split into single block, 
   double-precision, unformatted PLOT3D files using the commands 

      mkdir Grids 

      p3dconvert msl-flight-3.grd -sp3dudl Grids/block.grd 

   which created block_1.grd and block_2.grd in a Grids   
   subdirectory. 
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Step 2:  Prepare the SUGGAR input file. In this case, the SUGGAR input file  
   (Input.xml, which is shown in its entirety in Figure 8-6) was generated  
   from the Gridgen output files using gg2suggar. The output from  
   gg2suggar required only one modification in this case, which was to  
   uncomment the symmetry element in the header and specify the  
   symmetry plane as z. 

 

<global> 

<symmetry_plane axis="z"/> 

<cell_centered mark_using_neighbors="y"/> 

<fringe_stencil type="diag+planar_first_offdiag"/> 

<output> 

   <structured_grid filename="allgrids.p3dudl" style="p3dudl"/> 

   <donor_receptor_file filename="gen_dirt.dci" 

        style="ascii_gen_drt_pairs"/> 

</output> 

<body name="root body"> 

   <volume_grid name="B" 

       style="p3d" filename="Grids/block_1.grd"> 

      <boundary_surface name="kmin"> 

         <region range1="all" range2="all" range3="min"/> 

         <boundary_condition type="symmetry"/> 

      </boundary_surface> 

      <boundary_surface name="kmax"> 

         <region range1="all" range2="all" range3="max"/> 

         <boundary_condition type="symmetry"/> 

      </boundary_surface> 

      <boundary_surface name="imax"> 

         <region range1="max" range2="all" range3="all"/> 

         <boundary_condition type="non-overlap"/> 

      </boundary_surface> 

      <boundary_surface name="jmin"> 

         <region range1="all" range2="min" range3="all"/> 

         <boundary_condition type="solid"/> 

      </boundary_surface> 
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      <boundary_surface name="jmax"> 

         <region range1="all" range2="max" range3="all"/> 

         <boundary_condition type="non-overlap"/> 

      </boundary_surface> 

   </volume_grid> 

   <volume_grid name="A" 

       style="p3d" filename="Grids/block_2.grd"> 

      <boundary_surface name="imin"> 

         <region range1="min" range2="all" range3="all"/> 

         <boundary_condition type="symmetry"/> 

      </boundary_surface> 

      <boundary_surface name="jmin"> 

         <region range1="all" range2="min" range3="all"/> 

         <boundary_condition type="solid"/> 

      </boundary_surface> 

      <boundary_surface name="jmax"> 

         <region range1="all" range2="max" range3="all"/> 

         <boundary_condition type="non-overlap"/> 

      </boundary_surface> 

   </volume_grid> 

</body> 

</global> 

 

 

Figure 8-6  SUGGAR Input File for MSL Flight Example 

 

Step 3:  Run SUGGAR. 

Action:  At the command line, type: 

    run_suggar_3d 

Result:  SUGGAR generates the domain connectivity information 
with no orphans. As specified in the SUGGAR input file, 
the domain connectivity information is stored in 
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gen_dirt.dci, and the composite grid is stored in 
allgrids.p3dudl as an unformatted, double-precision, 
PLOT3D file. 

Step 4:  Run FCONVERT (with iaction=1, idim=3, inform=2, ouform=11) to  
   convert SUGGAR/allgrids.p3dudl to an FXDR-formatted grid file  
   named split.pgrx suitable for parallel execution on 11 processors. For 
   the decomposition, (ibrk,jbrk,kbrk)=(7,1,1) for block 1 and  
   (4,1,1) for block 2. 

Step 5:  Prepare the DPLR input file. In this case, the DPLR input file was  
   modified from the original sample case with the new block-specific  
   information for the overset nose patch and using ibc=901 on the overset 
   boundaries. The laminar flow model consisted of an 8-species model of 
   the atmosphere on Mars (beginning with 97.088% CO2 and 2.912% N2) in 
   vibrational non-equilibrium, leading to 13 partial differential equations. 
   The maximum CFL number was set to 100,000. The overset logic was  
   activated by setting iover=1 and specifying the name of the DCI file as 
   SUGGAR/gen_dirt.dci. 

Step 6:  Run DPLR. In this case, DPLR was executed with the command 

  mpirun -np 11 dplr3d < dplr.inp 

      Over 800 iterations, the RMS residual dropped 10 orders of magnitude. 

Step 7:  Run USURP. 

Action:  At the command line, type: 

   usurp --basis=patch --never-skip < dplr.inp 

Result:  The data file panel_weights.dat and the Tecplot file 
usurp-surfaces.plt are created. 

The left-hand panel of Figure 8-7 shows the resulting mesh from usurp-
surfaces.plt, in which a portion of the original heat shield mesh has been 
removed in favor of the finer nose patch mesh. Cells that are partially revealed at the 
interface have been replaced by black triangles for visualization purposes. The right-
hand panel of Figure 8-7 shows the value of the panel weight in each cell (omitting 
cells with panel weights less than 0.001). The panel weight is a scale factor that 
multiplies the contribution on each cell face to any subsequent surface integration. 
The panel weights in the nose patch are all 1.0 in this case, so cells in the heat shield 
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mesh have panel weights of zero in the overlap region or panel weights less than 1 in 
the interface region. 

 

 

 

 

 

 

 

 

 

 

Figure 8-7  Surface Integration Grid from USURP 

In this case, USURP reported that the wetted area of the two surface grids was 2.837, 
representing a 23% reduction from the value obtained if the area integration was 
conducted without consideration for the overlapping region. 

Step 8:  Run POSTFLOW (with ouform=26, interp=11, and   
   ivarp=150,151) to generate surface contour plots, following the  
   procedure outlined in Section 8.6.3. A comparison of the pressure and  
   temperature for the block-to-block and overset cases is presented in  
   Figure 8-8. A comparison of the heat flux and wall shear stress for the  
   block-to-block and overset grids is shown in Figure 8-9. 
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Figure 8-8  Comparison of Solutions for Surface Pressure and 
Temperature 

 

 

 

 

 

 

 

 

 

 

Figure 8-9  Comparison of Solutions for Surface Heat Flux and  
Shear Stress 
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Step 9:  Run POSTFLOW (with ouform=8 and interp=11) to generate  
   integrated surface data. For this case, iexbc=26 and    
   ivarp=23,531,611,621 to extract the total wetted area, total heating, 
   pressure force in the x-direction, and viscous force in the x-direction,  
   respectively. The results with and without the panel_weights.dat file  
   present are presented in Table 8.1, where they are compared to those from 
   the original block-to-block sample case. 

 

Table 8.1 – Effect of Panel Weights on Surface Integrals 

Quantity 

 

Overset, 
without 
panel 

weights 

Overset, 
with panel 

weights 

Block-to-Block 

Area (m2) 3.693 2.839 2.837 

Heat Flux (W) 1.063E+06 8.181E+05 8.160E+05 

x-component of 
pressure force 
(N) 

3.221E+04 2.402E+04 2.401E+04 

x-component of 
viscous force (N) 

34.39 31.66 31.75 

 

8.7.3 Huygens-PH Example with 2D Grid Alignment 

The Huygens probe, built by the European Space Agency, touched down on Titan, 
Saturn's largest moon, on January 14, 2005 after a journey of more than seven years. 
The simulation here, which stems from the Huygens-PH example distributed with 
DPLR Version 3.05.0, models a point of the descent at which the probe is traveling at 
5.126 km/s. The atmosphere of Titan was modeled with 26 chemical reactions among 
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14 species, beginning from 97.65% nitrogen, 1.02% argon, and 1.33% methane at 
176.6 K. 

Step 1:  Prepare the grid files. For demonstration purposes, a two-dimensional, 
   single-block grid was created in Gridgen using hyperbolic extrusion from 
   a 61-point connector defining the heat shield, using an initial spacing of 32 
   microns, 64 steps, and a stretching ratio of 1.15. This initial 61 x 65 grid 
   was then split into two overlapping 35 x 65 blocks, providing 8 cells of 
   perfect overlap. The two-block 2D grid was exported as a volume grid to 
   an unformatted, double-precision, PLOT3D file named huygens- 
   overset.grd. The grid file was split into two single-block, double- 
   precision, unformatted PLOT3D files for SUGGAR using the commands 

    mkdir Grids 

    p3dconvert huygens-overset.grd-sp3dudl Grids/block.grd 

   which created block_1.grd and block_2.grd in the Grids  
   subdirectory. 

Step 2:  Prepare the SUGGAR input file. The file Input.xml for this case was 
   created automatically using gg2suggar and is shown in its entirety in  
   Figure 8-10. 

 

<global> 

<cell_centered mark_using_neighbors="y"/> 

<fringe_stencil type="diag+planar_first_offdiag"/> 

<output> 

   <structured_grid filename="allgrids.p3dudl" style="p3dudl"/> 

   <donor_receptor_file filename="gen_dirt.dci" 

        style="ascii_gen_drt_pairs"/> 

</output> 

<body name="root body"> 

    <volume_grid name="A" 

       style="p3d" filename="Grids/block_1.grd"> 

    <boundary_surface name="jmin"> 

 

         <region range1="all" range2="min" range3="all"/> 
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         <boundary_condition type="solid"/> 

      </boundary_surface> 

      <boundary_surface name="jmax"> 

         <region range1="all" range2="max" range3="all"/> 

         <boundary_condition type="farfield"/> 

      </boundary_surface> 

      <boundary_surface name="imin"> 

         <region range1="min" range2="all" range3="all"/> 

         <boundary_condition type="axis"/> 

      </boundary_surface> 

</volume_grid> 

<volume_grid name="B" 

       style="p3d" filename="Grids/block_2.grd"> 

      <boundary_surface name="jmin"> 

         <region range1="all" range2="min" range3="all"/> 

         <boundary_condition type="solid"/> 

      </boundary_surface> 

      <boundary_surface name="imax"> 

         <region range1="max" range2="all" range3="all"/> 

         <boundary_condition type="farfield"/> 

      </boundary_surface> 

      <boundary_surface name="jmax"> 

         <region range1="all" range2="max" range3="all"/> 

         <boundary_condition type="farfield"/> 

      </boundary_surface> 

   </volume_grid> 

</body> 

</global> 

 

Figure 8-10  SUGGAR Input File for Huygens Example Case 

 

Step 3:  Run SUGGAR. 

Action:  At the command line, type: 
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    run_suggar_2d 

Result:  SUGGAR generates the domain connectivity information 
with no orphans. As specified in the SUGGAR input file, 
the domain connectivity information is stored in 
gen_dirt.dci, and the composite grid is stored in 
allgrids.p3dudl as an unformatted, double-precision, 
PLOT3D file. 

Step 4:  Run FCONVERT (with iaction=10, idim=2, inform=2, ouform=11) 
   to convert the SUGGAR/allgrids.p3dudl file into an FXDR-formatted 
   grid file named dplr.pgrx. (Note that a modification to FCONVERT 
   introduced in Version 4.01.1 is necessary to read this 3D grid with nk=1 
   as a 2D grid in FCONVERT.) 

Step 5:  Prepare the DPLR input file. In this case, the input file was constructed 
   by starting with the Nov11HR-t189s.inp input file that was distributed 
   with the DPLR Version 3.05.0 sample cases and updating it to DPLR  
   Version 4.01.0 using the dpconvert utility in $DPLR_HOME/utilities 
   by executing the command 

  dpconvert -i Nov11HR-t189s.inp -o dplr.inp 

The simulation used the titan14sp-gokcen.chem file, a 14-species model of 
Titan's atmosphere as discussed earlier, and assumed vibrational non-equilibrium 
using a two-temperature model (ivib=4), resulting in a system of 18 partial 
differential equations for this 2D case. The maximum CFL number was set to 3000. 
For the overset grid case, a block-specific section was added for the second block, 
and the boundary condition flag on the two overset boundaries was set to 901. The 
overset logic was activated by setting iover=1 and specifying the name of the DCI 
file as SUGGAR/gen_dirt.dci. 

Step 6:  Run DPLR. In this case, DPLR was executed with the command 

  mpirun -np 2 dplr2d < dplr.inp 

   Over 1200 iterations, the RMS residual dropped 9 orders of magnitude. 

Step 7:  Prepare the DPLR and SUGGAR input files for grid adaption. The DPLR 
   input file was next modified to enable two rounds of grid alignment with 
   500 iterations in between. The grid alignment flags are shown in  
   Figure 8-11 below. The provided update_suggar_2d script was copied 
   to a file named update_suggar and placed in the working directory.  
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   Each time that DPLR adapts the grid, update_suggar is executed to  
   generate a new DCI file which is then imported by DPLR. 

 

=================================== 

Grid Adaption 

=================================== 

 

      igalign      ngiter      nalign      i1stadpt 

      1              500          2           1 

 

      imedge      imradial      ngeom      ismooth 

      1               1           2           3 

 

      fs_scale      ds_mult      gmargin 

      0.92            2.5          0.0 

 

      ds1      cellRe      ds1mx      ds2fr 

      0.0       1.0      1.0d-4        0.3 

 

=================================== 

 

Figure 8-11  Grid Adaption Flags 

 

Step 8:  Run POSTFLOW (with ouform=25, interp=11, and ivarp=110) to 
   generate ASCII Tecplot data. The POSTFLOW output was combined with 
   the composite grid and DCI files from SUGGAR using merge_dplr.  
   Pressure contours are shown in Figure 8-12 for the two-block overset grid 
   before and after alignment. The figure includes the (red and green)  
   boundaries of the two overlapping grid blocks. 
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Figure 8-12  Pressure Contours for Huygens Grid Adaption Example 

8.7.4 3D MSL Flight Example with Grid Alignment 

In Section 8.7.2, the MSL Flight example that was distributed with DPLR 
Version 3.05.0 used a grid that had already been aligned with the expected location of 
the shock. The overset nose patch that was added was built to match this pre-
determined free stream grid spacing and location. This section presents the results 
when the overset grid is rebuilt without prior knowledge of the shock location and 
then subsequently aligned to the solution. 

Step 1:  Prepare the grid files. Using Gridgen, the surface mesh from   
   Section 8.7.2 was extruded hyperbolically using 64 steps with an initial 
   spacing of 5.4 microns and a stretching ratio of 1.15. The resulting volume 
   grid was exported to an unformatted, double-precision, PLOT3D file  
   named msl-adapt.grd, and the boundary conditions were exported in 
   the generic AS/W format to a file named bc.dat. The grid file was split 
   into two single-block, double-precision, unformatted PLOT3D files for 
   SUGGAR using the commands. 

    mkdir Grids 

 p3dconvert msl-flight-adapt.grd -sp3dudl Grids/block.grd 
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   which created block_1.grd and block_2.grd in the Grids  
   subdirectory. 

Step 2:  Prepare the SUGGAR input file. The SUGGAR input file was generated 
   from the Gridgen output files using gg2suggar. As in Section 8.7.2, the 
   file Input.xml produced by gg2suggar required only one modification, 
   which was to uncomment the symmetry element in the header and  
   specify the symmetry plane as "z". 

Step 3:  Run SUGGAR. 

Action:  At the command line, type: 

    run_suggar_3d 

Result:  SUGGAR generates the domain connectivity information 
with 59 orphans. As specified in the SUGGAR input file, 
the domain connectivity information is stored in 
gen_dirt.dci, and the composite grid is stored in 
allgrids.p3dudl as an unformatted, double-precision, 
PLOT3D file. 

 

The left-hand panel of Figure 8-13 shows the cell-centered iblank values for this grid 
prior to adaption, where the fringe cells are shaded blue and the orphan cells are 
shaded red. In this case, the orphans result from the fact that the hyperbolic extrusion 
did not extend the nose cap grid, which has a cyan border, as far as the main heat 
shield grid, which has a purple border, such that not all fringe cells in the heat shield 
grid had valid donors. As the two grid blocks were later aligned with the shock, this 
offset and the associated number of orphans decreased, from 40 orphans after the first 
alignment to 19 after the second, which is shown in the right-hand panel of 
Figure 8-13. 
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Figure 8-13  Iblank Values Before and After Adaption 

Step 4:  Run FCONVERT (with iaction=1, idim=3, inform=2, ouform=11) 
   to convert SUGGAR/allgrids.p3dudl to an FXDR-formatted grid file 
   named dplr.pgrx suitable for parallel execution on 11 processors. For 
   the decomposition, (ibrk,jbrk,kbrk)=(7,1,1) for block 1 and  
   (4,1,1) for block 2. 

Step 5:  Prepare the DPLR input file. The input file was prepared in the same  
   manner as in Section 8.7.2. The boundary flag on overset boundaries was 
   again set to 901, and the overset logic was activated by setting iover=1 
   and specifying the name of the DCI file as SUGGAR/gen_dirt.dci. 

Step 6:  Run DPLR. In this case, DPLR was executed with the command 

  mpirun -np 11 dplr3d < dplr.inp 

   An initial solution was obtained on the original grid using 800 iterations 
   and a maximum CFL number of 3,000. Subsequently, two grid adaption 
   steps were performed using the same settings as those shown in Figure 8-
   11, again with a maximum CFL number of 3,000. 

Step 7:  Run POSTFLOW. Surface integration for wetted area, total heating,  
   pressure force, and viscous force was repeated using USURP and  



Using Overset Grids 
 

DPLR Code Version 4.01.1 User Manual 8-36           10/27/09  

 

   POSTFLOW as described in Section 8.7.2. Those values for the current 
   simulation are shown in Table 8.2 below and again agree with the original 
   block-to-block solution to within 1%. 

Table 8.2  Comparison of Overset and Block-to-Block Surface Integrals 

Quantity Overset, 
with panel 

weights 

Block-to-
Block 

Difference (%) 

Area (m2) 2.837 2.837 - 

Heat Flux (W) 8.191E+05 8.160E+05 0.37 

x-component of 
pressure force 
(N) 

2.394E+04 2.401E+04 -0.29 

x-component of 
viscous force (N) 

31.83 31.75 0.25 

 

8.7.5 2D ARD Capsule Example 

The Atmospheric Re-entry Demonstrator (ARD) was an unmanned Apollo-like 
capsule launched by ESA in October 1998. After performing a sub-orbital flight (830 
km apogee), the capsule splashed down in the Pacific Ocean and was recovered by 
the French Navy. Thus, the ARD was the first European spacecraft ever to be 
successfully recovered. The ARD was 2.8 meters in diameter and was characterized 
by a spherical blunt nose (R = 3.36 meters), a conical back shell with a 33° half angle, 
and a back cap that housed the flotation balloons [5]. 

Step 1:  Prepare the grid files. An overset grid for a 2D (axisymmetric)  
   representation of the ARD was constructed using hyperbolic extrusion  
   from the spherical nose and conical back shell, as shown in Figure 8-14 
   (top left). Subsequently, a grid was added to represent the wetted area of 
   the back cap, shown as the blue mesh in the top right portion of  
   Figure 8-14. Finally, a third block, shown as the green mesh in the bottom 
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   left portion of Figure 8-14, was added as a collar grid to cover the junction 
   between the back shell and cap. As described next, SUGGAR was used to 
   cut away the portion of red mesh interior to the back cap, leaving the final 
   assembly as shown in the bottom right portion of Figure 8-14. The grid 
   has a near wall spacing of 32 microns, a stretching ratio of 1.2, and 65  
   points in the body normal direction, leading to a far-field boundary that 
   was approximately 16 meters from the capsule in all directions. 

 

 

 

 

 

 

 

 

 

Figure 8-14  Overset Grid System for ARD Example 

Step 2:  Prepare the SUGGAR input file. As a starting point, a SUGGAR input 
   file was generated using gg2suggar. The final input file, which is shown 
   in Figure 8-15, resulted after several modifications. First, the symmetry 
   element at the top of the file was activated (uncommented) and the  
   symmetry axis was specified as "y". This change causes the geometry to 
   appear to SUGGAR to be watertight, which is necessary for the hole- 
   cutting step to be successful. Second, the root body was divided into two 
   child bodies, with the first block comprising the cone body and the two 
   smaller blocks comprising the frustrum body. Finally, the jmin boundary 
   of the collar grid was divided into two portions, and one of the portions 
   was marked as collar to the cone body. 
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<global> 

<symmetry_plane axis="y"/> 

<cell_centered mark_using_neighbors="y"/> 

<fringe_stencil type="diag+planar_first_offdiag"/> 

<output> 

   <structured_grid filename="allgrids.p3dudl" style="p3dudl"/> 

   <donor_receptor_file filename="gen_dirt.dci" 

       style="ascii_gen_drt_pairs"/> 

</output> 

<body name="root body"> 

   <body name="cone"> 

      <volume_grid name="A" 

          style="p3d" filename="Grids/block_1.grd"> 

      <boundary_surface name="jmin"> 

         <region range1="1:65" range2="min" range3="all"/> 

         <boundary_condition type="solid"/> 

      </boundary_surface> 

      <boundary_surface name="jmax"> 

         <region range1="1:65" range2="max" range3="all"/> 

         <boundary_condition type="farfield"/> 

      </boundary_surface> 

      <boundary_surface name="imin"> 

         <region range1="min" range2="all" range3="all"/> 

         <boundary_condition type="symmetry"/> 

      </boundary_surface> 

      <boundary_surface name="jmin:2"> 

         <region range1="65:-1" range2="min" range3="all"/> 

         <boundary_condition type="solid"/> 

      </boundary_surface> 

      <boundary_surface name="imax"> 

         <region range1="max" range2="all" range3="all"/> 

         <boundary_condition type="symmetry"/> 

      </boundary_surface> 

      <boundary_surface name="jmax:2"> 

         <region range1="65:-1" range2="max" range3="all"/> 

         <boundary_condition type="farfield"/> 

      </boundary_surface> 

   </volume_grid> 

</body> 

<body name="frustrum"> 

   <volume_grid name="B" 
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       style="p3d" filename="Grids/block_2.grd"> 

      <boundary_surface name="jmin"> 

         <region range1="1:17" range2="min" range3="all"/> 

         <boundary_condition type="solid"/> 

         <collar body="cone"/> 

      </boundary_surface> 

      <boundary_surface name="jmin:2"> 

         <region range1="17:-1" range2="min" range3="all"/> 

         <boundary_condition type="solid"/> 

      </boundary_surface> 

</volume_grid> 

<volume_grid name="C" 

       style="p3d" filename="Grids/block_3.grd"> 

<boundary_surface name="jmin"> 

         <region range1="1:25" range2="min" range3="all"/> 

         <boundary_condition type="solid"/> 

      </boundary_surface> 

<boundary_surface name="jmin:2"> 

         <region range1="25:-1" range2="min" range3="all"/> 

         <boundary_condition type="solid"/> 

      </boundary_surface> 

<boundary_surface name="imax"> 

         <region range1="max" range2="all" range3="all"/> 

         <boundary_condition type="symmetry"/> 

      </boundary_surface> 

</volume_grid> 

 </body> 

</body> 

</global> 

 

Figure 8-15  SUGGAR Input File for ARD Example 

Step 3:  Run SUGGAR. 

Action:  At the command line, type: 

    run_suggar_2d 

Result:  SUGGAR generates the domain connectivity information 
with no orphans. As specified in the SUGGAR input file, 
the domain connectivity information is stored in 
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gen_dirt.dci, and the composite grid is stored in 
allgrids.p3dudl as an unformatted, double-precision, 
PLOT3D file. 

Figure 8-16 shows the IBLANK values of the cells in each of the three blocks and the 
full assembly, where the dark blue cells are fringe cells and the cyan cells within the 
back cap are hole cells, which were eliminated by SUGGAR. 

 

 

 

 

 

 

 

 

 

 

Figure 8-16  Iblank Values for ARD Example 

Step 4:  Run FCONVERT (with iaction=10, idim=2, inform=2, ouform=11) 
   to convert the SUGGAR/allgrids.p3dudl file into an FXDR-formatted 
   grid file named dplr.pgrx. (Note that a modification to FCONVERT 
   introduced in Version 4.01.1 is necessary to read this 3D grid with nk=1 
   as a 2D grid in FCONVERT.) 

Step 5:  Prepare the DPLR input file. The DPLR input file specified molecular 
   nitrogen as a perfect gas with M∞ = 2.0, T∞ = 219 K, and a density  
   corresponding to p∞ = 2891 Pa. The maximum CFL number was set to  
   100,000. 

Step 6:  Run DPLR. In this case, DPLR was executed with the command 

 mpirun -np 3 dplr2d < dplr.inp 
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   Over 1000 iterations, the RMS residual dropped 5 orders of magnitude, 
   which was most likely limited by unsteadiness in the large separated  
   region aft of the capsule. 

Step 7:  Run POSTFLOW (with ouform=25, interp=11,    
   ivarp=150,151,154) and merge_dplr, following the procedure  
   outlined in Section 8.6.1. The streamlines and Mach number contours  
   from the overset solution are shown in Figure 8-17. 

 

 

 

 

 

 

 

 

 

 

Figure 8-17  Mach Number Contours and Streamlines for ARD Example 

8.7.6 2D DART Capsule Example 

The Delft Aerospace Re-entry Test (DART) demonstrator was designed as a test-bed 
for re-entry measurements. It is an axisymmetric, spherical blunt-cone/flare 
configuration with an overall length of 1.63 meters, maximum diameter of 2.03 
meters, and nose radius of 0.51 meters. 

Two features set this example apart from the previous one. First, the overset grid is 
comprised of two blocks, with one block hyperbolically extruded from the body itself 
and a second Cartesian background block that extends to the far-field and 
downstream along the wake. Second, the overlap minimization is activated in order to 
improve the fringe locations. 
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Step 1:  Prepare the grid files. The grid was created in Gridgen. The first block 
   was created by hyperbolic extrusion using a near-wall spacing of 32  
   microns, a stretching ratio of 1.2, and 53 steps, with symmetry boundary 
   conditions applied along the x-axis. The second block was created using a 
   uniformly spaced, rectangular grid, which extended from 3.6 meters  
   upstream of the nose to 11 meters downstream of the back of the capsule, 
   and out to a radius of just over 4 meters. 

Step 2:   Prepare the SUGGAR input file. The SUGGAR input file was created 
   using gg2suggar. Only three modifications were needed. A body needed 
   to be created to contain each block, in order that the blocks would cut one 
   another, the symmetry element needed to be activated and the axis set to 
   y, and the minimize_overlap element needed to be activated. The  
   resulting file is shown in Figure 8-18. 

<global> 

<symmetry_plane axis="y"/> 

<cell_centered mark_using_neighbors="y"/> 

<fringe_stencil type="diag+planar_first_offdiag"/> 

<minimize_overlap set_dsf="peg5" 

     rm_fringe_from_donors="yes"/> 

<output> 

   <structured_grid filename="allgrids.p3dudl" style="p3dudl"/> 

   <donor_receptor_file filename="gen_dirt.dci" 

        style="ascii_gen_drt_pairs"/> 

</output> 

<body name="root body"> 

   <body name="capsule"> 

      <volume_grid name="A" 

          style="p3d" filename="Grids/block_1.grd"> 

         <boundary_surface name="jmin"> 

             <region range1="1:25" range2="min" range3="all"/> 

             <boundary_condition type="solid"/> 

         </boundary_surface> 

         <boundary_surface name="imin"> 

            <region range1="min" range2="all" range3="all"/> 

            <boundary_condition type="symmetry"/> 

         </boundary_surface> 

         <boundary_surface name="jmin:2"> 

            <region range1="25:49" range2="min" range3="all"/> 

            <boundary_condition type="solid"/> 
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         </boundary_surface> 

         <boundary_surface name="jmin:3"> 

            <region range1="49:73" range2="min" range3="all"/> 

            <boundary_condition type="solid"/> 

         </boundary_surface> 

         <boundary_surface name="jmin:4"> 

            <region range1="73:-1" range2="min" range3="all"/> 

            <boundary_condition type="solid"/> 

         </boundary_surface> 

         <boundary_surface name="imax"> 

            <region range1="max" range2="all" range3="all"/> 

            <boundary_condition type="symmetry"/> 

         </boundary_surface> 

   </volume_grid> 

</body> 

<body name="background"> 

   <volume_grid name="B" 

       style="p3d" filename="Grids/block_2.grd"> 

      <boundary_surface name="imin"> 

         <region range1="min" range2="all" range3="all"/> 

         <boundary_condition type="farfield"/> 

      </boundary_surface> 

      <boundary_surface name="jmax"> 

         <region range1="all" range2="max" range3="all"/> 

         <boundary_condition type="farfield"/> 

      </boundary_surface> 

      <boundary_surface name="imax"> 

         <region range1="max" range2="all" range3="all"/> 

         <boundary_condition type="farfield"/> 

      </boundary_surface> 

      <boundary_surface name="jmin"> 

         <region range1="all" range2="min" range3="all"/> 

         <boundary_condition type="symmetry"/> 

      </boundary_surface> 

   </volume_grid> 

 </body> 

</body> 

</global> 

 

Figure 8-18  SUGGAR Input File for DART Example 
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Step 3:  Run SUGGAR. 

Action:  At the command line, type: 

    run_suggar_2d 

Result:  SUGGAR generates the domain connectivity information 
with no orphans. As specified in the SUGGAR input file, 
the domain connectivity information is stored in 
gen_dirt.dci, and the composite grid is stored in 
allgrids.p3dudl as an unformatted, double-precision, 
PLOT3D file. 

The resulting composite grid is shown in the left-hand panel of Figure 8-19. A hole 
has been cut in the background (green) block, and the ragged boundaries created by 
the overlap minimization can be seen. The right-hand panel of Figure 8-19 shows the 
cell-centered iblank values for this grid. In this figure, the hole cells are disabled, the 
fringe cells are the darker, blue cells, and the field cells are the yellow cells. It can be 
seen that the minimization has caused the outer boundary fringe cells for the body 
grid to be moved inward toward the body, away from the black circular boundary that 
would otherwise have denoted the outer boundary of that block. 

 

 

Figure 8-19  Overset Grid and Iblank Values for DART Example 
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Step 4:  Run FCONVERT (with iaction=1, idim=2, inform=2, ouform=11) 
   to convert the SUGGAR/allgrids.p3dudl file into an FXDR-formatted 
   grid file named dplr.pgrx suitable for parallel execution on 14  
   processors. (Note that a modification to FCONVERT introduced in  
   Version 4.01.1 is necessary to read this 3D grid with nk=1 as a 2D grid in 
   FCONVERT.) For the decomposition, (ibrk,jbrk) was set to (2,1) 
   for block 1 and (3,4) for block 2. 

Step 5:  Prepare the DPLR input file. As with the ARD capsule example, the  
   DART capsule is simulated using molecular nitrogen as a perfect gas at 
   M∞ = 2.0, T∞ = 219 K, and a density corresponding to p∞ = 2891 Pa. The 
   maximum CFL number was set to 100,000. The boundary condition flag 
   on the overset boundary was set to 901. The overset logic was activated by 
   setting iover=1 and specifying the name of the DCI file as   
   SUGGAR/gen_dirt.dci. 

Step 6:  Run DPLR. In this case, DPLR was executed with the command 

  mpirun -np 14 dplr2d < dplr.inp 

   Over 1000 iterations, the RMS residual dropped just over 6 orders of  
   magnitude. 

Step 7:  Run POSTFLOW (with ouform=25, interp=11, ivarp=154) and  
   merge_dplr, following the procedure outlined for Field Plots in Section 
   8.6. The resulting Mach number contours and shown in Figure 8-20. 
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Figure 8-20  Mach Number Contours for DART Example 

 

8.7.7 3D Capsule Example 

The final example considers the case of a capsule mounted on a sting, as it might be 
for a wind tunnel test. The sting holds the capsule such that the heat shield is tilted 28 
degrees relative to the flow. 

Step 1:  Prepare the grid files. An axisymmetric grid was first built for the  
   capsule, using a connector containing 97 points along the capsule contour, 
   excluding the axis of rotation to avoid any singularities. A domain was 
   hyperbolically extruded using an initial spacing of 32 microns, a growth 
   rate of 1.2, and 64 steps, such that the domain extended more than 16  
   meters from the capsule. That domain was then rotated using 33 points 
   through 180 degrees to create the volume. Overset patches were manually 
   constructed to cover the centerline region at the top and bottom of the  
   capsule. 

A domain was constructed on the sting surface (with 49 points along the sting and 33 
around the half-circumference) that was conformal to the outer boundary created by 
the capsule grid at one end and that protruded into the capsule at the other end. A 
volume grid for the sting was then created by normal extrusion in Gridgen, using a 
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near-wall spacing of 30 microns and a stretching ratio of 1.23, while constraining the 
outer boundary to remain projected to the far-field boundary from the capsule body 
grid. This volume grid extended more than 8 meters from the sting surface, which 
was helpful in covering the hole that the sting cut into the relatively coarse far-field 
region of the capsule body grid. A collar grid was added to cover the region where the 
sting and capsule meet. 

Step 2:  Prepare the SUGGAR input file. For the grid cutting to occur, the capsule 
   body grids and the sting grid were divided into two separate bodies in the 
   SUGGAR input file, which is shown in Figure 8-21. In addition, cutting 
   surfaces (structured_cutting_surface elements at the end of  
   Figure 8-21) were provided to SUGGAR to close both ends of the sting in 
   order to create a closed cutting surface. Initial runs with SUGGAR  
   subsequently revealed the need for two interface grids to increase the  
   amount of overlap in this region, probably due to the difficulty of growing 
   a large collar grid on the concave side of the sting/capsule intersection. 

 

 

<global> 

<donor_quality value="0.8"/> 

<symmetry_plane axis="z"/> 

<cell_centered mark_using_neighbors="n"/> 

<minimize_overlap set_dsf="peg5"  rm_fringe_from_donors="yes" /> 

<output> 

   <structured_grid filename="allgrids.p3dudl" style="p3dudl"/> 

   <donor_receptor_file filename="gen_dirt.dci" 

         style="ascii_gen_drt_pairs"/> 

</output> 

<body name="root body"> 

   <body name="capsule"> 

      <volume_grid name="capsule" 

          style="p3d" filename="Grids/block_1.grd"> 

         <boundary_surface name="kmin" const_coord="z=0"> 

            <region range1="1:-1" range2="1:-1" range3="1:1"/> 

            <boundary_condition type="symmetry"/> 

         </boundary_surface> 

         <boundary_surface name="kmax" const_coord="z=0"> 

            <region range1="1:-1" range2="1:-1" range3="-1:-1"/> 

            <boundary_condition type="symmetry"/> 

         </boundary_surface> 
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         <boundary_surface name="jmin"> 

            <region range1="1:-1" range2="1:1" range3="1:-1"/> 

            <boundary_condition type="solid"/> 

         </boundary_surface> 

         <boundary_surface name="jmax"> 

            <region range1="1:-1" range2="-1:-1" range3="1:-1"/> 

            <boundary_condition type="farfield"/> 

         </boundary_surface> 

      </volume_grid> 

      <volume_grid name="bottom" 

          style="p3d" filename="Grids/block_2.grd" never_cut="yes"> 

         <boundary_surface name="imin" const_coord="z=0"> 

            <region range1="1:1" range2="1:-1" range3="1:-1"/> 

            <boundary_condition type="symmetry"/> 

         </boundary_surface> 

         <boundary_surface name="jmin"> 

            <region range1="1:-1" range2="1:1" range3="1:-1"/> 

            <boundary_condition type="solid"/> 

         </boundary_surface> 

         <boundary_surface name="jmax"> 

            <region range1="1:-1" range2="-1:-1" range3="1:-1"/> 

            <boundary_condition type="farfield"/> 

         </boundary_surface> 

      </volume_grid> 

      <volume_grid name="top" 

          style="p3d" filename="Grids/block_3.grd" never_cut="yes"> 

         <boundary_surface name="imin" const_coord="z=0"> 

            <region range1="1:1" range2="1:-1" range3="1:-1"/> 

            <boundary_condition type="symmetry"/> 

         </boundary_surface> 

         <boundary_surface name="jmin"> 

            <region range1="1:-1" range2="1:1" range3="1:-1"/> 

            <boundary_condition type="solid"/> 

         </boundary_surface> 

         <boundary_surface name="jmax"> 

            <region range1="1:-1" range2="-1:-1" range3="1:-1"/> 

            <boundary_condition type="farfield"/> 

         </boundary_surface> 

      </volume_grid> 

      <volume_grid name="collar-interface" 

          style="p3d" filename="Grids/collar-interface2.p3du"> 

         <boundary_surface name="imin" const_coord="z=0"> 

            <region range1="1:1" range2="1:-1" range3="1:-1"/> 
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            <boundary_condition type="symmetry"/> 

         </boundary_surface> 

         <boundary_surface name="imax" const_coord="z=0"> 

            <region range1="-1:-1" range2="1:-1" range3="1:-1"/> 

            <boundary_condition type="symmetry"/> 

         </boundary_surface> 

      </volume_grid> 

</body> 

<body name="sting"> 

    <!--add dynamic so that the capsule and sting  

        are in different dynamic groups and hence separate 

        cutter surfaces will be output--> 

   <dynamic/> 

   <volume_grid name="sting" 

           style="p3d" filename="Grids/sting-block-5.grd"> 

      <boundary_surface name="kmin" const_coord="z=0"> 

         <region range1="1:-1" range2="1:-1" range3="1:1"/> 

         <boundary_condition type="symmetry"/> 

      </boundary_surface> 

      <boundary_surface name="kmax" const_coord="z=0"> 

         <region range1="1:-1" range2="1:-1" range3="-1:-1"/> 

         <boundary_condition type="symmetry"/> 

      </boundary_surface> 

      <boundary_surface name="jmin"> 

         <region range1="1:-1" range2="1:1" range3="1:-1"/> 

         <boundary_condition type="solid"/> 

      </boundary_surface> 

      <boundary_surface name="imax"> 

         <region range1="-1:-1" range2="1:-1" range3="1:-1"/> 

         <boundary_condition type="farfield"/> 

      </boundary_surface> 

   </volume_grid> 

   <volume_grid name="collar" 

       style="p3d" filename="Grids/collar.p3du" never_cut="yes"> 

      <boundary_surface name="kmin-collar-sting"> 

         <region range1="1:-1" range2="1:33" range3="1:1"/> 

         <boundary_condition type="solid"/> 

      </boundary_surface> 

      <boundary_surface name="kmin-collar-capsule"> 

         <region range1="1:-1" range2="33:-1" range3="1:1"/> 

         <boundary_condition type="solid"/> 

         <collar body="capsule"/> 

      </boundary_surface> 



Using Overset Grids 
 

DPLR Code Version 4.01.1 User Manual 8-50           10/27/09  

 

      <boundary_surface name="imin" const_coord="z=0"> 

         <region range1="1:1" range2="1:-1" range3="1:-1"/> 

         <boundary_condition type="symmetry"/> 

      </boundary_surface> 

      <boundary_surface name="imax" const_coord="z=0"> 

         <region range1="-1:-1" range2="1:-1" range3="1:-1"/> 

         <boundary_condition type="symmetry"/> 

      </boundary_surface> 

   </volume_grid> 

   <volume_grid name="sting-interface" 

       style="p3d" filename="Grids/sting_cyl-interface2.p3du"> 

      <boundary_surface name="jmin" const_coord="z=0"> 

         <region range1="1:-1" range2="1:1" range3="1:-1"/> 

         <boundary_condition type="symmetry"/> 

      </boundary_surface> 

   </volume_grid> 

   <structured_cutter_surfaces filename="Grids/cap.mbxyz"/> 

   <structured_cutter_surfaces filename="Grids/root.mbxyz"/> 

  </body> 

</body> 

</global> 

 

Figure 8-21  SUGGAR Input File for Capsule Example 

 

Step 3:  Run SUGGAR. 

Action:  At the command line, type: 

 surfasm -allow_dynamic_surface_overlap Input/Input.xml 

 suggar_3d_opt.linux -allow_dynamic_surface_overlap -
surface_assem donors.xml Input/Input.xml 

Result:  After these steps, there remained only one orphan, which 
was the result of a poor quality donor (i.e. one of the donor 
cells was itself a fringe cell). To resolve this, the donor 
quality tolerance was lowered to 0.8 (at the top of the 
SUGGAR input file provided in Figure 8-21), resulting in 
an assembly with no orphans. Once this was accomplished, 
the overlap minimization was enabled (using the 
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minimize_overlap element near the top of the input file 
provided in Figure 8-21), and SUGGAR was run one last 
time, still resulting in an assembly with no orphans. A slice 
along the symmetry plane of the final grid assembly is 
shown in Figure 8-22. 

 

 

 

 

 

 

 

 

 

 

Figure 8-22  Slice Along Symmetry Plane of Overset Grid System  

Step 4:  Run FCONVERT (with iaction=1, idim=3, inform=2, ouform=11) 
   to convert SUGGAR/allgrids.p3dudl to an FXDR-formatted grid file 
   named dplr.pgrx suitable for parallel execution on 24 processors. For 
   the decomposition, kbrk was 8, 2, and 3 in blocks 1, 4, and 5,   
   respectively, and ibrk was 8 for block 6. 

Step 5:  Prepare the DPLR input file. The same operating conditions are used as 
   in the previous two examples, i.e. molecular nitrogen as a perfect gas at 
   M∞= 2.0, T∞ = 219 K, and a density corresponding to p∞ = 2891 Pa. The 
   maximum CFL number was set to 1000. The boundary condition flag on 
   the overset boundaries was set to 901. The overset logic was activated by 
   setting iover=1 and specifying the name of the DCI file as   
   SUGGAR/gen_dirt.dci. 

Step 6:  Run DPLR. In this case, DPLR was executed with the command 
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  mpirun -np 24 dplr3d < dplr.inp 

   Over 2000 iterations, the RMS residual dropped about 5 orders of  
   magnitude. 

Step 7:  Run POSTFLOW (with ouform=25, interp=11, ivarp=110,154) 
   and merge_dplr, following the procedure outlined in Section 8.6.1. A 
   slice along the symmetry plane of the resulting Mach number contours is 
   shown in the left and center panels of Figure 8-23, and pressure contours 
   on the heat shield are shown in right-most panel. 

 

 

Figure 8-23  Flow Solution for Sting-Mounted Capsule Example 
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9.0 Introduction 

This section of the User Manual contains some reference material and more detailed 
discussions of content found in previous sections of the publication. As the DPLR 
Code Package is updated, additional features and reference information will be added 
to this section. 

9.1 DPLR Code Version 4.01.1 Utilities 

The following codes or scripts are provided with the DPLR package in the “utilities” 
directory: 

• zbconvert 
• dpconvert 
• seqinput 
• Moment 
• Template 

This section describes the functions and uses of each of these software tools.  

9.1.1 zbconvert 
zbconvert is a Perl script that can be used to convert zonal interface files to formats 
that are readable by: 

• GASP® Version 3.0 (a commercially available CFD code) 

•  SAGe (Self-Adaptive Gride codE – a NASA stand-alone grid-adaption 
application that pre-dates grid-adaption capabilities in DPLR) 

• DPLR 

The script is run from the command line: 

zbconvert –i old.inter –o new.inter [-sage –dplr –gasp] 
(-g grid.g) 

where:   old.inter = infile = the interface file you are converting 
   new.inter = outfile = the output file for the process 

The script automatically detects the format of the input interface file and converts it to 
one of the supported formats specified by the –sage, –dplr, or –gasp flags.  
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Tech Tip: If the output format is –sage ( SAGe), you must also specify the associated ASCII 
plot3d grid file using the –g flag as shown above. This is because SAGe requires knowledge 
of the grid size in the input deck, and this information is not available in the interface files for 
either DPLR or GASP. 

9.1.2 dpconvert 

dpconvert is a Perl script that can be used to change the format of DPLR input decks 
for use with different release versions of the software.  

Although it is used primarily to enable rapid conversion of older DPLR input decks to 
a format that is compatible with the current release, it can also be used to convert a 
newer deck to a format that works with older versions of DPLR.  

The script is run from the command line: 

dpconvert –i old.inp –o new.inp (-V) 

where:  old.inp = infile = the original file you are converting 
   new.inp = outfile = the modified file 
   -V = DPLR Release Version for which file is being modified  

At runtime, the script will automatically determine the version of the provided DPLR 
input deck ‘old.inp’ and convert it to the current version. However, you can also 
specify a desired output version number (other than the current version), using the –V 
option. 

9.1.3 seqinput 

seqinput is a Perl script that can be used to easily sequence (coarsen) a DPLR input 
deck. It works by dividing the grid sizes of each block in the input deck by a specified 
sequencing factor. 

The script is run from the command line: 

seqinter –i old.inp –o new.inp –s I:J:K 

where:  old.inp = infile = the original file you are converting 
   new.inp = outfile = the sequenced file 
   -s = slist =  a colon-separated list of sequencing factors in the i-, j-, 
     and k- directions (it is assumed that all blocks are  
     sequenced by the same factors).  
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At runtime, the script will generate a new DPLR input deck, and rename the input 
grid and restart files with the suffix “-sIJK” – a designation you can change to 
whatever naming convention your are using. 

9.1.4 Moment 

Moment is a Fortran code that generates integrated force and moment data from an 
input set of pointwise surface forces.  

When POSTFLOW is run using ouform=11, POSTFLOW will automatically 
generate a plot3d grid file, a cfd function file, and a Moment.inp file which is 
the input deck for the Moment utility. Once these files have been generated, Moment 
is run from the command line by typing: 

Moment < Moment.inp 

A sample of the output from the Moment script is presented below: 
 
running Moment version 3.05.0 
 ----------------------------------------- 
  
 Moment Center:  
   Xm =  0.000000E+00 (m)      
   Ym =  0.000000E+00 (m)      
   Zm =  0.000000E+00 (m)      
  
 Reference Values:  
   lref =  3.650000E+00 (m)      
   aref =  4.500000E+00 (m^2)    
   qdyn =  2.784862E+03 (Pa)     
  
 Vehicle Symmetries:  
   xy-plane 
  
 Wetted Area:  
   Area =  0.000000E+00 (m^2)    
  
 Force components:  
   Fx  =  1.777037E+07 (N)     ;     Cx  =  1.418013E+03 
   Fy  = -1.165808E+04 (N)     ;     Cy  = -9.302740E-01 
   Fz  =  0.000000E+00 (N)     ;     Cz  =  0.000000E+00 
  
 Moment components:  
   Mx  =  0.000000E+00 (N*m)   ;     Cmx =  0.000000E+00 
   My  =  0.000000E+00 (N*m)   ;     Cmy =  0.000000E+00 
   Mz  = -6.500303E+04 (N*m)   ;     Cmz = -1.421099E+00 
 
 

At this time, there is no error checking in place to ensure that this output format is 
used correctly. So although it is not an ‘error’ to select other variables as output, the 
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results generated by the Moment utility will be incorrect unless forces per unit area 
are selected.  
At the current time, Moment is only needed for the extraction of hinge moments 
because all other features of the utility are built directly into POSTFLOW. 

Tech Tips:  
1). You will need to compile Moment as the installation script that comes with the DPLR 
Code Package will not automatically install the program on your system.  Ask your System 
Administrator for information on how to compile and install this tool in your utilities 
directory. 
 
2). Because Moment was originally written as a stand-alone tool, it has functionality that is 
not being used in this mode.  

9.1.5 Template 

Template is a Fortran utility that can be used to automatically generate: 

• zonal interface files from PLOT3D grid files 

• block-specific portions of the DPLR input deck containing boundary 
condition information 

Manually creating DPLR input and zonal interface files can be a time-consuming 
task. However, the Template utility, created by Scott Thomas and David Saunders 
and distributed with the DPLR Code Version 4.01.0 Package, can automate some or 
all of these two tasks depending on the grid complexity. ( Note that FCONVERT can 
also generate the interface file (see ‘inint’) but not the boundary condition portion of 
the input deck.) 

Overview 

The name Template derives from its original intent, namely generation of most of the 
connectivity file for the multiblock flow solver FLO107MB.  Block faces not 
adjacent to other block faces were left for their boundary conditions (e.g., subsonic 
outflow) to be edited into the one-line-per-block template manually. 

The grid blocks were (and still are) expected to be point-to-point matched. Grids with 
subfacing can still be processed, but some of the interfaces will not be identified.  
[See use of FCONVERT for subface cases.] 

The grid may contain more than one layer of blocks, but following adaptation for 
DPLR users, Template outputs are most complete for the common case of a single 
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layer of blocks.  For Shuttle Orbiter applications, including local grids around damage 
and repair, the process has been fully automated with the help of ancillary input files. 

Using Template 

To generate all or most of the two DPLR control files using Template, perform the 
following steps in the working directory containing your grid in PLOT3D multiblock 
form (formatted or unformatted).  (Caution: Existing dplr.inputs, 
dplr.inputs.2, or dplr.interfaces file will be overwritten.) 

Step 1:  (Optional)  Copy the ‘generic.inp’ file in the cfdinput directory as 
‘sample.inputs’.  (See below for ancillary input file details.) 

Step 2:  (Optional)  Copy the ‘template.inp.2’ file from the utilities 
directory.  (See details below.) 

Step 3:  Run TEMPLATE. (You will be prompted for the name of the PLOT3D grid 
file and a tolerance to use in its detection of matching faces.) 

Step 4:  Check the outputs, listed below.  (Note that some boundary conditions may 
need changing, while the free-stream flow conditions, CFL schedule, and flow 
solver iteration limit typically need editing.) 

Your working directory now contains five new files: 

• dplr.inputs – file containing the block-specific mid-section of your DPLR 
input deck (boundary conditions, etc.) or possibly all of the input deck, 
depending on Step 1 above 

• dplr.inputs.2 – variant of dplr.inputs intended for possible grid 
sequencing 

• dplr.interfaces – zonal interface file for the full-face interfaces of the 
computational grid 

• gasp.inputs – control file in GASP flow solver format 

• template.con – connectivity file containing (most of) the interface and BC 
information for the FLO107MB flow solver. Scanning this can help spot 
possible problems caused by block faces that don’t meet the matching 
tolerance, i.e., look for too many integer 0s in the one-line-per-block output 

Ancillary Input Files 

Template looks for two control files, both of which are optional.  If either is present 
in the working directory, it will be invoked, so beware of unintended usage. 
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If ‘sample.inputs’ is present, the header and trailing portions of the sample input 
deck are transcribed to dplr.inputs and dplr.inputs.2. Otherwise, only the 
middle sections of those input decks will be produced. 

If ‘template.inp.2’ is present, it can serve either of two purposes, or both.  
Initially implemented to control the contents of dplr.inputs.2, it can also be used 
to make the automation of boundary conditions complete for specialized grids of the 
type developed for rapid analysis of Shuttle Orbiter damage and repair configurations.  
(The latter use of template.inp.2 is typically confined to workgroups within NASA.) 

A sample template.inp.2 file to be used with a wing leading edge plug (or tile 
gap-filler) grid is shown below: 

Sequencing controls 
4 4 2 
Plug blocks ! BC 2 at jmin will be changed to BC 26 (wall) 
10:13 

These controls are entered as line pairs (a text line followed by an integer list).  Each 
line pair is optional, case-insensitive, and the order does not matter, meaning either of 
the pairs may be entered first or omitted. 

The default grid sequencing is 2 2 1, meaning the grid block cell counts in output 
file dplr.inputs.2 are halved in the i and j directions (only), whereas the 4 4 2 
shown would enable solution with the grid coarsened twice as much. 

Keywords implemented for the second type of input are Cavity and Plug, with 
Plug also being appropriate for protruding tile gap filler cases. These controls allow 
the appropriate faces of the indicated blocks to be marked as walls (specifically, BC 
26, meaning catalytic radiative equilibrium). Any reasonable format for the list of 
block numbers is acceptable as long as they are all on one line. 

Tech Tips:  
1). You will need to compile Template manually as the installation script will not 
automatically install it on your system. Check with your System Administrator for the system-
specific steps needed to compile and install this tool into your utilities directory. 
 
2). Template detects matching faces by comparing the maxima and minima in x, y, and z.  If 
two faces are found to satisfy the six possible comparisons to within the tolerance provided at 
run time (default epsilon = 0.0001 distance units), and the face dimensions match, then a 
match at all points of the face pair is likely, but the fraction of face cells for which this is true 
is also calculated and printed in the last column of template.con. Values less than 1.0 in that 
last column are a likely sign of gaps or overlaps in the grid.  
 
3). Symmetry boundary conditions are considered only after matching block faces are 
checked for first.  A somewhat looser tolerance is employed, namely min (10 x epsilon, 
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0.001), for measuring the distance of the three pairs of coordinate maxima/minima from zero.  
These tests can still be fooled by (say) a flat plate in the z = 0 plane, or an almost-flat surface 
at x = 0.  False BC entries of 17, 18, or 19 (meaning symmetry plane in x, y, or z, 
respectively) should be checked for under such circumstances. 
 
4). Template errs in favor of Shuttle Orbiter grids for remaining unassigned block faces.  
These grids are known to contain a single layer of blocks with index k in the radial direction.  
A face not already assigned a flow-through BC (20) or symmetry BC (17-19) is marked as BC 
26 if it is face 5 (k = 1, catalytic radiative equilibrium wall), else it is marked as BC 1 if it is 
face 6 (k = nk, free stream).  For non-Shuttle applications, different wall BCs may need to be 
entered in place of BC 26. 
 
Any remaining unassigned face is marked as BC 2 (specified inflow or supersonic outflow).  
This choice is appropriate for local damage/repair grids that are outside any sonic bubble.  
BC 2 should also be adequate for the supersonic outflow faces of ordinary grids, although 
occasional anomalies have been observed in baseline Shuttle solutions, so substituting BC 3 
for BC 2 is recommended for such known outflow faces. 
 

9.2 Supported Input / Output File Formats 

The DPLR Code Package Version 4.01.1 reads and/or creates the following six file 
types: 

• Grid files, defining the discretized computational geometry of the problem. 
• Zonal Interface files, describing how the blocks in multi-block grids abut each 

other in computational space. 
• Restart (or cfd function) files, saved periodically by the CFD code to be used 

to restart a problem and/or post-process the solution. 
• Radiation files, enabling loose coupling between DPLR and flowfield 

radiation analysis tools such as RADEQUIL, NEQAIR, and HARA. 
• Boundary Condition files, specifying various types of pointwise boundary 

conditions and/or TPS material maps. 
• Data files, generated by POSTFLOW for use in post-processing and data 

analysis of the solution. 

For a more detailed discussion of each of the file types, see Chapter 6 in this User 
Manual. 

The above-listed file types can exist in different formats. File formats supported by 
the DPLR Code Package are listed in the table below. Note that each supported 
format is assigned a unique number and a suffix which is common across the entire 
code package. 
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Table 9.1  File Formats Supported in the DPLR Code Package 

 
Format Description File Type Suffix 

    
1 Unformatted Parallel grid pgrd 
  restart psln 
  BC pbcf 
  radiation prdf 
    

11 XDR Parallel grid pgrx 
  restart pslx 
  BC pbcx 
  radiation prdx 
    

21 ASCII Parallel grid pgra 
  restart psla 
  BC pbca 
  radiation prda 
    

2 Unformatted Plot3D grid gu 
  flow qu 
    

12 XDR Plot3D grid gx 
  flow qx 
    

22 ASCII Plot3D grid g 
  flow q 
    

32 Gzipped ASCII Plot3D grid gz 
  flow qz 
    

3 Unformatted Plot3D grid gu 
  flow fu 
    

13 XDR Plot3D grid gx 
  flow fx 
    

23 ASCII Plot3D grid g 
  flow f 
    

33 Gzipped ASCII Plot3D grid gz 
  flow fz 
    

5 Binary Tecplot Block  plt 
    

25 ASCII Tecplot Block  dat 
    

6 Binary Tecplot Point  plt 
    

26 ASCII Tecplot Point  dat 
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9.2.1 Format Numbers 

The first digit, if any, of the file format number specifies the data-storage type as 
follows: 

0   Written as machine-specific unformatted files. This type of  file should 
be avoided if portability is desired, because an unformatted file created 
by one machine type usually cannot be read by another.  

1 Written in XDR format. XDR files are binary, written to be read on 
any machine, and the recommended storage type for large files, 
including grid and restart files. (See Tech Tip #1.)  

2 Written as an ASCII file. ASCII files are much larger than binary files, 
and should be avoided when possible. However, ASCII plot3d files are 
frequently used for grid input because they are portable and can be 
written by most commercial grid generation packages. 

3 Written as a gzipped ASCII file. This format is currently used only for 
output of plot3d data from POSTFLOW.  

The second digit, if any, of the file format number indicates the type of file as 
follows: 

1 Parallel archival I/O file for use with DPLR. This is the preferred file 
type for grid, restart, radiation, and boundary condition files that are to 
be read by DPLR. 

2 Plot3d grid or q-file.  

3 Plot3d grid or function file. (See Tech Tip #2) 

4 Parallel multi-file grid or restart file. (Note: This file type is no longer 
supported by DPLR.) 

5 TECPLOT block file. 

6 TECPLOT point file.  (See Tech Tip #3) 

Tech Tips:  
1).  To read or write XDR files, the fxdr libraries must be installed on your computer and 
 linked to DPLR during compilation. See Section 2.2 for more information. 
2).  Plot3d files cannot be read or written by DPLR2D or DPLR3D, but are frequently used 
 to import data from or export data to other programs 
3).  TECPLOT data files are output by POSTFLOW for post-processing purposes, but cannot 
 be read as input by any of the codes in this package. In order to create binary TECPLOT 
 files, the TECPLOT I/O library must be properly installed and linked to DPLR. See 
 Section 2.2 for more information. 
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It is important to understand that DPLR2D and DPLR3D are separate codes, and even 
though many common subroutines are shared, each code requires properly 
dimensioned input. A common misconception is that DPLR2D reads a three-
dimensional grid file, with the third dimension set to 1 and all z-coordinates set to 
zero. This is not the case. When you prepare a plot3d grid for solution by DPLR2D, 
your grid must be in 2D format. If a three-dimensional grid is read as input to 
FCONVERT with idim=2, the results will be unpredictable and probably not what 
you intended. 

9.3 Parallel Decomposition 

This Appendix offers a detailed discussion, with several examples, of the parallel 
decomposition process performed by FCONVERT on computational grids submitted 
to the DPLR Code Package for processing. 

DPLR is a distributed-memory parallel code, so all blocks in a computational grid are 
computed simultaneously rather than sequentially.  Multi-block information transfer 
is handled through MPI data constructs, so simulations must be run on at least as 
many processors as there are master blocks in the original computational grid.  

Because running on more processors than master grid blocks is often advantageous in 
terms of solution speed, large blocks can be split (decomposed) into smaller pieces to 
increase computational efficiency and decrease turnaround time. This decomposition, 
if required, is performed using FCONVERT.  

Although the “ideal” number of processors to use for a given job is sometimes a 
matter of personal preference, it is often a function of the total number of processors 
that are available and the number that are necessary to achieve a reasonable load 
balance. Once the desired number of processors to use during the run has been 
selected, the input grid file must be decomposed into one block per processor. This is 
accomplished by setting iaction=1 or 2 in the FCONVERT input deck. 

9.3.1 Load Imbalance 

One of the primary metrics by which the quality of a parallel decomposition is judged 
is the amount of load imbalance that results. In FCONVERT, this load imbalance is 
computed as a measure of the average amount of wasted CPU time, assuming that the 
total CPU time is directly proportional to the number of grid points on a given 
processor. The total load imbalance (Itot) is then given by: 

€ 

Itot = Nmax − Nn( )
n=1

nb

∑ / Nmax ⋅ nb( )  
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where nb is the total number of parallel blocks, Nn is the size of block n, and Nmax is 
the size of the largest block. In practice, things are more complex than this. The type 
of boundary condition on each face, the number of zonal interfaces, and the relative 
speed of each processor all contribute to the amount of time spent on a given 
decomposed block in DPLR. However, the load imbalance metric is sufficient to 
provide a first-order estimate. The estimated total load imbalance is always reported 
by FCONVERT whenever a grid file is processed. 

9.3.2 Decomposition Strategies 

When iaction=1, you manually specify how each block in the input file is to be 
decomposed using the ibrk, jbrk, and kbrk decomposition factors. One set of 
decomposition factors is required for each master block in the input file. A 
decomposition factor of n implies that the block should be broken n times in that 
direction. For example, a decomposition record of: 

Decomposition information for each master block 

ibrk    jbrk    kbrk 

2       3       1 

indicates that the original block should be split into six by breaking it into two equal 
pieces in the i-direction and into three equal pieces in the j-direction. If the number of 
computational cells in a given direction is not evenly divisible by the selected 
decomposition factor, the remainder will be evenly distributed among the blocks.  

Setting iaction=1 allows you to control the way that the problem is decomposed 
for parallel execution, which can have significant advantages.  

When iaction=2, you simply specifies the desired number of output blocks using 
the nbreak flag and allow FCONVERT to determine a parallel decomposition 
strategy that divides the original file into nbreak output blocks. The blocks will be 
broken such that load balance is maximized. This means that FCONVERT will 
attempt to make all blocks as close as possible to the same size. In addition, 
FCONVERT will attempt to make the blocks as close to cubes as possible by 
breaking first in the direction(s) with the most points. To do this, however, 
FCONVERT requires a valid DPLR input deck to exist- one that can be used to 
determine the locations of body surfaces in the grid file. It is a runtime error to set 
iaction=2 unless a valid DPLR input deck has been specified as input. 

For all decomposition strategies, it is important to minimize, and preferably eliminate, 
breaking the grid in the body-normal direction because DPLR is, by default, a line 
relaxation code that solves the Navier-Stokes equations through a series of block-
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tridiagonal matrix factorizations. This method converges most rapidly when the 
problem has not been decomposed in the body-normal direction.  

Example #1. Consider an input grid file that consists of two blocks. The plot3d header 
record for this case is: 
 
2 

17  33  129 

65  65  129 

 
Block #1 consists of 65,536 grid cells (16 × 32 × 128), while block #2 consists of 
524,288 cells (64 × 64 × 128). Assuming that iaction=2 and nbreak=7 and there 
are no solid walls specified in the DPLR input deck, a portion of the descriptive 
output for this run will be: 
 
Input Block 1 size: il = 16; jl =  32; kl = 128 ( 65536 cells) 

Input Block 2 size: il = 64; jl =  64; kl = 128 (524288 cells) 

 

Largest block is: 

      nb =   2; original block =   2 

      il =  64; jl =  64; kl =  128 

 

Read input interface file neptune.inter 

Found   3 valid zonal interface blocks in   2 block grid file 

 

Decomposing block 1 into   1:   ibrk=  1 jbrk=  1 kbrk=  1 

Decomposing block 2 into   6:   ibrk=  2 jbrk=  1 kbrk=  3 

 ----------------------------------------- 

                   creating   7 total blocks 

 

   7 Blocks;  Total load imbalance =  4.32% 

 

Output Block1 size: il = 16; jl = 32; kl = 128  ( 65536 cells) 

Output Block 2 size: il = 32; jl = 64; kl =  43 ( 88064 cells) 

Output Block 3 size: il = 32; jl = 64; kl =  43 ( 88064 cells) 

Output Block 4 size: il = 32; jl = 64; kl =  43 ( 88064 cells) 
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Output Block 5 size: il = 32; jl = 64; kl =  43 ( 88064 cells) 

Output Block 6 size: il = 32; jl = 64; kl =  42 ( 86016 cells) 

Output Block 7 size: il = 32; jl = 64; kl =  42 ( 86016 cells) 

 

 

In this example, FCONVERT decomposed master block #2 into six nearly equal 
pieces while leaving block #1 unaltered. The resulting load imbalance was 4.32%. 
 
This is the most load-balanced solution for nbreak=7, but it may not be the most 
desirable way to split the problem. For example, if the k-direction is body-normal for 
this problem, it would be preferable to select a decomposition that does not break the 
problem in the k-direction. This can be accomplished by setting iaction=2 and 
specifying the correct boundary conditions in the DPLR input deck. 
 
A portion of the FCONVERT output for this run will be: 
 
Input Block 1 size: il = 16; jl =  32; kl = 128 ( 65536 cells) 

Input Block 2 size: il = 64; jl =  64; kl = 128 (524288 cells) 

 

Largest block is: 

      nb = 2; original block = 2 

      il =  64; jl =  64; kl =  128 

  

 Read input interface file neptune.inter 

 Found 3 valid zonal interface blocks in 2 block grid file 

 

 Decomposing block 1 into 1:   ibrk=  1 jbrk=  1 kbrk=  1 

 Decomposing block 2 into 6:   ibrk=  3 jbrk=  2 kbrk=  1 

 ----------------------------------------- 

                   creating   7 total blocks 

 

   7 Blocks;  Total load imbalance =  6.49% 

 

Output Block 1 size: il = 16; jl = 32; kl = 128 ( 65536 cells) 

Output Block 2 size: il = 22; jl = 32; kl = 128 ( 90112 cells) 
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Output Block 3 size: il = 21; jl = 32; kl = 128 ( 86016 cells) 

Output Block 4 size: il = 21; jl = 32; kl = 128 ( 86016 cells) 

Output Block 5 size: il = 22; jl = 32; kl = 128 ( 90112 cells) 

Output Block 6 size: il = 21; jl = 32; kl = 128 ( 86016 cells) 

Output Block 7 size: il = 21; jl = 32; kl = 128 ( 86016 cells) 

 

The load imbalance for this case is slightly larger (6.49% vs. 4.32%), but the 
increased performance of the implicit algorithm would far outweigh the increase in 
load imbalance. Alternatively, this outcome can be accomplished by setting 
iaction=1 and using the block decomposition flags to specify the desired 
decomposition. For this example, the following decomposition would give output 
identical to that obtained by using iaction=2: 

Decomposition information for each master block 

ibrk    jbrk    kbrk 

  1       1       1 

  3       2       1 

Note that this solution is not unique; there are several other possible decompositions 
that would achieve the same result. The sample output for this case would be identical 
to that shown in the previous example. 

The choice of using iaction=1 or 2 is really dependent on the situation. For 
example, iaction=1 can be used prior to generation of the DPLR input deck. In 
addition, iaction=1 gives you more direct control over the decomposition 
performed. Because it is preferable, for the sake of efficiency, to decompose the grid 
so that the generation of additional zonal interfaces is minimized, using iaction=1 
and manually specifying the decomposition strategy can help you meet this condition.  

For example, in the previous test problem, a decomposition strategy of: 
 

Decomposition information for each master block 

ibrk    jbrk    kbrk 

  1       1       1 

  6       1       1 

 
would result in the following output: 
 
Decomposing block   1 into  1:   ibrk=  1 jbrk=  1 kbrk=  1 
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Decomposing block   2 into  6:   ibrk=  6 jbrk=  1 kbrk=  1 

 ----------------------------------------- 

                   creating   7 total blocks 

 

   7 Blocks;  Total load imbalance =  6.49% 

 

Output Block 1 size: il = 16; jl = 32; kl = 128 ( 65536 cells) 

Output Block 2 size: il = 11; jl = 64; kl = 128 ( 90112 cells) 

Output Block 3 size: il = 11; jl = 64; kl = 128 ( 90112 cells) 

Output Block 4 size: il = 11; jl = 64; kl = 128 ( 90112 cells) 

Output Block 5 size: il = 11; jl = 64; kl = 128 ( 90112 cells) 

Output Block 6 size: il = 10; jl = 64; kl = 128 ( 81920 cells) 

Output Block 7 size: il = 10; jl = 64; kl = 128 ( 81920 cells) 

 

As you can see, this decomposition strategy results in the same load imbalance, but 
offers potentially improved performance because fewer additional zonal boundaries 
are created. 

Finally, when iaction = 10, FCONVERT will generate an output file with the 
same number of blocks as the input file; i.e. no further decomposition will be 
performed. The same result could be achieved either by: 
 
1) setting iaction=1 and all ibrk, jbrk, kbrk flags =1 
  or 
2) setting iaction=2 and nbreak equal to nborig 
 
FCONVERT will automatically compute all additional face, edge, and corner zonal 
interfaces created by the specified parallel decomposition. In addition, if the input 
grid contains one or more zonal interfaces, these will be automatically decomposed 
along with the grid file. This information will be written to the output grid file header 
if one of the parallel formats is requested. You can request that the resulting zonal 
interface file be output for informational purposes by setting ouint= 1, 11, or 12.  

Decomposing a file in multiple directions can create a large number of output zonal 
interfaces, particularly when edge and corner interfaces are considered. Because each 
zonal interface represents a message that must be constructed and sent via MPI send 
and receive calls each iteration during the CFD solution, it is generally a good idea to 
keep decompositions as simple as possible.  
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For example, if you want to run a single block 3D problem on eight processors, the 
simplest decomposition would be to break the problem into eight blocks in a single 
coordinate direction, which would generate 7 face interfaces and zero edge or corner 
interfaces. An alternate strategy would be to break into 4 × 2 × 1 blocks, which would 
generate 10 face interfaces and 6 edge interfaces, for a total of 16. The most complex 
decomposition would be 2 × 2 × 2 blocks. This strategy would generate 12 face 
interfaces, 12 edge interfaces, and 4 corner interfaces, for a total of 28. Although each 
of these strategies are allowed, the first would generate the least message-passing 
traffic during run-time, and would likely result in the most time-efficient solution. 

9.3.3 Physical (Master) Blocks vs Virtual (Parllel) Blocks 

The action taken by FCONVERT during a grid file decomposition depends on the 
output file format you specify.  

If you select a plot3d output format, the input file will be physically split into multiple 
blocks and written as a multi-block file. If you select a parallel output file format, the 
input file will be “virtually split” into a number of blocks for parallel processing, but 
resultant file will retain information about the original physical block structure.  

FCONVERT distinguishes between “virtual” blocks, which are generated purely to 
facilitate parallel execution, and “physical” or “master” blocks, which are a 
fundamental property of the input grid. Keep in mind, however, that the user 
interfaces to DPLR2D, DPLR3D, and POSTFLOW deal only with master blocks, and 
that “virtual” blocks are automatically converted to and from physical blocks as 
required during program execution. Therefore, when setting up a problem to run in 
DPLR, only the master block structure of the problem is important. If a two-block 
grid is decomposed into nblk “virtual” blocks to run in parallel, the problem is set up 
for DPLR as a two-block problem, regardless of the actual value of nblk. This means 
that boundary conditions, numerical models, etc. are only specified for the two master 
blocks. DPLR will automatically convert this information to the “virtual” values at 
runtime. Similarly, when the solution is post-processed by POSTFLOW, it is treated 
as a two-block problem, regardless of the actual number of processors that were used. 
This strategy greatly simplifies the preparation, execution, and post-processing 
overhead required for parallel jobs. 

The output of FCONVERT provides information on the physical block structure, and 
includes physical block sizes, which are required for setting up the DPLR input deck. 
A portion of the output from FCONVERT for the sample problem of the previous 
section is shown below: 
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Summary (grid dimensions for CFD input deck): 

 Hardwired to run on 7 processors 

 

      Block   1; nx =  16; ny =  32; nz = 128 

      Block   2; nx =  64; ny =  64; nz = 128 

 

The summary information states that the problem has been decomposed (or 
“hardwired”) for execution on seven processors, but there are only two physical 
(master) blocks that must be considered during the problem setup. Using this strategy, 
once a DPLR or POSTFLOW input deck has been created for a given problem, the 
same input deck can be used regardless of actual the number of processors employed 
in the solution. This means that you are not required to visualize or work with the 
parallel decomposition of the problem except when running FCONVERT. 

If you select a parallel archival output format for the decomposed file (ouform = 1, 
11, 21), a single output file will be created. This type of file actually contains only 
as many master blocks as specified in the original input grid file, but additional 
information is written to the file header to tell DPLR how to perform the appropriate 
decomposition at run-time. This “virtual” decomposition information is written only 
to the grid file header. Therefore, parallel archival restart files never need to be 
decomposed or recomposed. Once a parallel archival grid file has been created, it is 
considered to be “hardwired” for a given number of processors. This will be reflected 
in the output messages produced when FCONVERT is run. If you want to run or 
restart the problem on a different number of processors, the grid file can simply be 
decomposed again. FCONVERT will strip out the header information, decompose the 
master blocks as desired, and write the new header information into the file. No other 
input file type is altered in any way by changing the number of processors in the 
simulation. 

9.3.4 Testing for Load Balance 

Although many processors may be available for a run, you should try to choose a 
number that maximizes load balance in order to maximize the computation efficiency 
of the simulation.  

You can test the load balance for a series of possible decompositions with 
FCONVERT. Set iaction=0 and nbreak to the maximum number of blocks 
desired. FCONVERT will then loop over all possible output block numbers from the 
number of input blocks to the value of nbreak, and output the most load balanced 
way to decompose into that number of output blocks.  
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Using the same example, if iaction=0 and nbreak=10, FCONVERT will generate 
the following output: 
 

 Decomposing block 1 into 1: ibrk= 1 jbrk= 1 kbrk= 1 

 Decomposing block 2 into 1: ibrk= 1 jbrk= 1 kbrk= 1 

   2 Blocks;  Total load imbalance =  43.75% 

  

 Decomposing block 1 into 1: ibrk= 1 jbrk= 1 kbrk= 1 

 Decomposing block 2 into 2: ibrk= 1 jbrk= 1 kbrk= 2 

   3 Blocks;  Total load imbalance =  25.00% 

  

 Decomposing block 1 into 1: ibrk= 1 jbrk= 1 kbrk= 1 

 Decomposing block 2 into 3: ibrk= 1 jbrk= 1 kbrk= 3 

   4 Blocks;  Total load imbalance =  16.28% 

  

 Decomposing block 1 into 1: ibrk= 1 jbrk= 1 kbrk= 1 

 Decomposing block 2 into 4: ibrk= 2 jbrk= 1 kbrk= 2 

   5 Blocks;  Total load imbalance =  10.00% 

  

 Decomposing block 1 into 1: ibrk= 1 jbrk= 1 kbrk= 1 

 Decomposing block 2 into 5: ibrk= 1 jbrk= 1 kbrk= 5 

   6 Blocks;  Total load imbalance =   7.69% 

  

 Decomposing block 1 into 1: ibrk= 1 jbrk= 1 kbrk= 1 

 Decomposing block 2 into 6: ibrk= 2 jbrk= 1 kbrk= 3 

   7 Blocks;  Total load imbalance =   4.32% 

  

 Decomposing block 1 into 1: ibrk= 1 jbrk= 1 kbrk= 1 

 Decomposing block 2 into 7: ibrk= 1 jbrk= 1 kbrk= 7 

   8 Blocks;  Total load imbalance =   5.26% 

  

 Decomposing block 1 into 1: ibrk= 1 jbrk= 1 kbrk= 1 

 Decomposing block 2 into 8: ibrk= 2 jbrk= 2 kbrk= 2 

   9 Blocks;  Total load imbalance =   0.00% 
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 Decomposing block 1 into 1: ibrk= 1 jbrk= 1 kbrk= 1 

 Decomposing block 2 into 9: ibrk= 3 jbrk= 1 kbrk= 3 

  10 Blocks;  Total load imbalance =   9.99% 

  

           Finished with Load Balance Check 

 

From this output summary, you can see that a perfectly load balanced solution is 
possible if the problem is decomposed to run on nine processors. 

9.3.5 Single Block Input Files 

In general, parallel decomposition must be performed by FCONVERT. However, in 
the special case of a single block grid with no zonal interfaces, DPLR2D and 
DPLR3D can perform parallel decomposition at runtime. In this case, the input grid 
file can simply be converted to parallel archival format (iaction=10). The resulting 
file can be run on any number of processors without further processing by 
FCONVERT.  

9.3.6 Parallel Recomposition 

FCONVERT can also be used to “recompose” a grid file that was previously 
decomposed by setting iaction=3 in the FCONVERT input deck.  

This option can only be used with grid files because restart, boundary condition, and 
radiation files are never decomposed in the first place. 

In practice, this setting is rarely used because it is unnecessary to recompose parallel 
archival files. As previously discussed, when the FCONVERT output file is written in 
one of the parallel archival formats (ouform=1,11, or 21), any decomposition is 
virtual. This means that the file merely contains header information instructing 
DPLR2D or DPLR3D how to properly decompose the file at runtime, eliminating any 
need to actively “recompose” the file. If iaction=3 is specified with an parallel 
archival file as input, FCONVERT will only strip the virtual decomposition 
information from the file header. 

If you do set iaction=3, you will need to specify the number of blocks in the 
recomposed file with the nborig flag. If the input file is in plot3d format, you must 
also provide the input interface file (inint=1) containing information about how 
the original grid or restart file was decomposed. Although FCONVERT will 
recompose an input grid file, it does not recreate the zonal interface file for the 
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recomposed problem. Therefore, be sure to save the original zonal interface file to 
avoid the need to recreate it after the recompose is completed.  

9.4 POSTFLOW Output Variables 

A complete listing of all POSTFLOW output variables is provided in Section 5.2 of 
this Users Manual. This appendix provides additional, detailed information about 
some of these variables. 

The output variables in POSTFLOW are selected via the ivarp integer array, where 
each variable is assigned a unique integer quantity. These integers are a superset of 
those defined in the Plot3d and GASP programs, and are expressed either as non-
dimensional quantities, or in SI units. ( Note: DPLR does not support English units). 

9.4.1 Grid-Related Variables 

Path Length 

 11 path length along grid lines in i-direction (si) 
 12 path length along grid lines in j-direction (sj) 
 13 path length along grid lines in k-direction (sk) 

Path length is determined by computing the distance from grid point to grid point in 
the mesh along the selected coordinate direction. For example, if ivarp=11, 
POSTFLOW will compute the path length for each constant i line in the output 
datasets. The path length is assumed to begin at zero for ijk = 1 and increases for 
increasing index. 

Body Normal Distance 

 21 *body normal distance (dn) 

The body normal distance at a surface is defined as the distance from the cell center 
of the first interior cell to the face center on the surface. This is the distance used in 
the first-order approximations of derivatives, as well as that used to define y+ 
(ivarp=581), and the cell Reynolds number (ivarp=59). 

Deviation from Orthogonality 

 22 *deviation from orthogonality [deg.] (dev) 
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This is defined as the number of degrees the surface-normal grid lines deviate from 
perfect orthogonality. For interp=1, this value represents a local average 
interpolated to the face center. The primary use of this output variable is as a measure 
of overall grid quality. (Note: Orthogonality is desired at all body surfaces, but is generally 
unimportant at flow-through boundaries). 

9.4.2 Mixture Transport Properties 

Cell Reynolds Number 

 59 cell Reynolds number (Re_c) 

The cell Reynolds number is defined as: 
 

 

where a is the sound speed, V is the local velocity magnitude, Δη is the body normal 
distance (ivarp=21), and ν is the kinematic viscosity. The cell Reynolds number is 
typically used as a way to judge the adequacy of the near-wall spacing in a boundary 
layer. Rec < 5 is generally sufficient to ensure accurate heat transfer and skin friction. 

9.4.3 Transport Properties 

Lewis Numbers 

 86 laminar Lewis number (Le) 
 96 turbulent Lewis number (Le_t) 

The Lewis number Le is defined as: 
 

where ρ is the mixture density, D is the binary diffusion coefficient, Cp is the total 
specific heat at constant pressure, and κ is the thermal conductivity. 

Schmidt Numbers 

 87 laminar Schmidt number (Sc) 
 97 turbulent Schmidt number (Sc_t) 

 

€ 

Rec =
(a+V )Δη

ν
 

 

€ 

Le = ρDCp /κ  
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The Schmidt number Sc is defined as:  

 

where µ is the mixture viscosity, ρ is the mixture density, and D is the binary 
diffusion coefficient. 

Prandtl Numbers 

 88 laminar Prandtl number (Pr) 
 98 turbulent Prandtl number (Pr_t) 

The Prandtl number Pr is defined as: 

  

where µ is the mixture viscosity, Cp is the total specific heat at constant pressure, and 
κ is the thermal conductivity. 

9.4.4 Mixture Flow Properties 

Stagnation Quantities 

 102 stagnation mixture density (r_o) 
 112 stagnation pressure (p_o) 
 122 stagnation temperature (T_o) 

Stagnation quantities (density, pressure, and temperature) are computed assuming 
isentropic relations, and thus are not valid for a flowfield with varying isentropic 
exponent (γ). The stagnation quantities are defined as: 
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where S is the entropy, defined below. 

Pressure 

 111 dynamic pressure (Q) 

The dynamic pressure Q is simply: 

 
 114 pressure coefficient (C_p) 

 
The pressure coefficient is defined as: 

 

where Q∞ is the freestream dynamic pressure. 

Temperature 

 121 bulk temperature (T_b) 

The bulk temperature is defined as in AIAA Paper No. 2001-2886: 

 
Ionization 

 180 degree of ionization (zeta) 
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Q = ρV 2 / 2  
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9.4.5 Surface Properties 

Heat Transfer  

 512 heat transfer coefficient in mass flux units (Chm) 

 
 
 
 
 
This is the heat transfer coefficient expressed in kg/m2•s for use with FIAT. 

 

520 radiative equilibrium heat transfer (Qeq) 

 

This is the surface heat transfer as computed using the radiative equilibrium wall 
formation. In this expression, ε is the surface emissivity, σ is the Stefan-Boltzmann 
constant, and Tw is the surface temperature. This variable is provided mainly as a 
sanity check to ensure that the computed heat transfer agrees with the radiative 
equilibrium value when a radiative equilibrium wall is specified. 
 

€ 

Chm =
q
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€ 

qeq = εσTw
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9.5  Reference Terms 

 
 

Lewis Number (Le) 

 

Schmidt Number (Sc) 

 

Turbulent Lewis Number (LeT) 

 

Turbulent Schmidt Number (ScT) 

 

Prandtl Number 

 

Turbulent Prandtl Number 

 

cell Reynolds Number 
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µ
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ρDT
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Pr = µCp /κ  
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PrT = ρµT / κTCp( )
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