
NASA/TM–2009-215388

Data Parallel Line Relaxation (DPLR) Code User Manual
Acadia - Version 4.01.1
Dr. Michael J. Wright
Ames Research Center
Moffett Field, California

Todd White and Nancy Mangini
ELORET Corporation
Ames Research Center
Moffett Field, California

October 2009

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientific and Technical Information (STI)
Program Office plays a key part in helping NASA
maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA’s scientific and technical information. The
NASA STI Program Office provides access to
the NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or theoreti‑
cal analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA’s counterpart of peer‑reviewed formal
professional papers but has less stringent limita‑
tions on manuscript length and extent
of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and techni‑
cal findings by NASA‑sponsored
contractors and grantees.

The NASA STI Program Office . . . in Profile

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical confer‑
ences, symposia, seminars, or other meetings
sponsored or cosponsored by NASA.

• SPECIAL PUBLICATION. Scientific, technical,
or historical information from NASA programs,
projects, and missions, often concerned with
subjects having substantial public interest.

• TECHNICAL TRANSLATION. English‑
language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services that complement the STI
Program Office’s diverse offerings include creating
custom thesauri, building customized databases,
organizing and publishing research results . . . even
providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home Page at
http://www.sti.nasa.gov

• E‑mail your question via the Internet to
 help@sti.nasa.gov

• Fax your question to the NASA Access Help
Desk at (301) 621‑0134

• Telephone the NASA Access Help Desk at
 (301) 621‑0390

• Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076‑1320

NASA/TM–2009-215388

October 2009

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000

Data Parallel Line Relaxation (DPLR) Code User Manual
Acadia - Version 4.01.1
Dr. Michael J. Wright
Ames Research Center
Moffett Field, California

Todd White and Nancy Mangini
ELORET Corporation
Ames Research Center
Moffett Field, California

Acknowledgements

DPLR Code Version 4.01.1 User Manual ii 10/27/09

The following individuals have made major contributions to the development,
functionality and documentation of the DPLR Code Package.

Michael Barnhardt (ELORET /ARC) Dual-time Accuracy
 DES Turbulence Modeling Extensions

David Boger (ARL) DPLR Overset Integration
 Dual-time Accuracy

Dr. James L. Brown (ARC) Menter SST Turbulence Model

Dr. Matt MacLean (CUBRC) Automatic Interface Detection
 Subsonic Inlet Boundary Conditions
 Spalart-Allmaras Turbulence Model

Nancy Mangini (ELORET / ARC) User Manual

Ryan McDaniel (ARC) Baldwin-Lomax Turbulence Model

Dr. Grant Palmer (ELORET / ARC) Chapman Viscosity Model

Dr. Dave Saunders (ELORET /ARC) In-line Grid Adaption
 Run-time Control
 Template Utility
Dr. Chun Tang (ARC) User Training

Todd White (ELORET / ARC) Project manager

Dr. Michael J. Wright (ARC) Original author and creator

Available from:

NASA Center for AeroSpace Information National Technical Information Service
7115 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161

(301) 621-0390 (703) 487-4650

Data Parallel Line Relaxation
(DPLR) Code

Acadia - Version 4.01.1

User Manual

10/27/09

© 2009 U. S. Government as represented by the Administrator of the

National Aeronautics and Space Administration. All Rights Reserved.

Contents

DPLR Code Version 4.01.1 User Manual iv 10/27/09

Chapter 1 - Overview
1.0 Introduction
1.1 Acadia - DPLR Code Package Version 4.01.1
1.2 How to Use This Manual
1.3 Release Notes
1.4 New Features

Chapter 2 - Installation Guide
2.0 Introduction
2.1 System Requirements
2.2 Software
2.3 Installing the DPLR Code Package
2.4 Directory / File Contents

Chapter 3 – Using FCONVERT
3.0 Introduction
3.1 Running FCONVERT
3.2 Input Flags for FCONVERT
3.3 ‘Neptune’ Sample Case
3.4 Parallel Decomposition
3.5 Mesh Sequencing

Chapter 4 - Using DPLR
4.0 Introduction
4.1 Running DPLR
4.2 Input Flags for DPLR
4.3 ‘Neptune’ Sample Case
4.4 Monitoring the DPLR Run

Chapter 5 - Using POSTFLOW
5.0 Introduction
5.1 Running POSTFLOW
5.2 Input Flags for POSTFLOW
5.3 ‘Neptune’ Sample Case
5.4 Extracting Datasets

Contents

DPLR Code Version 4.01.1 User Manual v 10/27/09

Chapter 6 - DPLR Input / Output Files
6.0 Introduction
6.1 Grid Files
6.2 Zonal Interface Files
6.3 ‘Boundary Condition Files
6.4 Runtime Control Files
6.5 Restart Files
6.6 Chemistry Files
6.7 Radiation Files
6.8 Convergence Files
6.9 Aerodynamic Files
6.10 Log Files
6.11 Tecplot Files

Chapter 7 - DPLR Workflow
7.0 Introduction
7.1 DPLR Work Flow Chart
7.2 Workflow Shortcuts

Chapter 8 – Using Overset Grids
8.0 Introduction
8.1 Installation
8.2 Utilities
8.3 Pre-Processing
8.4 Running DPLR
8.5 Grid Adaption
8.6 Post-Processing
8.7 Examples
8.8 References

Chapter 9 – Appendices
9.0 Introduction
9.1 DPLR Code Version 4.01.1 Utilities
9.2 Supported Input / Output File Formats
9.3 Parallel Decomposition
9.4 POSTFLOW Output Variables
9.5 Reference Terms

Chapter 1 – Overview

DPLR Code Version 4.01.1 User Manual 1-1 10/27/09

Contents

1.0 Introduction ..2

1.1 Acadia - DPLR Code Package Version 4.01.1..................................2

1.2 How to Use This Manual ..4

1.3 Release Notes...4

1.4 New Features ..4

1.4.1 Overset Grid Capability ..5

1.4.2 Enhanced Time Accurate and Statistics Capabilities5

1.4.3 New and Improved Turbulence Models..5

1.4.4 Pointwise Surface and Integrated Aerodynamic Data Extraction ...6

1.4.5 Improved Support of Blowing Wall Boundary Conditions6

Overview

DPLR Code Version 4.01.1 User Manual 1-2 10/27/09

1.0 Introduction

Accurate predictions of the environment that a spacecraft will encounter when
entering and passing through a flow field, such as the Earth or Mars atmosphere, at
hypersonic speeds can be of enormous value to aeronautical designers. Such
predictions become even more critical when the shape of the craft changes during a
mission due to extreme surface ablation or unexpected damage. The ability to
anticipate flow environment changes relative to new craft geometries adds vital data
to the situation analyses that inform mission command decisions.

Data-Parallel Line Relaxation (DPLR) code is a computational fluid dynamic (CFD)
solver that was developed at NASA Ames Research Center to help mission support
teams generate high-value predictive solutions for hypersonic flow field problems in
a minimum amount of time using readily available computational resources.

The DPLR Code Package is an MPI-based, parallel, full three-dimensional Navier-
Stokes CFD solver with generalized models for finite-rate reaction kinetics, thermal
and chemical non-equilibrium, accurate high-temperature transport coefficients, and
ionized flow physics incorporated into the code. DPLR also includes a large selection
of generalized realistic surface boundary conditions and “hooks” to enable efficient
loose coupling with external thermal protection system (TPS) material response and
shock layer radiation codes.

1.1 Acadia - DPLR Code Package Version 4.01.1

 Note: Each release of the DPLR Code Package has an associated name and
 number, beginning with Acadia, Version 4.01.1.
Using the DPLR Code Package to achieve predictive solutions for hypersonic flow
field problems involves completion of five main tasks:

1. Creating a structured grid file.

2. Converting the grid file to a DPLR-readable format with FCONVERT.

3. Sending the converted grid file to a number of processors for parallel solution
by DPLR2D or DPLR3D.

4. Extracting information from the solution needed to create a graphic or data
presentation of results with POSTFLOW.

5. Creating graphic or data presentations of the predicted flow environment.

A more detailed description of each of these tasks is presented in Table 1 below.

Tasks 3, 4, and 5 (highlighted in Table 1) are completed using applications and
software utilities distributed in the DPLR Code Package Version 4.01.1.

Overview

DPLR Code Version 4.01.1 User Manual 1-3 10/27/09

Table 1 Typical Sequence For Calculating Hypersonic Flow
 Environments with DPLR Code Package 4.01.1

Task Description Tool Input Output

1 Creating a structured, face-
matching (and/or overset-type)
grid that is likely to contain
the shock wave created in the
flow field when the object
enters at a specified Mach
number.

GridGen (or
similar grid
generation
application)

Geometric coordinates
for object under study

plot3D file (serial
ASCII format)

2
(optional)

Processing plot3D grid file,
reordered if necessary.

SUGGAR *plot3D grid file from
GridGen or similar grid
generation application

plot3D grid file &
domain
connectivity (.dci)
file (See Chapter
8)

3 Converting the plot3D grid
file into a DPLR-readable
format, breaking it first, if
required by the problem, into a
number of component blocks.

FCONVERT * plot 3D file (either
point-wise or overset)
* Input file containing
problem-specific
information about the
grid file being converted

XDR parallel file
(for use by
DPLR)

4 Processing converted grid file
on a specified number of
processors to work the
problem in parallel,
performing sufficient
iterations of the calculations to
reach a solution.

DPLR2D or
DPLR3D

* FCONVERT XDR
output file
* Input file containing
problem-specific
information about the
object under study, flow
environment, and
solution data
requirements.

restart file
(parallel XDR
format)

5 Extracting information from
the restart file needed to create
graphic and/or numeric
representations of the
predicted flow environment.

POSTFLOW * restart file
* Input file containing
specifications of the data
required by other
applications for solution
presentation(s) or further
post-processing

plot3D and/or
data file(s)

6 Creating visual representations
or data report(s) of solution for
use in further problem
analyses and outcome
presentations.

Tecplot (or
similar
graphics
application)

* data file and/or
* plot3D file

Graphic
representation of
predicted flow
environment

Overview

DPLR Code Version 4.01.1 User Manual 1-4 10/27/09

1.2 How to Use This Manual

This manual is intended to be both a user guide and a reference resource.

If you are new to DPLR, begin by reading Chapters 3, 4, and 5. This will give you the
information you need to understand the basic functions and elements of the Code
Package. Next, study Chapter 7 to gain insight on how to use what you have learned
to run an actual simulation.

As your command of the software grows, consult Chapters 6, 8 and 9 to deepen your
understanding of the files types, utilities, and detailed capabilities of the DPLR Code
Package Version 4.01.1.

If you are already using an earlier version of DPLR, you may want to begin by
reading the Release Notes in Section 1.3 below to learn about new features or
changed elements available in the current version of the code.

1.3 Release Notes

A summary of the new features and code changes implemented since the previous
baslined release – in this case DPLR Code 4.01.0 – can be found in two locations:

• RELEASENOTES file in the main folder of the code distribution

• Section 1.4 below

1.4 New Features

The Acadia version of the DPLR Code Package contains five major new features:

• Overset Grid Capability

• Enhanced Time Accurate and Statistics Cababilities

• Improved Turbulence Models

• Pointwise Surface and Integrated Aerodynamic Data Extraction

• Improved Support of Blowing Wall Boundary Conditions

Overview

DPLR Code Version 4.01.1 User Manual 1-5 10/27/09

1.4.1 Overset Grid Capability
DPLR now supports mixed face-matched and overset grid topologies. This capability
is disabled by default, but can be enabled when the code is compiled if both DiRTLib
and P3Dlib are present. Overset function is controlled in the Overset Grid
Implementation section of the DPLR input deck, and requires the domain
connectivity file generated by SUGGAR in a pre-processing step.

Chapter 8 in this manual contains a complete discussion of the Overset Capability
currently available in DPLR.

1.4.2 Enhanced Time Accurate and Statistics Capabilities

DPLR now supports dual-time stepping in the Time Accurate & Statistical Options
section of the DPLR input deck, and POSTFLOW can now post-process mean and
root mean square (RMS) values in addition to the standard instantaneous values.

 Note: The calculated mean and RMS values are exact for primitives, and
 approximate for other derived flow or surface quantities.

1.4.3 New and Improved Turbulence Models

The Acadia release of DPLR contains improvements in three non-algebraic
turbulence models:

• Menter SST models. The Menter SST models (itmod = 200X) now
controls omega throughout viscous sublayers more effectively by attempting
to merge omega with the analytical solution rather than just at the first point,
thereby making SST less affected by grid density. A new Menter SST model
(itmod=2004) includes additional compressibility corrections and corrections
from Coakley, and Catris & Apoix.

• DES extensions. Detatched Eddy Simulations are hybrid models combining
RANS (Reynolds Averaged Navier-Stokes) for near-wall modeling with an
LES-like capability (Large Eddy Simulation) in regions where the flow
becomes highly separated. DES extensions are now available for Menter SST
and Spallart-Almars models through the itmod flag in the DPLR Input Deck.

• New Turbulence Models. The Wilcox 2006 model, preliminary versions of
the Lag turbulence model, and an SST implementation similar to that in the
NASA OVERFLOW model (called OSS internally) are now available to users
for testing, although final implementation is still being evaluated.

Overview

DPLR Code Version 4.01.1 User Manual 1-6 10/27/09

1.4.4 Pointwise Surface and Integrated Aerodynamic Data Extraction
DPLR can now extract surface data (e.g. pressure, temperature, heat flux, and shear
stress) at specified surface points for each iteration of the simulation, giving users the
ability to display transient data for simulations of unsteady flows.

To use this new feature, locations of the specified points need to be listed in an ASCII
file (points.list) that is placed in the working directory before beginning the
simulation. DPLR reads this file only once, at the start of the simulation, extracts the
data at the nearest surface point to each of the x, y, and z coordinates in the list, then
places the results of these extractions back into the working directory as a series of
files named point.point# where the point# is determined by the point order
specified in the points.list file.

In addition to pointwise surface data, DPLR 4.01.1 can also extract integrated
aerodynamic variables for each iteration of the simulation to track progress over time
for body forces and moments. DPLR places the results of these extractions in a file
named aero.dat in the working directory. This capability is enabled by the iaero
flag in the Time Accurate and Statistical Options section of the DPLR input deck.

1.4.5 Improved Support of Blowing Wall Boundary Conditions
DPLR now supports blowing wall boundary conditions for any and all species listed
in the simulation chemistry file, and is limited only by the stability of the chemistry
model employed.

 Note: This “new feature” corrects a problem in the code that previously
 limited DPLR to supporting blowing wall boundary conditions for only
 the first species listed in the chemistry file.

Chapter 2 - Installation Guide

DPLR Code Version 4.01.1 User Manual 2-1 10/27/09

Contents

2.0 Introduction ..2

2.1 System Requirements..2

2.2 Software ..3

2.3 Installing the DPLR Code Package...4

2.4 Directory / File Contents..5

Installation Guide

DPLR Code Version 4.01.1 User Manual 2-2 10/27/09

2.0 Introduction

 The DPLR Code has been designed to achieve optimal performance on distributed
memory parallel machines, making the code widely portable to a variety of
architectures, from laptops, networked desktop workstations, and simple LINUX
clusters to dedicated supercomputers.

2.1 System Requirements

The DPLR Code has been successfully installed and run on the following hardware /
system software configurations:

Table 2.1 - Supported Hardware/Software Architectures

Architecture Compiler MPI Version

Xeon 32 bit Intel, Portland,
Lahey

MPICH, LAM-MPI,
MPICH

Xeon 64 bit Intel, Portland MPICH, LAM-MPI

Xeon Dual Core Intel MPICH

Opteron 64 bit Intel, Portland MPICH, LAM-MPI

Intel (Mac) 32 bit gfortran MPICH

Altix Intel Open-MPI

Each of these architectures can be specified with the configuration script ‘config’
during the installation process described in Section 2.3, although on new systems
some editing or creation of the makefile.comm and include/machine.h may be
necessary.

Installation Guide

DPLR Code Version 4.01.1 User Manual 2-3 10/27/09

2.2 Software

Two software packages must be installed before DPLR Code can be installed:
• Fortran 90 - DPLR is written entirely in Fortran 90 running on a

UNIX/LINUX operating system and thus requires a working f90 compiler on
the destination machine.

• Message Passing Interface (MPI) – DPLR Code uses MPI calls to facilitate
inter-processor communications, so an MPI library must be present in the
system.

Although not strictly required for successfully installing DPLR Code, having the
following software packages on your system will enhance the utility and/or
performance of the DPLR Code Package:

• FXDR – fxdr libraries provide a Fortran-based interface to the native XDR
(external Data Reference) calls on all UNIX/LINUX machines. XDR enables
the creation of platform-independent binary files, greatly enhancing the
portability of generated datasets (e.g. restart and grid files). The code can be
compiled without the fxdr libraries, however in that case, all restart and grid
files must be written in either ASCII or machine-specific native binary
format.1

• TECIO.A – These I/O libraries are used by POSTFLOW to create Tecplot
binary data files for post-processing output.2 Currently, DPLR can use Tecplot
360 or Tecplot II libraries. However, ASCII data in Tecplot can always be
written by POSTFLOW, regardless of TECIO.A availability.

• LIBGOTO (Basic Linear Algebra Subroutines (BLAS) routines) - DPLR
makes use of several BLAS routines for matrix-vector and matrix-matrix
manipulations. Having such libraries on the target machine will result in a 20-
25% performance improvement in the overall runtime of DPLR Code.3

1 fxdr libraries are freely available at http://meteora.ucsd.edu/~pierce/fxdr_home_page.html
2 Tecplot® I/O libraries are included with Amtec’s Tecplot® visualization software, and may be available for free at
http://www.tecplot.com/
3 BLAS libraries are generally available from compiler makers as a part of their mathematical libraries for a
nominal fee. In addition, several freeware sources exist. In particular, for Pentium or AMD architectures a
freeware distribution called libgoto is available from http://www.tacc.utexas.edu/resources/software/

Installation Guide

DPLR Code Version 4.01.1 User Manual 2-4 10/27/09

2.3 Installing the DPLR Code Package

 The 4.01.1 version release of the DPLR Code Package consists of two gzipped tar
files designated as follows:

• dpcodeV4.01.1.tar.gz – containing four separate executables
• samplesV4.01.1.tar.gz – containing a set of sample problems, complete

with grids, input decks, and running instructions.

Step 1: Unzip the DPLR Code file.

Action: At the command line prompt, type:
 gunzip dpcodeV4-01-1.tar.gz

Result: The archived file is renamed dpcodeV4-01-1.tar

Step 2: Untar the DPLR Code file.
Action: At the command line prompt, type:

 tar -xvf dpcodeV4-01-1.tar

Result: A directory structure is created. (See Section 2.4 for more
 information on directories and files.)

Step 3: Run the config script.
Action: At the command line prompt, type:

 ./config

Result: If you are attempting to compile on a system the config
 script can recognize, a makefile.comm file is generated
 containing machine-specific information for your system.
 Otherwise, you will need to modify such a file yourself.
 Samples based on known MPI and FORTRAN builds can
 be found in the defs directory. After extracting the
 archive, a blank makefile.comm is created that includes
 descriptions of each of the necessary compiler options and
 paths.

Step 4: Create executables files.
Action: At the command line prompt, type:

 make

Installation Guide

DPLR Code Version 4.01.1 User Manual 2-5 10/27/09

Result: Assuming there were no problems, all executable files in
 the package are created. Links to executables dplr2d,
 dplr3d, fconvert, postflow are located in the bin
 directory.

2.4 Directory / File Contents

The directories and files resulting from untarring the DPLR Code Package contain the
following components:

bin/ - links to compiled binaries

cfdinput/ - physical modeling data files used by DPLR during
 execution

cfdlib/ - subroutines common to DPLR2D and DPLR3D

config* - a configuration script used to set up the makefile for
 the specific machine architecture

defs/ - makefile templates for supported machines

dplib/ - subroutines common to the entire package

docs/ - information about DPLR Code Package documentation

dplr2d/ - subroutines unique to the DPLR2D code

dplr3d/ - subroutines unique to the DPLR3D code

fconvert/ - subroutines unique to the FCONVERT code

include/ - modules, common blocks and other include files
 that are incorporated into the various executables

makefile - makefile for the package

makefile.comm - compiler, architecture and library options for
 building DPLR (may be created by config script)

post/ - subroutines unique to the POSTFLOW code

utilities/ - utility codes and scripts distributed with the
 package

Installation Guide

DPLR Code Version 4.01.1 User Manual 2-6 10/27/09

Tech Tip: The contents of each directory distributed with the DPLR Code
Package are required for that version of DPLR to function properly. Thus,
removing files from any of the directories is not recommended.

Chapter 3 – Using FCONVERT

DPLR Code Version 4.01.1 User Manual 3-1 10/27/09

Contents

3.0 Introduction ..2

3.1 Running FCONVERT ..2

3.2 Input Flags for FCONVERT..4

3.3 ‘Neptune’ Sample Case...14

3.3.1 Neptune Input Deck..15

3.3.2 Neptune Input Deck Settings ..16

3.3.3 Neptune Output Summary ..18

3.3.4 Neptune Output Summary Information...20

3.4 Parallel Decomposition..20

3.4.1 Load Balance...21

3.4.2 Parallel Recomposition..22

3.5 Mesh Sequencing...22

3.5.1 Sequencing an Input Grid..23

3.5.2 Upsequencing Restart Files ..23

 Using FCONVERT

DPLR Code Version 4.01.1 User Manual 3-2 10/27/09

3.0 Introduction

The primary function of FCONVERT is to read plot3d grid files generated by
third-party software applications (such as GridGen) and convert them into a format
that can be used by DPLR to solve hypersonic CFD problems.

However, you can also use FCONVERT to change the format of a restart file, convert
a plot3d flow file (a.k.a. function file) into a restart file, process input radiation and
boundary condition files, and change the number of processors on which a simulation
can be run.

Finally, you can use FCONVERT to manipulate a plot3d grid file through scaling
it by a multiplicative factor (useful when changing grid units, e.g., from feet to
meters) and to keep the DPLR solution computationally efficient by:

• “sequencing” or coarsening the grid in one or more dimensions.
• “breaking” or decomposing the grid into multiple pieces to run on a parallel

machine. 1

3.1 Running FCONVERT

Step 1: Open the text editor program for your system.
Action: At the command line prompt, type:

 /[path to your fconvert directory]/file_convert.inp

Result: An input file or “deck” appears on screen with place-holder
 default values. To start with a blank deck, delete the
 default values as shown on the following page.

1 Unlike DPLR2D and DPLR3D, FCONVERT is a serial code, so all pre-processing must be done on a single
processor.

 Using FCONVERT

DPLR Code Version 4.01.1 User Manual 3-3 10/27/09

Input file for fconvert

 iaction ifile idim iinfo ivers nvers

inform inint idummy nborig

ouform ouint odummy ncedge

imseq iscale sfact imir

nbreak

 Decomposition information for each master block

ibrk jbrk kbrk

Sequencing information for each master block
iseq jseq kseq

iname,xname,cname

oname

nsin nerin nevin necin ntbin

imirx imiry imirz

Figure 3-1 FCONVERT Input Deck

Tech Tip: Although you can add as many sections as you need to
specify the decomposition and sequencing instructions for each master
block in your input grid, take special care to preserve the line spacing
within each block-specific section and throughout the global areas of
the input deck as you enter new values and/or replace default values
with problem-specific ones. If lines are added to or subtracted within
these areas, DPLR will not be able to read the file accurately.

 Using FCONVERT

DPLR Code Version 4.01.1 User Manual 3-4 10/27/09

Step 2: Enter values for each of the input variables or “flags”. (See Section 3.2
for a description of input flags and a list of allowable values.)

Action: For each flag, type:
 allowable, problem-specific value

Result: Input deck contains sufficient information for FCONVERT
 to process the input grid file and convert it into a DPLR-
 readable file.

Step 3: Save the file with your problem-specific name to your working directory.

Step 4: Run FCONVERT.
Action: At the command line prompt, type:

 fconvert < yourinputdeckfilename.inp

Result: An output grid file in the format you specified through the
 ouform flag (usually XDR parallel) is created along with
 on-screen summary of actions performed by FCONVERT.
 (See Section 3.3 for an example of a problem-specific
 FCONVERT input deck and the output summary generated
 after running the program.)

3.2 Input Flags for FCONVERT

Input variables for FCONVERT are discussed below in the order they appear in the
deck.

 iaction - Specifies the action to perform. Allowable values are:
 0 test decompose over a range of blocks
 1 decompose file according to (ijk)brk
 2 decompose file according to nbreak
 3 recompose file into original blocks
 10 format conversion only, no parallel decomposition or
 recomposition (scaling or sequencing still allowed)
 11 stop after printing file size (determine the dimensions
 and number of computational cells in each block and
 output this information to screen)

 ifile - Specifies the type of file to be processed. Allowable values are:
 1 grid file
 2 restart / flow file
 3 boundary condition (BC) file
 4 radiation file

 Using FCONVERT

DPLR Code Version 4.01.1 User Manual 3-5 10/27/09

Tech Tip: Because restart, boundary condition, and
radiation files are never decomposed or recomposed, the
only functional actions for these file types are iaction =
10 (format conversion) and iaction = 11 (file size).

 idim - Specifies the dimension of the input file. Allowable values are:

 2 2D/Axisymmetric
 3 3D

Tech Tip: Whatever value idim is set to, the input grid file
must match it (e.g., if idim=2, the input grid file must be
two-dimensional; if idim=3, the input grid file must be
three-dimensional. However, some grid generation
programs, like GridGen, do not support 2D grid generation.
In this case, you need FCONVERT to “see” a 3D grid file as
a 2D file. To accomplish this, make sure that the k-
dimension =1 in the input grid file. FCONVERT will
automatically strip the z-coordinates from a 3D input grid
file if the k-dimension =1, regardless of the idim setting.
For all other cases, FCONVERT will execute the operation
if given an input grid file of different dimension than
specified by the idim flag, but the results may be
undesirable.

 iinfo - Controls the output of debugging information. Allowable
 values are:

 0 Do not output debugging information
 1 Output debugging information

Tech Tip: This information is intended for software developers.

 ivers - Specifies the DPLR Code version of the output file. Allowable
 values are:

 1 Do not attempt to change file version
 2 Upgrade file to the current version of DPLR Code
 3 Convert file to the DPLR Code version specified by
 nvers

 Using FCONVERT

DPLR Code Version 4.01.1 User Manual 3-6 10/27/09

Tech Tip: All parallel grid, restart, boundary condition, and
radiation files are DPLR Code Version-specific. With the
exception of boundary condition files, ivers allows the
format conversion of all supported files between all release
versions of the DPLR Code Package.

 nvers - Specifies the DPLR Version to convert the output file to when
 ivers = 3. Allowable values are the real numbers of the major
 and minor releases of the DPLR Code Package, from 2.31
 through 4.01.1.

 inform - Specifies the format of input file. (See Appendix A for more
 information about supported I/O formats.) Allowable values
 are:

 1 Unformatted parallel file
 2 Unformatted plot3d (grid or q) file
 3 Unformatted plot3d (grid or function) file
 11 XDR parallel file
 21 ASCII parallel file (used for debugging)
 22 ASCII plot3d (grid or q) file (used for debugging)
 23 ASCII plot3d (grid or function) file (used for
 debugging)

Tech Tip: Because DPLR is a double precision code, be sure
that all grid files being imported were also created as double
precision.

 inint - Specifies whether an input zonal interface file is to be read by
 FCONVERT or whether zonal interfaces are to be computed
 automatically. Allowable values are:

 0 Do not read input interface file
 1 Read input interface file
 2 Auto-detect full face interfaces ONLY
 3 Auto-detect all interfaces (fast method)
 4 Auto-detect all interfaces (accurate method)

 Using FCONVERT

DPLR Code Version 4.01.1 User Manual 3-7 10/27/09

Tech Tip: Input zonal interface information is only required
when the input file is a serial plot3D file. The zonal interface
file required in this instance can either be created by hand
(inint=1) or can be created automatically by
FCONVERT which will then embed it into the DPLR-
readable grid file it creates (inint=2-4). Because the
automatic creation of zonal interface files may require a
substantial amount of time and computing resources, you
can tell FCONVERT to also write the information it
generates to a separate file by setting the ouint flag>0,
thus eliminating the need to regenerate the information
every time the problem is run. See Section 3.4 for more
information on zonal interface files.

 idummy - Specifies whether or not the input grid file contains dummy
 (a.k.a. “ghost”) cells. Allowable values are:

 0 Input file does not contain dummy cells
 1 Input file contains dummy cells

Tech Tip: Because DPLR automatically generates grid
dummy cells as necessary at runtime, considering their
presence during grid generation is usually unnecessary and
idummy typically remains = 0. idummy should only =1 if:
 * you choose to generate your own grid dummy cell
 coordinates rather than allowing DPLR to do it
 or
 * you are converting a function file into a restart
 file
Note, Input dummy cells will be discarded if mesh
sequencing is enabled (imseq = 1).

 nborig - Specifies the numbers of master blocks in the file. Allowable
 values are:

• the actual number of blocks in the input file
 or

• the final number of blocks after a grid file
recomposition (iaction=3) has been performed.

 Using FCONVERT

DPLR Code Version 4.01.1 User Manual 3-8 10/27/09

 ouform - Specifies the format of the output file. (See Section 9.2 for
 more information about supported I/O formats.) Allowable
 values are:

 0 Do not generate an output file (used for debugging)
 1 Unformatted parallel file
 2 Unformatted plot3d (grid or q) file
 3 Unformatted plot3d (grid or function) file
 11 XDR parallel file – preferred for file read into DPLR
 21 ASCII parallel file (used for debugging)
 22 ASCII plot3d (grid or q) file (used for debugging)
 23 ASCII plot3d (grid or function) file (used for
 debugging)

 ouint - Specifies whether an output zonal interface file is to be written
 and saved for future use. Allowable values are:

 0 Do not write output interface file
 1 Write output interface file
 2 Write output interface file including dummy cells (used
 for debugging)
 11 Write output interface file including edges (used for
 debugging)
 12 Write output interface file including dummy cells and
 edges (used for debugging)

Tech Tip: When inint=2-4, FCONVERT automatically
creates zonal input information for the plot3D grid file being
processed and embeds the information into the file being
produced. By setting ouint >0, you tell FCONVERT to
also write the zonal interface information it creates to a
separate file, thus eliminating the need to regenerate it – a
potentially time- and resource-consuming task - if the
problem is re-run in the future. Note, however, that if you
change the grid topology in any future run of the problem,
the zonal interface files will need to be recalculated.

 odummy - Specifies when an output file contains dummy cells. Allowable
 values are:

 Using FCONVERT

DPLR Code Version 4.01.1 User Manual 3-9 10/27/09

 0 Output file does not contain dummy cells
 1 Output file contains dummy cells (use for debugging)

Tech Tip: The appropriate setting of odummy is nearly
always 0.

 ncedge - Specifies which edge and corner interfaces should be
 generated. Allowable values are:
 0 Do not compute and edge and corner interfaces
 1 Compute all edge and corner interfaces
 2 Compute only edge/corner interfaces created by
 decomposition

Tech Tip: This flag should always be set to 1, unless used
for software development.

 imseq - Specifies whether mesh sequencing (or coarsening) is to be
 performed and in which computational direction(s). (See
 Section 3.6 for more information on mesh sequencing.)
 Allowable values are:

 0 Do not sequence the file
 1 Sequence according to the values of (ijk)seq
 2 Sequence all blocks using (ijk)seq values
 -2 Upsequence a restart file

 iscale - Instructs FCONVERT to scale an input grid file (ifile=1) by
 a constant multiplicative factor (sfact) before creating a
 DPLR- readable output grid file. Allowable values are:

 0 Do not scale input grid file
 1 Scale input grid file by sfact

Tech Tips:
1) This option is typically used to convert grids to SI units.

2) If iscale is set to 1 for any file type other than a grid
file, FCONVERT will silently reset it to zero.

 Using FCONVERT

DPLR Code Version 4.01.1 User Manual 3-10 10/27/09

 sfact - Specifies the multiplicative scale factor to use when
 iscale=1.

 imir - Specifies whether to mirror the input grid or restart file across
 one or more axes. Allowable values are:

 0 Do not mirror input file
 1 Mirror input file according to imir(xyz)
 2 Copy and mirror input file according to imir(xyz)

Tech Tip: imir is used primarily to generate a reflected
grid or restart file in preparation for starting a full body
simulation. If imir is set to 1, valid entries must be
specified for imirx, imiry, and imirz (mirroring
factors across the yz, xz, and xy axes). When mirroring is
turned on, FCONVERT will mirror the appropriate xyz (or
uvw) variable on output, automatically reverse the order of
the grid in the i-direction in each block if necessary to
ensure that the output grids and solutions files remain right-
handed, and determine the new zonal-interface definitions
that result from this mirroring. However, you must manually
correct the boundary conditions in the DPLR input deck by
reversing the BC numbers of the imin and imax faces in
each block! And when using FCONVERT to create or mirror
a restart file from an input file other than DPLR’s pslx
format, be sure to set correct values for nsin, nerin,
nevin, necin, and ntbin so that FCONVERT can
correctly determine the location of the velocity components
in the file.

If imir is set to 2, FCONVERT will consult the valid entries
specified for imirx, imiry, and imirz, retain the
current grid, copy it, and add a mirrored version to the new
file.

nbreak - Specifies the number of blocks to decompose the input
 file into when iaction =2.

 ibrk,jbrk,kbrk - Specifies grid decomposition factors in the i-,j-,and
 k-directions for each master block when iaction=1.

 Using FCONVERT

DPLR Code Version 4.01.1 User Manual 3-11 10/27/09

Tech Tip: The most common use of FCONVERT is to
decompose an input grid file into blocks for simultaneous,
parallel execution on a number of processors. When the
number of processors to be used for the solution run has
been determined, the input grid file must be decomposed into
at least one block per processor. This can be accomplished
in two ways:

 * Set iaction=1, manually determine the best
 strategy for decomposing the input grid file into
 master blocks, then enter one set of decomposition
 factors (ibrk, jbrk, and kbrk) for each block
 in the input file.

 or

 * Set iaction=2, enter the number of blocks
 (minimally equal to the number of available
 processors for the run) to decompose the input file
 into in nbreak, then allow FCONVERT to
 automatically determine the best decomposition
 strategy for the input grid file. Although this method
 may produce a good result from a CPU load
 balance perspective, it may not produce a good
 flow-solver result.
Note: When parallel decomposition is not being performed,
setting ibrk=-1 on the first line tells FCONVERT not to
read additional block decomposition records.

 iseq,jseq,kseq - Specifies sequencing factors in the i-,j-,and
 k-directions when imseq=1,2,or-2.

Tech Tip: One set of sequencing factors is required for each
block in the input file unless imseq=2 or -2. These
settings tell FCONVERT to sequence (remove points) or
upsequence (add back points) all grid blocks by the same
factor so only one set of sequencing factors are required
regardless of the number of grid blocks.
Note: When sequcing is not being performed, i.e.,
imseq=0, setting iseq=-1 on the first line tells
FCONVERT not to read additional block sequencing
records.

 Using FCONVERT

DPLR Code Version 4.01.1 User Manual 3-12 10/27/09

 iname - Specifies the input file name. This is the file that will be
 processed by FCONVERT. The filename should be surrounded
 by single or double quotes, and can be specified with either a
 relative or an absolute path as shown in the example below:

 ‘./ASCIIPlot3Dfilename.g’

Tech Tip: The suffix used in the file name is optional.
FCONVERT will assume the default suffix for the specified
file type if not manually entered. See Appendix A for a list of
file types and associated default suffixes.

 xname - Specifies the name of a previously prepared, input zonal
 interface file when inint=1. (See Section 3.4.1 for more
 information on previous preparation of a zonal interface
 file.) The filename should be surrounded by single or double
 quotes, and can be specified with either a relative or an
 absolute path as shown in the example below:

 ‘./YourZonalInterfaceFileName.inter’

Tech Tip: The suffix used in the file name is optional.
FCONVERT will assume the default suffix for this file type is
“.inter” if not entered.

 cname - Specifies the CFD input deck file name (if any). This file is
 only used to locate solid walls to assist in decomposing the
 input grid when iaction=2 and FCONVERT is attempting to
 automatically break the input grid into blocks for the best
 possible parallel solution. The filename should be surrounded
 by single or double quotes, and can be specified with either a
 relative or an absolute path as shown in the example below:

 ‘./CFDfile.inp’

Tech Tip: The suffix used in the file name is optional.
FCONVERT will assume the default suffix for this file type is
“.inp” if not entered.

 Using FCONVERT

DPLR Code Version 4.01.1 User Manual 3-13 10/27/09

 oname - Specifies the output file name. This is the DPLR-readable file
 that will be created by FCONVERT to be solved by DPLR.
 The filename should be surrounded by single or double quotes,
 and can be specified with either a relative or an absolute path
 as shown in the example below:

 ‘./XDRParallelgridfilename.pgrx’

Tech Tip: The suffix used in the file name is optional.
FCONVERT will assume the default suffix for the file type
specified in ouform if not manually entered. See Appendix
A for a list of file types and associated default suffixes.

Note: If the output filename (with suffix) is the same as the
input filename, the input file will be overwritten- not a
typically desired result. Also, if an output interface file is
requested by setting ouint=1, the suffix ‘.inter’ will
be appended to the prefix specified by oname.

 nsin - Specifies the number of chemical species to be considered in
 the CFD solution. This is only read if you are trying to create a
 restart file from an input file other than DPLR’s pslx format so
 that FCONVERT can correctly determine the location of the
 velocity components in the file.

 nerin - Specifies the number of unique rotational temperatures (energy
 conservation equations) to be considered in the CFD solution.
 This is only read if you are trying to create a restart file from an
 input file other than DPLR’s pslx format so that FCONVERT
 can correctly determine the location of the velocity components
 in the file.

 nevin - Specifies the number of unique vibrational temperatures
 (energy conservation equations) to be considered in the CFD
 solution. This is only read if you are trying to create a restart
 file from an input file other than DPLR’s pslx format so that
 FCONVERT can correctly determine the location of the
 velocity components in the file.

 necin - Specifies the number of unique electronic temperatures (energy
 conservation equations) to be considered in the CFD solution.
 This is only read if you are trying to create a restart file from an

 Using FCONVERT

DPLR Code Version 4.01.1 User Manual 3-14 10/27/09

 input file other than DPLR’s pslx format so that FCONVERT
 can correctly determine the location of the velocity components
 in the file.

 ntbin - Specifies the number of turbulence variables to be considered
 in the CFD solution. This is only read if you are trying to create
 a restart file from an input file other than DPLR’s pslx format
 so that FCONVERT can correctly determine the location of the
 velocity components in the file.

 imirx,imiry,imirz - Specifies mirroring factors acrosss the yz-, xz-,
 and xy-axes to be used when imir = 1. Allowable values are:

 -1 or 0 No mirroring will take place along this axis
 1 Mirroring will take place along this axis

Tech Tip: It is an error to set all three of these flags to 1.

3.3 ‘Neptune’ Sample Case

The sample case used throughout the DPLR Code User Manual to illustrate how the
Code Package works describes a Neptune probe with an ellipsoidal body as shown in
Figure 3-2. This case is an example of aerocapture, where drag from the atmosphere
is used to decelerate the vehicle and bring it into orbit.

 Using FCONVERT

DPLR Code Version 4.01.1 User Manual 3-15 10/27/09

Figure 3-2 Neptune Probe

3.3.1 Neptune Input Deck

The input deck below shows the problem-specific entries to make for FCONVERT to
process the serial plot3D grid file of this probe shown in Figure 3-2 into a DPLR-
readable XDR parallel grid file.

Input file for fconvert

iaction ifile idim iinfo ivers nvers
 1 1 3 0 1 4.01.0

inform inint idummy nborig
 22 1 0 2

 Using FCONVERT

DPLR Code Version 4.01.1 User Manual 3-16 10/27/09

ouform ouint odummy ncedge
 11 0 0 1

imseq iscale sfact imir
 0 0 1.0 0

nbreak
 1

Decomposition information for each master block
ibrk jbrk kbrk
 1 1 1
 7 1 1

Sequencing information for each master block
iseq jseq kseq
 1 1 1
 1 1 1

iname,xname,cname
'neptune'
'neptune'
'none'

oname
'neptune.8PE'

nsin nerin nevin necin ntbin
 5 0 1 0 0

Figure 3-3 FCONVERT Input Deck for Neptune Probe

3.3.2 Neptune Input Deck Settings

This is a three-dimensional problem. The input grid is ASCII plot-3D and the output
grid file is parallel XDR. The original grid consists of two master blocks and must
therefore include an interface file. (See Section 3.4 for more information on zonal
interface files.) There are three interfaces between these two blocks. The following
table explains the meaning of the input deck settings in this sample case.

 Using FCONVERT

DPLR Code Version 4.01.1 User Manual 3-17 10/27/09

Input Flag Setting Explanation

iaction 1 Break each master block the input grid along the i, j, and k
axes as specified in ibrk, jbrk, kbrk for each block.

ifile 1 The input file is a grid file.

idim 3 The input file is a 3D file.

iinfo 0 Do not output debugging information.

ivers 1 Do not attempt to change file version.

nvers 4.01.0 Release version of the DPLR Code package being used.
(Value ignored when ivers=1).

inform 22 Input file is an ASCII plot3D grid file.

inint 1 Read input interface file.

idummy 0 Input file does not contain dummy cells.

nborig 2 There are 2 master blocks in the input grid file.

ouform 11 The output file will be an XDR parallel grid file

ouint 0 Do not write an output interface file (one already exists!)

odummy 0 Output file does not contain dummy cells.

ncedge 1 Compute all edge and corner interfaces.

imseq 0 Do not sequence the input grid file.

iscale 0 Do not scale the input grid file.

sfact 1.0 Ignored value because iscale = 0

imir 0 Do not mirror input grid file.

nbreak 1 Ignored value because iaction = 1

ibrk, jbrk, kbrk 1, 1, 1,
7, 1, 1

Do not break the first master block in any direction.
Break the second master block 7 times in the I direction only

.

iseq, jseq, kseq 1, 1, 1

1, 1, 1

Values ignored (imseq=0).

iname ‘neptune’ The name of the input grid file is ‘neptune’.

xname ‘neptune’ The name of the input zonal interface file is ‘neptune’.

 Using FCONVERT

DPLR Code Version 4.01.1 User Manual 3-18 10/27/09

Input Flag
(cont.)

Setting
(cont.)

Explanation (cont.)

cname ‘none’ When iaction=1, FCONVERT breaks master blocks according
to the values in ibrk, jbrk, kbrk and ignores information in a
CFD input deck file.

oname ‘neptune-8PE’ The name of the output DPLR-readable grid file is ‘neptune-
8PE’ – a file convention that notes how many processors were
used to run the problem – in this case, 8.

nsin 5 Ignored value (not trying to create a restart file from a non-
DPLR pslx input file)

nerin 0 Ignored value (not trying to create a restart file from a non-
DPLR pslx input file)

nevin 1 Ignored value (not trying to create a restart file from a non-
DPLR pslx input file)

necin 0 Ignored value (not trying to create a restart file from a non-
DPLR pslx input file)

ntbin 0 Ignored value (not trying to create a restart file from a non-
DPLR pslx input file)

3.3.3 Neptune Output Summary

When you run FCONVERT (See Section 3.1, Step 4), the program provides an on-
screen summary of the actions performed along with some supplemental information
as shown below.

 Using FCONVERT

DPLR Code Version 4.01.1 User Manual 3-19 10/27/09

 fconvert
 NASA Ames Version 4.01.0
 Maintained by Mike Wright; last modified: 02/05/09

 Reading plot3d asciifile neptune.g
 Writing parallel XDR-formatted file neptune-8PE.pgrx

 Input file does not include dummy cells
 Output file includes dummy cells

Input file is 3D

 Input Block 1 size: il = 32; jl = 16; kl = 64 (32768 cells)
 Input Block 2 size: il = 48; jl = 64; kl = 64 (196608 cells)

 Largest block is:
 nb = 2; original block = 2
 il = 48; jl = 64; kl = 64

 Read input interface file neptune.inter
 Found 3 valid zonal interface blocks in 2 block grid file

 Decomposing block 1 into 1: ibrk= 1 jbrk= 1 kbrk= 1
 Decomposing block 2 into 7: ibrk= 7 jbrk= 1 kbrk= 1

 creating 8 total blocks

 8 Blocks; Total load imbalance = 12.50%

 Output Block 1 size: il = 32; jl = 16; kl = 64 (32768 cells)
 Output Block 2 size: il = 7; jl = 64; kl = 64 (28672 cells)
 Output Block 3 size: il = 7; jl = 64; kl = 64 (28672 cells)
 Output Block 4 size: il = 7; jl = 64; kl = 64 (28672 cells)
 Output Block 5 size: il = 7; jl = 64; kl = 64 (28672 cells)
 Output Block 6 size: il = 7; jl = 64; kl = 64 (28672 cells)
 Output Block 7 size: il = 7; jl = 64; kl = 64 (28672 cells)
 Output Block 8 size: il = 6; jl = 64; kl = 64 (24576 cells)

 Largest block is:
 nb = 1; original block = 1
 il = 32; jl = 16; kl = 64

 Summary (grid dimensions for CFD input deck):
 Hardwired to run on 8 processors

 Block 1; nx = 32; ny = 16; nz = 64
 Block 2; nx = 48; ny = 64; nz = 64

 ==> Finished writing output file neptune-8PE.pgrx
Done!

 Using FCONVERT

DPLR Code Version 4.01.1 User Manual 3-20 10/27/09

3.3.4 Neptune Output Summary Information

In addition to verifying the steps undertaken by FCONVERT, the output summary
also provides specific information about how the master blocks from the input grid
file were decomposed into a set of output blocks suitable for parallel processing by
DPLR.

In this sample case, FCONVERT was told how to break the master blocks when
iaction was set to = 1 and the ibrk, jbrk, and kbrk values for each master
block were entered into the input deck (See Section 3.3.1.). These settings told
FCONVERT to leave the first master block alone (to make 1 block) and break the
second master block 7 times in the i direction (to make 7 blocks). This created a total
of 8 blocks in the output XDR grid file and thus required or ‘hardwired’ the file to
be run on a minimum of 8 processors.

If iaction had been set to =2, the user would have had to know, in advance, how
many processors their system could dedicate to running the problem and enter that
value into nbreak. FCONVERT would then have calculated the best numerical
solution for breaking the input grid into at least the number of blocks equal to the
value in nbreak and displayed the resulting block dimensions and load imbalance
information in the output summary.

See Section 3.5 for more information on parallel decomposition and load imbalance.

Tech Tip: Although FCONVERT-generated solutions for block decomposition are
computationally accurate, they may not be the most practical way to handle grids for
complex object geometries. Therefore, most DPLR users choose to keep iaction=1 and
determine from their own experience the best way to break the master blocks in the input
grid, recognizing that there are algorithmic limits on how small parallel blocks should be,
and thus determining how many processors the problem will require.

3.4 Parallel Decomposition

DPLR is a distributed-memory parallel code, so solutions for each grid block are
computed simultaneously rather than sequentially. Multi-block information transfer is
handled through MPI data constructs, so it is necessary to run on at least as many
processors as blocks in the original computational grid. Running on more processors
than master grid blocks is often advantageous, since the largest blocks can then be
split (decomposed) into smaller pieces, increasing computational efficiency and
decreasing turnaround time. This decomposition, if required, is the most common
reason for running FCONVERT.

 Using FCONVERT

DPLR Code Version 4.01.1 User Manual 3-21 10/27/09

Although the “ideal” number of processors to use for a given job is a matter of
personal preference, it is generally a function of the total number of processors that
are available and the number that are necessary to achieve a reasonable measure of
computational efficiency referred to as “load balance”.

Once the desired number of processors to use during the DPLR run has been
determined, the plot 3D input grid file must then be decomposed into a minimum of
one block per processor.

As discussed in Section 3.2, parallel decomposition of an input grid file can be
accomplished in two ways:

• Setting iaction=1, manually determining the best strategy for decomposing
the input grid file, then entering one set of decomposition factors in the ibrk,
jbrk, and kbrk flags in the FCONVERT input deck for each block in the
input file

 or

• Setting iaction=2, entering the number of blocks to decompose the input
file into (minimally equal to the number of processors that will be used for the
DPLR run) in the nbreak flag, and allowing FCONVERT to automatically
determine the best decomposition strategy for the input grid file.

Although the choice of setting is dependent upon the situation, choosing iaction=1
can have significant advantages, including:

• More direct control over the decomposition strategy to ensure minimal
generation of additional zonal interfaces and to avoid breaks in the body-
normal direction – two conditions that support the rapid convergence of
DPLR Code solutions.

• Avoiding the need to generate the DPLR input deck prior to running
FCONVERT (as is the case when iaction=2. See Chapter 6 for more
information on this requirement.)

3.4.1 Load Balance

Load balance is a measure of the computational efficiency, and thus the operational
quality, of a grid decomposition strategy.

Expressed in terms of imbalance, this metric is computed as the average amount of
wasted CPU time that will result if the proposed grid decomposition strategy is
employed to prepare the input grid for parallel processing.

Ideally, as the load imbalance value for a decomposition strategy approaches zero, the
computational efficiency, and thus quality/desirability of the strategy increases.
In practice , however, things are often more complex and accepting a certain amount
of load imbalance can be preferable to a decomposition strategy that introduces an

 Using FCONVERT

DPLR Code Version 4.01.1 User Manual 3-22 10/27/09

unacceptable number of zonal interfaces or one that requires block breaks in the body
normal direction.
In most cases, using the load imbalance metric, estimated and reported by
FCONVERT whenever a grid file is processed, is usually sufficient to provide a first-
order estimate of the quality of a decomposition strategy.

Tech Tip: To test the load balance for a decomposition strategy before using it in a
DPLR run, set iaction=0 and nbreak = the maximum number of blocks in the
strategy. FCONVERT will then output the most load balanced way to decompose the
input grid into that number of output blocks.

3.4.2 Parallel Recomposition

Although this action is rarely used, FCONVERT can be used to “recompose” a grid
file that was previously decomposed by setting iaction=3, nborig= number of
blocks in the recomposed file, and init=1.

Tech Tip: Although FCONVERT will recompose an input grid file, it does not
recreate the zonal interface file for the recomposed file. Therefore, it is important to
save the original interface file to avoid having to recreate it after the recompose is
completed.

3.5 Mesh Sequencing

Computational grids composed of a large number of data points typically take longer
to solve than grids with fewer points. As a result, grids used for initial solutions of
CFD problems are sometimes coarsened or “sequenced” to reduce the number of
points while maintaining the topology of the mesh. After an acceptable “first guess”
is acquired, the grid is restored in a step-wise fashion to its original number of points
for final solution and post-solution data reporting.
Also, there may be a problem-specific advantage to obtaining a solution on a coarser
mesh, as in the case of wake flow problems or for performing grid convergence
studies.
For both these reasons, an option is included in FCONVERT to sequence (coarsen) a
grid, radiation, boundary condition, or restart file, and create a new output file that
maintains point-matching fidelity.

 Using FCONVERT

DPLR Code Version 4.01.1 User Manual 3-23 10/27/09

3.5.1 Sequencing an Input Grid

To sequence an input grid, set imseq=1, then enter a sequencing factor in iseq,
jseq, and kseq for each master block in the grid. A sequencing factor of n implies
that the block should be coarsened n times in that direction.
For example, a sequencing record of:

iseq jseq kseq

 3 2 1

tells FCONVERT to retain one out of every 3 points in the i direction, one out of
every 2 points in the j direction, and every point in the k direction of the block being
described.

To sequence every block in the grid by the same set of factors, set imseq=2, then
enter only one set of sequencing factors in the iseq, jseq, and kseq input flags.

If the input grid has zonal interface information associated with it, these data will be
automatically sequenced along with the grid file. Once you have appropriately
sequenced the grid file, boundary condition file (if any), and radiation file (if any),
you can set up and run the problem independently from the fine grid solution.

Tech Tip: Be sure that the sequencing strategy you choose for multi-block problems
results in a coarsened grid that remains point matched. While failure to produce a
point-matched grid across zonal interfaces will not result in a runtime error in
FCONVERT, it will cause problems in the DPLR run.

3.5.2 Upsequencing Restart Files

After using a sequenced grid file to achieve a good initial solution in a relatively short
period of computing time, you can proceed to restoring grid points and refining your
solution by using FCONVERT to upsequence the restart file.

To upsequence the restart file generated with the coarsened grid:

Step 1: Open and name a new FCONVERT input file.

Step 2: Set ifile=2, inform=11, imseq=-2, iseq, jseq, kseq to
values used during sequencing, iname= coarsened
restart file name, oname= new (uncoarsened) restart
file name (*.pslx).

Step 3: Save file to your working directory.

 Using FCONVERT

DPLR Code Version 4.01.1 User Manual 3-24 10/27/09

Step 4: Run FCONVERT < new FCONVERT input file.

Step 5: Open and name another new FCONVERT input file.

Step 6: Set ifile=1, inform=2, imseq=0, iname= original plot3d
grid filename, oname= new (unsequenced) XDR parallel
grid file name (*.pgrx).

Step 7: Save file to your working directory.

Step 8: Run FCONVERT < second new FCONVERT input file.

Result: Your working directory now contains an upsequenced restart file that can be
used to start a new solution run with the DPLR-readable grid file containing the
original number of data points.

Tech Tips:
1). Starting a new solution run with a restart file is always more time-efficient than
starting an initial run. Thus, this “quick” method of obtaining a valid restart file can
significantly shorten the time you will need to obtain a solution for the first run of a
CFD simulation.

2). If you use different levels of sequencing to obtain restart files, be sure to create
and save a new pgrx grid file from the original plot3d grid file to match the number
of points in the restart file used for each DPLR run. See Section 7.1 and 7.2 for more
information on DPLR Workflow and Workflow Shortcuts.

Chapter 4 – Using DPLR

DPLR Code Version 4.01.1 User Manual 4-1 10/27/09

Contents

4.0 Introduction ..2

4.1 Running DPLR ..2

4.2 Input Flags for DPLR..6

4.3 ‘Neptune’ Sample Case..54

4.3.1 Neptune DPLR Input Deck ..55

4.3.2 Neptune DPLR Input Deck Settings..59

4.3.3 Neptune Output Summary ..70

4.3.4 Neptune Output Summary Information..73

4.4 Monitoring the DPLR Run..74

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-2 10/27/09

4.0 Introduction

DPLR2D and DPLR3D are the main CFD solver applications provided in the DPLR
Code Distribution Package. The two programs are closely related - sharing a common
input deck format and most of the physics and numeric subroutines and libraries.
However, two-dimensional or axisymmetric problems must be solved (and run much
faster) with the DPLR2D executable whereas DPLR3D must be used for solving
three-dimensional problems.

For this manual, the term DPLR will be used to refer to whichever solver application
(DPLR2D or DPLR3D) is chosen for the problem under consideration.

4.1 Running DPLR

Step 1: Open the text editor program for your system.
Action: At the command line prompt, open:

 /[path to your cfdinput directory]/ generic.inp

Result: A generic input file or “deck” appears on screen, with
 place-holder default values. To start with a blank deck,
 remove the values as shown on the following page.

Step 2: Enter appropriate, problem-specific values for each of the input variables
or “flags”. (See Section 4.3 for a description of DPLR input flags and a list
of allowable values.)

Action: For each flag, type:
 allowable, problem-specific value

Result: Input deck contains sufficient information for DPLR to
 process an input grid file and develop a solution to the
 problem.

Tech Tip: Take special care to preserve the line spacing in the
file as you enter new values and/or replace default values with
problem-specific ones. If lines are added to or subtracted from
the input deck file, DPLR will not be able to read it accurately.

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-3 10/27/09

INPUT DECK FOR DPLR2D/DPLR3D CODE v4-01-1

gname,fname,bname,rname,dname,cname
'mygridname'
'myrestartname'
'mybcname'
'myradname'
‘myconnectname’
'PATH/cfdinput/air5sp5.chem'

 nblk igrid irest ibcf iradf nfree iinit

 ivis ikt ikv ivmod idmod itmod islip iblow

 icatmd ireqmd twall epsr gamcat xxxx vwall

 ichem ikeq ivib irot ieex iel irad ipen

 itrmod itrans trloc trext itshk

 istop nplot iplot iaxi ires

 igdum kbl kdg istate iresv

 xscale ils Le/Sc LeT/ScT prtl prtlT

 xxxx xxxx rvr resmin

==
 SPACE MARCHING 1D IMPLEMENTATION
==

 ispace dxmin slength nxtot

==
 TIME ACCURATE & STATISTICAL OPTIONS
==

itime lmax dttol tfinal tfac

ifstat iaero

==
 GRID ADJUSTMENT/ALIGNMENT/MORPHING
==

 igalign ngiter nalign i1stadpt

 imedge imradial ngeom ismooth

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-4 10/27/09

 fs_scale ds_mult gmargin

 ds1 cellRe ds1mx ds2fr

==
 OVERSET GRID IMPLEMENTATION
==

 iover ioint xxxxx

==
 BLOCK #1
==

 ntx nty ntz iconr isim ifree initi ibadpt

 iflx iord omgi ilim idiss epsi

 jflx jord omgj jlim jdiss epsj

 kflx kord omgk klim kdiss epsk

 iextst nrlx ildir ibcu iblag ilt ibdir cflm

 Boundary condition type [ibc]:
 imin imax jmin jmax kmin kmax

==
 Freestream Specification #1
==

 irm density M/Re/V cx cy cz

 Tin Trin Tvin Tein

 turbi tkref

 subp0 subT0 pback

 cs (Species order: N2 O2 NO N O)

==
 List of CFL numbers or timesteps for ramping
==

-1

Figure 4-1 DPLR Input Deck

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-5 10/27/09

Step 3: Save the input deck file.
Action: At the command line, type:

 save ‘yourdplrinputfilename.inp’

Result: The input deck for your problem is saved.

Step 4: Run DPLR.
Action: At the command line prompt, type:

 mpirun – np X (-machinefile machine.inp)
 $path/dplr2d (or dplr3d) <
 yourdplrinputfilename.inp

Result: DPLR performs the simulation on ‘X’ number of processors
 for the number of iterations specified in the input deck to
 achieve a solution. During the run, diagnostic output called
 the “standard out” (STDOUT), is echoed to the screen to
 provide feedback on the action(s) being performed,
 including any warning messages. If a fatal error is
 encountered, a descriptive message will be displayed in the
 STDOUT and the run will terminate.

 When a specified convergence level is reached or you halt
 the run, an output solution (or restart) file [.pslx] is
 created along with an on-screen run summary. (See Section
 4.3 for an example of a problem-specific DPLR input deck
 and run summary.)

Tech Tips:
1) The run command above works for MPICH with a single type of
processor. Different commands may be required for different MPI
implementations or execution on heterogeneous clusters. Consult your
system administrator for details on MPI program execution on your
particular machine.

2) If a machinefile is required by your computer architecture, it consists
simply of an ASCII listing of available machine (node) names, followed by
the number of processes to start on each node. Example:

 node001:2 or node001 slots=2
 node002:2 node002 slots=2
 node003:2 node003 slots=2

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-6 10/27/09

Both machine files show that the system can accept a job requiring up to 6
processors.

3) To avoid slow performance, hangs or crashes, be sure that:
 * Nodes listed in the machine file are available for use and free of
 other jobs
 * Your job does not require more processors or memory than the
 machine file says the system can accept.

4.2 Input Flags for DPLR

Input flags for DPLR are discussed below in the order they appear in the deck.

Input Filenames - These are external input files used by DPLR at runtime. Although
these files can be specified using relative or absolute pathnames (with the exception
of the chemistry input file which requires an absolute pathname), you may find that
placing them in your problem-specific working directory creates a more productive
computational environment for DPLR solutions.

Depending on the format of the file, a standard suffix will be assumed. See Section
9.2 for a list of file types and associated default suffixes.

 gname - Specifies the name of the input XDR parallel grid file, and
 will typically have the suffix “.pgrx”. If the file was
 prepared using FCONVERT, the name is specified in the
 oname flag of the FCONVERT input deck. This file
 contains not only the xyz coordinates of all the grid blocks
 in the simulation, but also information about block
 connectivity and the desired decomposition for processing.
 This file is required and must already exist when the
 simulation run begins.

 fname - Specifies the name of the input restart file, and will
 typically have the suffix “.pslx”. This is a required file
 name. If this is a new simulation, DPLR will create the file
 to go with the name specified here. If the simulation is a
 rerun, the file specified here should already exist. See
 Section 6.6 for more information on restart files.

 bname - Specifies the name of the input boundary condition file,
 and will typically have the suffix “.pbca”. This file is not

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-7 10/27/09

 required to run a simulation, but having one gives you
 increased flexibility in specifying point-by-point
 parameters as opposed to the standard block face
 parameters. See Section 6.4 for more information on
 boundary condition files.

 rname - Specifies the name of the input surface radiation file, and
 will typically have the suffix “.prdx”. This file is optional
 and read only if volumetric radiation data are input and the
 irad flag is set to =1. If the file is not required for the
 simulation, use “none” as the filename.

 dname - Specifies the name of the input overset connectivity file
 and will typically have the suffix “.dci” if ioint=1. This
 file is only required in iover=1. If overset logic is not
 enabled, use “none” as the filename.

 cname - Specifies the name of the input chemistry file, and will
 typically have the suffix “.chem”. This file is required and
 must exist in the “cfdinput” directory that is created
 when you install the DPLR Code Package. See Section 2.4
 for information on the directory and file structure of the
 DPLR Code Package and Section 6.7 for more information
 on chemistry files.

Tech Tip: Unlike other input files, the absolute pathname to this
file must be specified in the input deck.

Global Modeling Flags – These flags are for values that remain constant for all
blocks of the simulation.

 nblk - Specifies the number of master grid blocks in the
 simulation. This is the same value as nborig in the
 FCONVERT input deck and will be less than or equal to
 the number of processors on which the job is run.

 igrid - Specifies the format of the input grid file (gname).
 Allowable values are:

1 Parallel archival file (native unformatted)
 11 Parallel archival file (XDR format) (Recommended)

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-8 10/27/09

 21 Parallel archival file (ASCII)

 irest - Specifies the format of the restart file (fname).
 Allowable values are:

1 Parallel archival file (native unformatted)
 11 Parallel archival file (XDR format) (Recommended)
 21 Parallel archival file (ASCII)

 ibcf - Specifies the format of the boundary condition (BC) file
 (bname), if any. Allowable values are:

0 Do not read a BC file
1 Parallel archival file (native unformatted)

 11 Parallel archival file (XDR format)
 21 Parallel archival file (ASCII)

 iradf - Specifies the format of the input radiation file (rname), if
 any. Allowable values are:

0 Do not read a radiation file
1 Parallel archival file (native unformatted)

 11 Parallel archival file (XDR format)
 21 Parallel archival file (ASCII)

 nfree - Indicates the number of freestream specifications (i.e. areas
 of the freestream with preconfigured flow conditions) that
 are characterized in the DPLR input deck.

 iinit - Specifies how to initialize the simulation. Allowable values
 are:

 0 Start all blocks by initializing to freestream values
 in the specification identified in the block

1 Restart from saved file
2 Start with a stagnant interior at low pressure
3 Start with artificial boundary layer in place

 10 Block-by-block initialization using iconr flag
 11 Restart from saved file, reset nit and etime

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-9 10/27/09

Tech Tip: When you are running a simulation for the very first
time, set iinit=0. Thereafter, set iinit = 1 unless problem
specifics require use of one of the other available options.

 ivis - Specifies the equation set to solve. Allowable values are:

0 Euler simulation (neglect Navier-Stokes terms)
1 Laminar full Navier-Stokes simulation
2 Turbulent full Navier-Stokes simulation

 11 Laminar Navier-Stokes simulation (thin-layer)
 12 Turbulent Navier-Stokes simulation (thin-layer)

Tech Tips:
1) DPLR is a full Navier-Stokes solver and recommended to be
used as such. By setting ivis=0, you can run the problem in
Euler mode, but the run time per iteration will increase
significantly and viscous boundary conditions should not be
specified.
2) Running DPLR in thin-layer mode is also not recommended
because there are no time or memory savings in doing so.
3) The turbulence model to be employed when ivis=2 is
determined by the itmod flag.

 ikt - Specifies the model used to compute translational thermal
 conductivity. An appropriate setting is required for all
 viscous simulations. Allowable values are:

1 Use the model that is consistent with ivmod
2 Use constant Prandtl number expression

Tech Tip: ikt=1 is the preferred setting for all practical
applications.

 ikv - Specifies the model used to compute vibrational thermal
 conductivity. An appropriate setting is required for all
 viscous simulations with vibrational nonequilibrium
 (ivib=1, 3, 4). Allowable values are:

 1 Standard expression with ev gradients
 2 Hard sphere approximation with ev gradients

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-10 10/27/09

 11 Standard expression with Tv gradients (preferred
 setting for all practical applications.)
 12 Hard sphere approximation with Tv gradients

Tech Tips:
1). Hard sphere approximations are provided only for
comparison to legacy codes and should not be used.
2). The choice between ev and Tv gradients is somewhat
arbitrary, and scales the resulting vibrational thermal
conductivity (kv) by the vibrational specific heat (

€

Cvvib
):

€

qv =κ
∂Tv
∂η

≈κ
∂Tv
∂ev

∂ev
∂η

= ′ κ
∂ev
∂η

€

′ κ v =κ /Cvvib

For most simulations there is little difference between ikv = 1
and ikv = 11. However, for cases where the flow is nearly
completely dissociated, using energy gradients becomes slightly
unstable because there is little energy in this mode.

 ivmod - Specifies the baseline model used to compute mixture
 viscosity and thermal conductivity. An appropriate setting
 for ivmod is required for all viscous simulations.
 Allowable values are:

 1 Blottner/Wilke model with an Eucken relation
 (inaccurate at elevated temperatures)
 2 Sutherlands Law and constant Prandtl number
 (available only for perfect gas flows but a
 reasonable estimate at low to moderate
 temperatures)
 3 Yos approximate mixing rules (preferred model
 for all reacting gas simulations)
 4 Full first-order Chapman Enskog
 multicomponent (NOT WORKING in DPLR
 4.01.1)
 11 Blottner/Armaly-Sutton with an Eucken relation
 (requires composition-dependent tailoring of the
 free parameters for maximum accuracy)

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-11 10/27/09

 12 Keyes’ Equation and constant Prandtl number
 (should be used only where the freestream
 temperature is very low (<100K)

Tech Tip: ivmod=3 has been shown to be a reasonable and
general approximation to the true Chapman-Enskog fluxes.

 idmod - Specifies the baseline model used to compute species
 diffusion coefficients. An appropriate setting for idmod is
 required for all multi-species viscous simulations.
 Allowable values are:

 0 No diffusion (single species)

 1 Constant Lewis/Schmidt number (assumes all
 species have the same diffusion coefficient)
 2 Bifurcation model (developed to model boundary
 layer diffusion of carbon-based ablators; requires as
 input least squares fit coefficients for each species)
 3 Self-Consistent Effective Binary Diffusion
 (preferred model for all multi-species calculations,
 but somewhat unstable for separated flows. See Tech
 Tip below.)
 5 Iterative multicomponent (NOT WORKING in
 DPLR 4.01.0)
 11 Constant Lewis/Schmidt number, ignore
 ambipolar diffusion (widely used, but often
 inaccurate; provided for comparison to heritage
 codes.)

 12 Bifurcation model, fits obtained with
 assumption of ambipolar diffusion
 (developed to model boundary layer diffusion of
 carbon-based ablators; appropriate when using
 coefficients provided by Olynick)

 13 Self Consistent Effective Binary Diffusion,
 ignore ambipolar diffusion (provided for
 comparison to heritage codes)

Tech Tip: The preferred model for all multi-species calculations
is the Self-Consistent Effective Binary Diffusion (SCEBD) model
of Ramshaw and Chang (idmod=3,13), which has been shown

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-12 10/27/09

to give results in good agreement with exact solutions of the
Stefan-Maxwell equations. This model requires as input collision
integral data for each binary interaction in the mixture. These
data are imported to DPLR via the “gupta.tran” physical
model file in the cfdinput directory. However, it does tend to
be unstable for separated flows, particularly while the
recirculation region is being formed. Therefore, for separated
flows, start the solution with idmod=1 and an appropriate
Schmidt number, then switch to idmod=3 once the flow
structures have stabilized.

 itmod - Specifies the turbulence model to be employed. An
 appropriate setting for itmod is required for all turbulent
 simulations indicated by ivis=2,12. Allowable values
 are:

 0 Laminar Flow (non-turbulent)
 1 Baldwin-Lomax Model (reasonable results for
 attached flows with a favorable pressure gradient on
 both blunt and slender bodies)
1000 Spalart-Allmaras Model (no compressibility
 correction)
1001 Spalart-Allmaras Model (Catris&Aupoix comp.)
1002 Spalart-Allmaras Model (Secundov comp.)
1050 Detatched Eddy Simulation with Spalart-
 Allmaras Model (Hybrid Reynolds Average Navier
 Stokes (RANS) Large Eddy Simulation (LES) model
 – no compressibility correction)

1051 Detatched Eddy Simulation with Spalart-
 Allmaras Model (Hybrid RANS LES model –
 Catris&Aupoix comp.)

1052 Detatched Eddy Simulation with Spalart-
 Allmaras Model (Hybrid RANS LES model –
 Secundov comp.)

2001 Menter SST Model (no compressibility
 correction)
2002 Menter SST Model (compressibility
 correction #1)

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-13 10/27/09

2003 Menter SST Model (compressibility
 correction #2 - recommended model for separated
 flows and flows with adverse pressure gradients)

2004 Menter SST Model (compressibility corrections
 with further modifications)

2011 Overflow 2.0a “version” of SST

2021 Menter SST 2006 K-W model (no
 compressibility)

2022 Menter SST 2006 K-W model (compressibility
 correction #1)

2023 Menter SST 2006 K-W model (compressibility
 correction #2)

2024 Menter SST 2006 K-W model with further
 modifications and improvements

2051 Detatched Eddy Simulation with Menter SST
 Model (Hybrid RANS LES model – no
 compressibility correction)

2052 Detatched Eddy Simulation with Menter SST
 Model (Hybrid RANS LES model –compressibility
 correction #1)

2053 Detatched Eddy Simulation with Menter SST
 Model (Hybrid RANS LES model - compressibility
 correction #2 - recommended model for separated
 flows and flows with adverse pressure gradients)

2054 Detatched Eddy Simulation with Menter SST
 Model with further modifications and
 improvements

3001 1998 K-W modified 3-equation, for Lag
 development (NOT WORKING in DPLR 4.01.1.)
3002 Lag Turbulence model (NOT WORKING in DPLR
 4.01.1)

 islip - Specifies the model to be used for slip-wall boundary
 conditions. Allowable values are:

 0 Disable wall slip (recommended setting. See Tech
 Tip below.)
 1 Maxwellian slip model

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-14 10/27/09

Tech Tip: Slip walls are not generally employed for simulations
in the hypersonic or supersonic continuum. DPLR has currently
implemented velocity and temperature slip models, but not
species density (mole fraction) slip conditions. The slip wall
model currently used in DPLR has not been fully validated yet,
and should therefore be used with caution.

 iblow - Specifies the model to be used for blowing-wall boundary
 conditions. Allowable values are:

 0 Disable wall blowing (usual setting)
 1 Specified wall blowing velocity (m/s)
 2 Specified unit mass flow rate (kg/m2/s)

Tech Tip: If blowing wall boundary conditions are taken into
account, vwall>0 defines a blowing wall and vwall<0
defines a sucking wall. Pointwise blowing rates can be specified
using the pointwise boundary condition file (.pbca) (See Section
6.3 for more information on boundary condition files). Complex
blowing models can be characterized using the material
response boundary conditions icatmd, ireqmd, twall,
epsr, and gamcat discussed below,

 icatmd - Specifies the model to be used for wall catalysis.
 Allowable values are:

 0 Disable wall catalysis (wall is assumed to be non-
 catalytic and the gradient of all species mole
 fractions is assumed to be zero.)
 1 Constant γ, homogeneous model (value for γ must
 be with the gamcat flag.)
 2 Constant γ, fully catalytic to ions but supports
 only homogeneous surface reactions such as
 N + N → N2 & O + O → O2.
3-98 Material specific surface kinetics (reaction rates
 for different materials are experimentally obtained
 and given in the “catalysis.surf” file in the
 cfdinput directory)

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-15 10/27/09

 99 Input material map (allows DPLR to access a
 surface catalytic map specifying pointwise material
 properties in a boundary condition file)

 100 Supercatalytic wall (assumes chemical
 composition at the wall is identical to the
 freestream, resulting in conservative enthalpy
 estimates appropriate for design studies)

 101-198 Supcercatalytic with specified freestream (most
 appropriate for high enthalpy simulations in ground
 test facilities)

 200 Mitcheltree CO2 model (developed for the Mars-
 like C02 atmosphere; models diffusion limited
 recombination pathways)

 201 Enhanced Mitcheltree CO2 model (additional
 recombination pathways in this model may make it
 more appropriate for higher flow enthalpies.)

 300 Generalized CO2 catalysis (Bose/Wright) (used
 in sensitivity analyses, not design work)

999 Equilibrium chemistry boundary condition

 1001 Parks Cabron Oxidation/Sublimation

 1002 Shuttle STS Carbon Oxidation

Tech Tip: Catalysis refers to how the wall surface facilitates
chemical reactions that can deposit energy on the vehicle
surface during flight. Much work is currently being done to
enhance empirical knowledge of material responses under
hypersonic flight conditions in a variety of atmospheric flows. As
the materials knowledge base increases, DPLR can be used to
simulate how the overall flow environment contributes to and, in
turn, is affected by chemical reactions on flight vehicle surfaces.

 ireqmd - Specifies the model to be used for surface radiative
 equilibrium. Allowable values are:

 0 Disable radiative equilibrium
 1 Constant emissivity (ε) model (value for ε set
 with the espr flag)

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-16 10/27/09

3-98 Material specific ε (emission rates for different
 materials are experimentally obtained and given in
 the “emission.rad” file in the cfdinput
 directory)
 99 Input material map (allows DPLR to access an
 emission radiation map specifying pointwise
 material properties in a boundary condition file)

 101-199 Material specific ε with a maximum wall
 temperature (used to model physical material
 temperature limits during initial design analysis.
 Maximum temperature specified with twall flag.
 DPLR will automatically switch between an
 isothermal and radiative equilibrium wall on a
 pointwise basis if this option is used.)

201-209 Material specific ε with a view factor correction
 (allows you to modify the surface emissivity in a
 pointwise manner to enable a simple view-factor
 correction to the hemispherical emissivities for
 internal and/or cavity flows.)

Tech Tip: A radiative equilibrium wall is a common design
model that assumes all energy incident to the surface of a vehicle
is reradiated to space at a rate consistent with the emissivity of
the wall material. As the materials knowledge base increases,
DPLR can be used to simulate how the overall flow environment
contributes to and, in turn, is affected by radiative emissivity of
vehicle surfaces during hypersonic flight.

 twall - Specifies the wall temperature to be used for isothermal
 temperature-capped radiative equilibrium wall
 simulations. Also specifies wall temperature if
 ireqmd > 100.

 epsr - Specifies the constant value of emissivity (ε) to be used for
 radiative equilibrium wall simulations (ireqmd=1)

 gamcat - Specifies the constant value of catalytic effcienty (γ) to be
 used for catalytic wall simulations (icatmd=1,2)

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-17 10/27/09

 xxxx - Not used in DPLR 4.01.0.

 vwall - Specifies the wall velocity or blowing rate. Allows you to
 impose a constant blowing (vwall>0) or sucking
 (vwall<0) when used with the iblow flag. If iblow=1,
 expressed as velocity (m/s) . If iblow=2, expressed in
 mass flux per unit area (kg/m2/s).

 ichem - Specifies the model employed for chemical reactions in the
 gas phase. Allowable values are:

 0 Frozen chemistry (no chemical reactions occur in
 the flowfield)
 1 Finite-rate chemistry (Arrhenius style reaction
 kinetics used to model the chemistry are given in the
 “.chem” file specified with the dname flag and
 found in the cfdinput/directory.)

Tech Tip: DPLR does not currently support equilibrium
chemistry.

 ikeq - Specifies the model used for computing equilibrium
 constants. This is required when ichem=1. Allowable
 values are:

 -1 No reverse reactions (debugging tool that turns off
 reverse reactions completely; should not be used for
 actual simulations)
 1 Park 1985 fits (not recommended for use due to
 potential instabilities in some simulations)

 2 Mitcheltree 1994 fits (not recommended for use
 due to potential instabilities in some simulations)
 3 Park 1990 fits (n = 1016/cm3) (not recommended
 for use due to potential instabilities in some
 simulations)
 4 Park 1990 fits (n = 1019/cm3) (not recommended
 for use due to potential instabilities in some
 simulations)
 9 Computed from NASA Lewis thermodynamic
 fits (1994) (preferred method of computing

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-18 10/27/09

 equilibrium constants using Gibb’s free energy
 method where species enthalpy and entropy are
 computed using curve fit expressions given by
 Gordon and McBride with the final equilibrium
 constant determined via the van Hoff’t equation.)

 11-19 Same as 1-9 with ramped limiter (slowly
 approaches more aggressive limiter value ; for
 advanced users only)
 21-29 Same as 1-9 with aggressive limiter (begins with
 larger limiter as default as used in simulations of the
 Fire-II entry vehicle at early trajectory points: for
 advanced users only)
 31-39 Same as 1-9 with conservative limiter (scales
 down the 1-9 model selected by 75%)

Tech Tip: Equilibrium constants used to compute the reaction
kinetics for chemical reactions in the gas phase are computed by
default in DPLR via Arrhenius expressions. The curve fit model
offered in ikeq=9 has been found to yield the most stable
equilibrium constants for most simulations. However, in those
situations where the equilibrium constants are either very small
or very large, e.g. ionized wake flow simulations and low density
ionized flow simulations with non- or weakly catalytic cold
walls, DPLR offers ways to minimize the potential solution
instability that may occur with these extreme values. By setting
ikeq=11-19, DPLR slowly increases the value of the constant
limiter as the solution progresses. By setting ikeq=21-29,
DPLR begins with a larger limiter as the default value to avoid
computed heat transfer at the vehicle surface being too small. By
setting ikeq=31-39, DPLR scales down the 1 – 9 model
selected by 75%. Although extreme situations such as these are
unlikely to occur during routine use of DPLR, the capability of
dealing with them does exist for the advanced user who needs to
do so.

 ivib - Specifies the model used to compute the vibrational energy
 component of the gas. Allowable values are:

 0 Neglect vibrational energy

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-19 10/27/09

 1 Vibrational nonequilibrium, single Tv
 (recommended for all planetary and high-velocity
 Earth entry flows)
 2 Vibrational equilibrium using statistical
 mechanics
 3 Complete thermal equilibrium using NASA
 LeRC curve fits (based on data from NASA’s Lewis
 Research Center’s (now Glen Research Center)
 computer program CEA (NASA Reference
 Publication 1311). Can be employed for low altitude
 hypersonic flight or some Shuttle-type reentry
 trajectories where vibrational nonequilibrium is not
 very important)
 4 Two temperature model using LeRC curve fits
 (Tr = Tel = T) (not recommended)

 5 Two temperature model using LeRC curve fits
 (Tr = T; Tv = Te = Tel) (NOT WORKING in DPLR
 4.01.0)
 11 Virbrational nonequilibrium, multiple Tv (NOT
 WORKING in DPLR 4.01.1)

Tech Tip: If ivib=3 or 4 , the values of irot, ieex, and iel
are ignored because these settings uniquely determine the
apportionment of internal energies among the various modes.

 irot - Specifies the model used to compute the rotational energy
 component of the gas. Allowable values are:

 1 Rotational nonequilibrium, single Tv (mainly
 used for radiation studies of high altitude flows)
 2 Rotational equilibrium using statistical
 mechanics (recommended setting)
 3 Complete thermal equilibrium using NASA
 LeRC curve fits (based on data from NASA’s Lewis
 Research Center’s (now Glen Research Center)
 computer program CEA (NASA Reference
 Publication 1311).

 4 Two temperature model using LeRc curve fits
 (Tr = Tel = T; Tv = Te) (not recommended)

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-20 10/27/09

 5 Two temperature model using LeRC curve fits
 (Tr = T; Tv = Te = Tel) (NOT WORKING in DPLR
 4.01.0)
 11 Rotational nonequilibrium, multiple Tr (NOT
 WORKING in DPLR 4.01.1)

Tech Tip: Unlike vibration, the rotational mode of the gas is
assumed to be fully excited, and thus cannot be neglected for
polyatomic species. You must decide whether to model the
rotational mode in equilibrium with the translational mode
(irot = 2-4) or in nonequilibrium (irot=1). In practice, it
is rarely necessary to solve for a nonequilibrium rotational
energy so this feature is provided mainly for detailed radiation
studies of high altitude flows.

 ieex - Specifies the model used to compute the electronic energy
 component of the gas. Allowable values are:

 0 Neglect electronic energy
 1 Statistical mechanics (Te = T) (recommended
 setting)

 2 Statistical mechanics (Te = Tv)
 3 Complete thermal equilibrium using NASA
 Lewis curve fits (based on data from NASA’s
 Lewis Research Center’s (now Glen Research
 Center) computer program CEA (NASA Reference
 Publication 1311).
 4 Two temperature model using LeRC curve fits
 (Tr = Tel = T; Tv = Te) (not recommended)

 5 Two temperature model using LeRC curve fits
 (Tr = T; Tv = Te = Tel) (NOT WORKING in DPLR
 4.01.1)

Tech Tip: For ieex=1, the contribution of the electronic
energy to the total is computed using statistical mechanics based
on characteristic temperatures and degeneracies in the
“chemprops.spec” file from the cfdinput directory and
is assumed to be in equilibrium with the translational mode.

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-21 10/27/09

 iel - Specifies the model used to compute the free electron
 energy component of the gas. Allowable values are:

 0 Neglect free electron energy (only valid for flows
 with no ionization)
 1 Coupled free electron and translational energy
 (Tel =T) (recommended setting ; assumes that the
 energy of the free electron gas is governed by the
 translational temperature)
 2 Coupled free electron energy and vibrational
 energy (Tel = T v) (NOT WORKING in DPLR
 4.01.1)
 3 Complete thermal equilibrium using NASA
 LeRC curve fits (based on data from NASA’s Lewis
 Research Center’s (now Glen Research Center)
 computer program CEA (NASA Reference
 Publication 1311).
 4 Two temperature model using LeRc curve fits
 (Tr = Tel = T; Tv = T e)

 5 Two temperature model using LeRc curve fits
 (Tv = Te =Tel; Tr = T) (NOT WORKING in DPLR
 4.01.1)
 11 Tel Independent (NOT WORKING in DPLR 4.01.1)

 irad - Specifies the model used for shock layer radiation
 modeling. Allowable values are:

 0 No radiation model (for weakly radiating flow
 fields)
 1 Read pointwise

€

Δ ⋅QR from a file (use only if
 rname is defined.)

 2 Optically thin emission (Carbon-Nitrogen
 Violet)
 3 Optically thin emission (Carbon-Nitrogen Red)
 4 Optically thin emission (Carbon-Nitrogen Violet
 + Red)

 102-198 Same as 2-98 but with input surface heating
 information read from the rname file

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-22 10/27/09

Tech Tip:
1). DPLR does not compute shock layer radiation directly, but
several hooks are provided for coupling, either loosely to
external radiation transport codes or tightly for optically thin
emission. Typically, for weakly radiating flowfields, shock layer
radiation is either neglected or computed in an uncoupled
manner. For these cases, irad = 0.

2). If the radiation field is known to be optically thin, DPLR
supports tight coupling by computing the

€

Δ ⋅QR source term at
each volume cell using curve fits generated by comparison to
more exact computations. Currently DPLR supports this option
for CN radiation only (irad = 2-4). In this case, DPLR reads the
curve fit coefficients from the file “emission.rad” from the
cfdinput directory. As information becomes available for
other species, this file can be updated and expanded.(Note: this
option assumes that energy converted to radiation is instantly
lost from the control volume.)

3). To include the surface radiative heating effects in the
radiative equilibrium surface energy balance, set irad=102-
104 and read the pointwise surface radiative heating from a
radiation file (rname) in your working directory. See Section
6.7 for more information on radiation files.

4). To use an external radiation transport code such as
RADEQUIL or NEQAIR to loosely couple flowfield radiation
information to DPLR solutions, iterate between the two codes as
follows:
 a. Set irad=0 and run an initial DPLR solution.
 b. Extract data using POSTFLOW for input to your
 radiation transport code.
 c. Create a radiation file (rname) from data generated by
 running your radiation transport code. See Section 6.7 for
 more information on radiation files.
 d. Perform a second DPLR run with irad=1.
 e. Repeat until you obtain a fully converged solution.
 f. Compare your first and final solutions to determine the
 significance of the shock layer radiation value.

 ipen - Specifies the model used for reaction product energy
 distribution. Allowable values are:

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-23 10/27/09

0 All species are created/destroyed at the internal
energy of the mixture

1-9 n*10 percent of dissociation energy for all
 reactions (NOT WORKING in DPLR 4.01.1)

 itrmod - Specifies the model used for turbulence transition
 modeling. This flag is used whenever a turbulent flowfield
 is specified by ivis=2, 12. Allowable values are:

 0 Neglect transition, flow is fully turbulent
 1 TANH transition function
 2 Dhawan and Narashima model
 3 Sigmoid function

 100 Input transition map (allows simulation of local
 turbulent regions in a laminar flow)

Tech Tip: Although some turbulence models in DPLR are
capable of predicting transition, the code also allows you to use
several models to impose transition in locations of your
choosing. When itrmod=1,2,3 , the location and extent of
the transition regions are defined by the values you put into
itrans, trloc, and trext. When itrmod=100, you have
the option of creating a transition map consisting of a turbulence
intensity value ranging from 0 (fully laminar) to 1 (fully
turbulent) at each surface point and placing the information into
a boundary condition file (bname). See Section 6.3 for more
information on boundary condition files. Remember, however,
choosing any of these models will impose, and not predict,
turbulent transition(s) in your simulation.

 itrans - Specifies the ordinate of the transition onset location. This
 flag is used whenever a turbulent flowfield (ivis=2,12)
 with an input transition model (itrmod=1,2,3) is chosen.
 Allowable values are:

 ±1 Transition at specified constant x value
 ±2 Transition at specified constant y value
 ±3 Transition at specified constant z value

Tech Tip: Setting itrans to a positive value implies transition
proceeds with increasing ordinate, while setting it to a negative

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-24 10/27/09

value implies that transition proceeds with a decreasing
ordinate.

 trloc - Specifies the transition onset location. This flag is used
 whenever a turbulent flowfield (ivis=2,12) with an input
 transition model (itrmod=1,2,3) is chosen. trloc is a
 real dimensional number tied to the value of itrans. For
 example, if itrans=1 and trloc=2.5, DPLR will initiate
 transition at a value of x=2.5m, with turbulent flow for
 larger values of x and laminar flow for smaller values.

 trext - Specifies the extent of transition to turbulent flow. This flag
 is used whenever a turbulent flowfield (ivis=2,12) with
 an input transition model (itrmod=1,2,3) is chosen.
 trext is a real dimensional number equal to the width of
 the TANH function from 0.01 – 0.99. The other transition
 models do not permit user modification of the transition
 length, so the trext flag is not used in those cases.

 itshk - Specifies the type of limiting employed (Spalart-Allmaras
 & SST) for turbulent shock interaction. Allowable values
 are:

0 No shock interaction modification
1 Standard limiting, Wilcox-type for SST or SALSA for

S-A
2 Limiting with low Reynolds number effect, for SST

only

 istop - Specifies the number of iterations to run before stopping
 the simulation. This is a relative value. For example, if a
 simulation is started after 500 iterations are already
 complete and istop=100, DPLR will run 100 additional
 iterations, reaching completion after 600 total iterations.

Tech Tip: DPLR can also be instructed to stop a run when a
specified L2norm residual level is reached using the resmin
flag. In this case, termination will occur when the first condition,
either istop or resmin, is met.

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-25 10/27/09

 nplot - Specifies the frequency of restart file writes. DPLR will
 save a restart file periodically every nplot iterations
 during the solution run as long as the flag iplot>0.

Tech Tip: A good general value to use for nplot is usually 100
- large enough so DPLR does not spend a large percentage of
the runtime writing restart files, but small enough so a lot of
work is not lost if the job quits for some reason.

 iplot - Controls the redundancy of restart file writes. Allowable
 values are:

 -1 or 0 Do not write a restart file (use only for debugging)
 1 Write a single restart file
 n Save n-1 prior restarts

 -99 Force restart file write (use only for debugging)

Tech Tip: Setting iplot to a positive integer larger than 1 (n)
causes DPLR to save n-1 previous restart files in addition to the
current one. To distinguish saved files, DPLR will append the
iteration number of the restart file to the filename specified in
fname. For example, if fname=sample.pslx,
iplot=3, nplot=100, then after 1000 iterations the
following files will exist: sample.pslx, sample.pslx-900,
sample.pslx-800. Note that older restart files, created every 100
iterations as specified by the value in nplot, are not saved!

 iaxi - Enables axisymmetry in a DPLR2D simulation run.
 Allowable values are:

 -1 or 0 Non-axisymmetric (2D)
 1 Axisymmetric about the x-axis
 2 Axisymmetric about the y-axis

Tech Tip: DPLR2D simulates axisymmetric flows by solving the
Navier-Stokes equations in cylindrical rather than Cartesian
coordinates. This allows for an axisymmetric simulation in about
the same total solution time as a 2D result. The rotation axis of
the problem is always assumed to be either the x- or y-axis. Note

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-26 10/27/09

that DPLR2D simulations are always in the xy-plane, so rotation
about the z-axis is not permitted.

 ires - Specifies the type of residual and convergence data that are
 tracked and output to the screen and to the convergence
 file. Allowable values are:

 0 Do not output a convergence file
 1 Output nit, global residual, and Δt (iteration
 number, summed residual over all computational
 blocks, timestep for the iteration number)
 2 Output nit, global residual, and CFL number
 3 Output nit, global residual, and CPU time
 4 Output nit, global residual, and flow time
 5 Output nit, global residual, CFL number, and
 aero data
 11 Output nit, block residual, and Δt
 12 Output nit, block residual, and CFL number
 13 Output nit, block residual, and CPU time
 14 Output nit, block residual, and flow time
 15 Output nit, block residual, CFL number, and
 aero data
 22 Output nit, global residual, and min/max CFL
 32 Output nit, block residual, and min/max CFL
 99 Output nit, global residual, CFL number, and Δt

Tech Tips:
1)) nit = iteration number; global residual = summed
residual over all computational blocks; Δt = timestep for the
iteration number; CFL number = CFL number for the
iteration number; CPU time = elapsed CPU time at the
iteration number; flow time = elapsed flow time at the
iteration number (only useful for time accurate simulations);
aero data = data written to a *.aero file for each iteration
when viscous fluxes are included in the simulation; block
residual = residuals computed for each master block in the
simulation, (written only to the convergence file).

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-27 10/27/09

2) To compare the output residual at each iteration with the
computed residual in the first iteration, enter the ires value as
a negative number. Although this technique is usually preferred
by DPLR users for viewing progress toward solution conversion,
you should be aware that certain problems can have very small
or zero residuals in the first iteration which would result in
seemingly large, or inappropriate, residuals at later iterations.

3) Although DPLR will automatically capture specific
information in the convergence file “.con” and in the log file
“.log”, these are both subsets of what is echoed to the screen
during a DPLR run. To capture all the information created
during a DPLR run, you can set up your own user log file to run
in the background by typing the following at the command
prompt:

mpirun – np X (–machinefile machine.inp)
/$path/dplr2d (or dplr3d)<
yourdplrinputfilename > userlogfile &

This will result in your system returning you to the command
prompt and capturing the screen data in the background for your
future reference. See Section 6.8, 6.9, and 6.10 for more
information on convergence, aerodynamic, and log files.

 igdum - Controls the computation of grid dummy cell coordinates.
 Allowable values are:

 0 Only compute if necessary (preferred setting)
 1 Always recompute (use if boundary conditions are
 changed during simulation e.g. if a setup error is
 detected)

 -99 Only compute if necessary, output debugging
 files (for use by code developers)
 99 Recompute and output debugging files (for use
 by code developers)

Tech Tip: When a grid file is created by FCONVERT, dummy
cell values are not computed because FCONVERT does not have
information about the correct boundary conditions to enforce at
each grid face. DPLR will automatically generate the correct
dummy cell coordinates for each block based on the supplied

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-28 10/27/09

boundary conditions, and send the correct data to all processors
in the simulation. DPLR will then overwrite the stored grid file
to include the dummy cell information. The preferred setting for
this flag is igdum=0 because there is usually no need to
recompute dummy cells unless an error is detected and the
boundary conditions change during the simulation (igdum=1)

 kbl - Seldom needed, rarely used. (Allows you to zero out the body-
 normal added dissipation term in the boundary layer. If kbl is a
 positive integer, the body-normal eigenvalue will be zeroed out
 for the kbl cells nearest to each solid wall in the simulation and
 smoothly increased to the specified value.)

 kdg - Tangential epsilon augmented near axis boundary condition
 for k<kbl. Must have one or more 1011:1019 or 1011:2019
 BCs for this to have any effect. For developers only. Leave
 set to 0.

 istate - Specifies equation of state being used. Allowable values
 are:

 0, 1 Perfect gas

 2 Real gas (excluded volume) (NOT WORKING in
 DPLR 4.0)

 iresv - Controls the residual variable(s) tracked by DPLR.
 Allowable values are:

 1 Total density (sum of L2Norm of all species
 densities)

 2 Velocity (sum of velocity components)
 3 Energy (sum of energy equations)
 4 Turbulence variables (sum of turbulence variables
 for Spalart-Allmaras or Menter SST model)

 -n Conserved variable #n (See Tech Tip below)

Tech Tip: You can track the residual of a single equation by
using a negative integer for iresv. For example, for a 5-
species 2D simulation, the residual in the u momentum
component can be tracked with iresv = -6. Since DPLR is a

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-29 10/27/09

fully coupled code (with the exception of some turbulence
models), convergence of one variable is typically dependent on
convergence of the others, which limits the utility of single
variable residual. However this option can be useful for
analyzing an unstable simulation because the offending equation
will generally “blow up” before the others do.

 xscale - Used to scale the input grid at runtime. Allowable values
 are:

 1 No scaling (recommended)

 f Multiply grid dimensions by this value
 immediately after read

Tech Tip: DPLR will print a warning message if xscale is not
set to 1.

 ils - Specifies whether input constants governing laminar
 (Le/Sc) and turbulent (LeT/ScT) diffusion coefficients are
 to be interpreted as Lewis or Schmidt numbers. Allowable
 values are:

 1 Lewis Number
 2 Schmidt Number

 Le/Sc - Specifies the value of the laminar Lewis or Schmidt
 number to be employed in the simulation. This
 parameter is relevant for viscous simulations
 (ivis≠0) with constant Lewis/Schmidt number
 diffusion (idmod =1,11). Choosing a constant
 Schmidt number is typically preferred, with
 appropriate values varying with the target destination
 and entry velocity. Recommended values:

 0.4 – 0.7

Tech Tip: Remember that the preferred approach is to model
multi-species diffusion coefficients (idmod=3), in which case
this flag is not used during the simulation.

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-30 10/27/09

LeT/ScT - Specifies the value of the turbulent Lewis or
 Schmidt number to be employed in the simulation.
 Relevant for turbulent viscous simulations
 (ivis=2,12) regardless of the model used to
 compute species diffusion coefficients set by the
 idmod flag. Recommended values:

 0.5– 1.0

Tech Tip: A value of 0.7 has been baselined for the Mars
Science Laboratory.

 prtl - Specifies the value of the Prandtl number to be
 employed in the simulation. Relevant for viscous
 simulations (ivis≠0) with constant Prandtl
 number thermal conductivity model (ivmod=2,12
 or ikt=2.) Recommended value for low
 temperature air flows:

 0.72

Tech Tip: These models should only be selected for perfect gas
(non-reacting) low temperature flows. As such the value of prtl
is not usually relevant.

 prtlT - Specifies the value of the turbulent Prandtl number
 to be employed in the simulation. Relevant for all
 turbulent viscous simulations (ivis=2,12)
 irrespective of the turbulence or laminar
 conductivity model. Recommended value:

 0.9

 xxxx - Not used in DPLR 4.01.1

 xxxx - Not used in DPLR 4.01.1.

 rvr - Viscous overrelaxation parameter. Recommended
 value:

 1.3 (default)

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-31 10/27/09

 resmin - Specifies the minimum L2Norm residual for DPLR to
 reach to achieve a converged solution. Recommended
 value:

 1×10-8 or lower

Tech Tip: If you prefer to run your simulation to a specified
number of iterations irrespective of the residual, set istop to
the desired number of iterations and resmin to a very small
value, such as 1×10-20.

Space Marching 1D Implementation – Each of the flags in this portion of the DPLR
input deck allow for shock capture in 1D only.

 ispace - Used for 1D space marching simulations, i.e., shock tube
 flows. Allowed values are:

0 Disable space marching
1 Enable space marching

Tech Tip: Seldom used in practice, this option gives you a fast
and efficient tool to perform 1D flow simulations with complex
models. If this option is used, many of the other flags in the code
are ignored.

 dxmin - Sets the minimum x-spacing for the space marching
 routine. (Only used when ispace=1)

 slength - Sets the total marching distance for the space marching
 routine. (Only used when ispace=1)

 nxtot - Sets the total number of cells for the space marching
 routine. (Only used when ispace=1)

Time Accurate and Statistical Options Flags – Prior to release version 4.01.1,
DPLR has been primarily used to solve steady state problems characterized by large,
but stable time steps. With this release, DPLR can be run in a time-accurate fashion
and is thus capable of studying transient phenomena. Although default values are
suggested for each of the input flags, users should determine context-appropriate
values for each simulation problem employing this capability.

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-32 10/27/09

 itime - Specifies time integration order of accuracy. Allowable
 values are:

0 1st order of accuracy
1 2nd order (dual time-stepping) accuracy

 lmax - Specifies maximum number (n) of sub iterations per
 time step when itime=1. Default value:

 5

 dttol - Specifies the residual tolerance (f) for convergence of the
 sub iterations when itime=1. Default value:

 10-3

 tfinal - Tells DPLR to stop the simulation when flow time reaches
 this (f) value. Default value:

 1099 [very large number]

 tfac - Specifies the multiplicative factor on physical time step
 used to determine dual time step (i.e. sub iteration) when
 itime=1. Default value:

 1015 [very large number]

 ifstat - Specifies flow statistics DPLR is asked to compute.
 Allowable values are:

0 Do not compute flow statistics
1 Compute mean and root mean square (RMS)

 -1 Reset previously computed flow statistics and start
 again
 -2 Strip previously computed statistics from the restart
 file

 iaero - Tells DPLR to track integrated aerodynamic variables
 at each iteration. Allowable values are:

0 Do not track variables
1 Write integrated body forces and moments to file at
 each iteration

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-33 10/27/09

Grid Adjustment / Alignment / Morphing Flags – Each of the flags in this portion
of the DPLR input deck gives you a range of options to use if you decide to realign
your input grid to better capture the shock wave inside DPLR.

You can accomplish this in two ways:

• Adjusting the values for the grid adaption flags in the DPLR input deck to be
used with the restart file after running an initial simulation.

• Creating a runtime control file to adjust the values for the grid adaption flags
while the simulation in running. (See Section 6.4 for more information on Runtime
Control Files.)

To better capture the shock wave using this grid adaption option, you need to:
(1) Move the outer boundary of the input grid to just beyond the shock location as

determined by the initial converged solution.
(2) Smooth the outer boundary surface (controlled by the ismooth flag).
(3) Redistribute the interior grid points (controlled by the imradial flag).

 igalign - Enables and sets the type of grid adaption you want DPLR
 to use. Allowable values are:

0 Do not perform grid alignment
1 Perform basic grid alignment (should only be used with a
 restart file)

2 Recluster grid only; no alignment (not dependent upon a
shock wave location, can be used in initial simulation but do
not use with imradial=1 setting unless the problem has
been previously converged)

3 Smooth outer boundary only; no alignment (not
dependent upon a shock wave location, can be used in initial
simulation)

 5 Perform basic grid alignment, but hold first 40% of grid
 points in the body-normal direction fixed (should only be
 used with a restart file; permits rapid alignment of grid to
 shock wave and more aggressive CFL ramp between
 alignments, but should only be used after coarse alignment
 has been achieved; still experimental) (Not Tested in DPLR
 4.01.0)

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-34 10/27/09

 11 Automatic grid alignment (basic) (Allows DPLR to
 determine when to perform grid adaptions; not extensively
 tested, so use with caution)

 20 Surface morphing (constant amount) (Allows you to
 morph the surface of the body by an amount specified in the
 ds1 flag; used primarily for surface recession calculations;
 not extensively tested at this time, so use with caution)
 21 Surface morphing (variable delta specified in a
 pointwise boundary condition file) (Not Working in
 DPLR 4.01.0)

Tech Tips:
1). If you set igalign=1 before a restart file from an existing
solution exists, a runtime error will occur.

2). When igalign=5, ngeom and imradial are ignored.

3) When igalign=20, the remainder of the flags in this block
are ignored and the body-normal distribution is taken as a
scaled version of the previous distribution at every body
location.

4). Two options that were allowed in v3.05, igalign=4 and
igalign=14, are deprecated in this release. As of v4.01.0, the
input flag ismooth is provided in order to give the user more
flexibility in controlling the type of smoothing that occurs. The
functionality of igalign=4 and igalign=14 can be
replicated in the current release by setting igalign=1 and
igalign=11 respectively, along with ismooth=3.

 ngiter - Sets the frequency at which a grid alignment is
 performed. Recommended values:

 500 – 1500

Tech Tip: The first alignment always occurs on a restart prior to
running the first iteration, and subsequent alignments (with the
total number set by nalign) are performed every ngiter
iterations.

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-35 10/27/09

 i1stadpt - Specifies the multiplier to use to delay the first grid
 adaption/alignment, which occurs when
 nit >= i1stadapt*ngiter. Default value:

 0

 imedge - Specifies the method used to locate the bow shock
 in the simulation. Allowable values are:

 1 Align to a constant Mach number
 contour

Tech Tip: Although other programs such as SAGe or Outbound
have other options, only Mach number-based adaption is
supported in DPLR at this time.

 imradial - Specifies the type of wall spacing to employ during
 the reclustering of interior points that takes place
 during a grid adaption. Allowable values are:

 1 Constant cell Reynolds number wall spacing
 (wall spacing varies over the body surface from the
 value set in ds1 to the value set in dslmx)

 2 Use a constant wall spacing (wall spacing at all
 surface locations will equal the value set in ds1)

Tech Tip: If ds1=0, the current wall spacing will be used.

 ngeom - Specifies the number of geometrically spaced points
 to place near the body surface during reclustering.
 Recommended value:

 2

Tech Tip: If ngeom <2, a pure two-sided Vinokur stretching
routine will be used.

 ismooth - Specifies the type of smoothing to employ at the outer
 boundary following a grid alignment. Allowable values are:

0 Do not smooth the outer boundary

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-36 10/27/09

1 Smooth outer boundary of grid based on changes in arc length at
each body point location.

2 Smooth outer boundary of grid based on total final arc length at
each body point location.

3 Smooth using both method #1 and method #2. (preferred for initial
adaption from a hyperbolic grid)

Tech Tips:
1). Setting ismooth=1 is generally preferred because it tends
to give smoother outer boundaries and will eventually asymptote
to zero smoothing when the outer boundary stops moving. Also,
it avoids some problems seen with SAGe when smoothing grids
with abrupt changes in surface geometry, such as a propagation
of the surface geometry to the outer boundary, as seen in the
Shuttle Orbiter tail region. On the downside, this option will tend
to preserve oscillations in the outer boundary if they develop
during the solution procedure.

2). Setting ismooth=2 is the only approach that can be used
for smoothing a grid without adaption (igalign=3) because
all of the arc length changes are zero. Also, this option is
preferable for the first adaption when there is an extremely large
ratio between the shortest and longest arc lengths in the grid,
particularly if short arc lengths occur near a region with high
curvature, such as a wing leading edge.

3).Setting ismooth=3 causes the outer boundary of the grid to
be smoothed using both algorithms described above, producing
superior quality outer boundaries for the initial adaption of
hyperbolic grids. Further adaptions should then be peformed
with ismooth=1.

fs_scale - Specifies the fraction of the freestream Mach
 number to pick as the adaption contour.
 Recommended values:

 0.9< fs_scale<0.95

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-37 10/27/09

Tech Tip: Values smaller than 0.90 lead to smoother grids, but
increase the chance that the final outer boundary will not
contain the entire shock.

 ds_mult - Specifies, as a multiple of the “local” radial grid
 spacing at the estimated shock location, where to
 place the realigned outer boundary beyond that
 location. Must be > 0. Recommended values range:

 1.0-3.0, with 2.5 being typical

Tech Tip: The idea is to leave at least the outer two points of
each radial grid line beyond the shock following reconvergence
of the flow solution. The shock location tends to move inward
with each tailoring, so erring on the low side with ds_mult is
normally safe during early adaptions, especially if the initial
boundary is far away from the shock.

 gmargin - An optional multiplier of the “outermost” radial
 spacing of the grid, normally not needed. This
 permits additional control over the outer grid
 boundary, and may be used to increase or
 “decrease” the radial adjustment produced by the
 normal alignment scheme. Although values may be
 positive or negative real numbers, the typical value
 for this input is:

 0

Tech Tip: This control allows the boundary to expand or
contract (everywhere) if there is reason to believe the current
outer boundary is too close to the eventual shock or too far from
it. If extrapolation is implied, the extrapolations are linear.
Beware of possible crossed grid lines or excessive cell skewness
if any existing radial lines are convergent.

 ds1 - Constant value with different meanings for different
 settings of imradial and igalign.

 When imradial=1, ds1 sets the minimum
 allowable wall spacing anywhere in the volume.

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-38 10/27/09

 ds1=0 No minimum allowable wall spacing
 anywhere in the volume
 ds1<0 Lower limit for cell Reynolds
 number smoothing (minimum spacing
 is limited by ds1% of the current
 adapted arc length)

 When imradial=2, ds1 sets wall spacing
 everywhere in the volume.

 ds1=0 Maintains wall spacing in the current
 grid.
 ds1<0 Wall spacing is ds1% of the current
 adapted arc length.

 When igalign=20, ds1 is the constant value by
 which the surface grid should be morphed in the
 body normal direction.

 ds1>0 Used for a recession in the surface
 ds1<0 Used for a growth in the surface

 cellRe - Specifies the value of the cell Reynolds number
 when imradial=1. (For all other values of
 imradial, cellRe is ignored.)

 dslmx - Specifies the maximum wall spacing allowed when
 cell Reynolds number spacing is employed
 (imradial=1). (For all other values of imradial,
 ds1mx is ignored.)

 ds1mx<0 Wall spacing is ds1mx% of the
 current adapted arc length.

Tech Tip: Using arc length-based spacing is not generally
recommended, but can be helpful for certain situations, such as
the tail root area of the Shuttle orbiter grid.

 ds2fr - Specifies the spacing for the outer boundary of the
 grid. Recommended value:

 0.35

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-39 10/27/09

Tech Tip: ds2fr is expressed as a fraction of the spacing that
would be used if an unconstrained (one-sided) Vinokur
stretching algorithm were employed.

Overset Grid Implementation – The flags in this portion of the DPLR input deck
control Overset Grid capabilities of DPLR (i.e., enable Chimera topologies). See
Chapter 8 for more information on Using Overset Grids.

Note: DiRTlib and Overset functionality must be available at compile time for this
 functionality to be enabled.

 iover - Indicates enabling of Overset Logic, if compiled, in DPLR.
 Allowable values are:

0 Overset logic is disabled
1 Overset logic is enabled

 ioint - Indicates format of domain connectivity file (cname).
 Allowable values are:

 0 ASCII Suggar-type .dci output

 xxxxx - Not used in DPLR 4.01.1 (reserved for future use)

Block-Specific Flags – The flags in this portion of the DPLR input deck can be set
differently for each computational block in the simulation.

ntx, nty, ntz - Specifies the total number of computational cells in the i, j,
 k directions for a block. Should be set to the number of
 interior cells, not including dummy or ghost cells. (Note
 that ntz is only used for 3D flow simulations.)

 iconr - Specifies how to initialize this block for simulation when
 then global modeling flag iinit=10. Allowable values
 are:

0 Start by initializing to the values in the freestream
 specification identified in ifree
1 Restart from saved file
2 Start with a stagnant interior at low pressure
3 Start with artificial boundary layer in place

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-40 10/27/09

 isim - Includes or excludes a master block from the simulation.
 Allowable values are:

0 Do not include this block in the simulation
 1 Include this block in the simulation

Tech Tip: Because excluding blocks does not save on the
computational intensity of the simulation, this setting is only
used when you want to freeze problem blocks while the
remainder of the solution is allowed to converge.

 ifree - Identifies the number of the freestream specification
 to use for this block.

 initi - Identifies the number of the freestream specification
 to use to initialize the interior of this block.

 ibadpt - Indicates whether grid adaption will be applied to a specific
 block. Allowable values are:

0 Do not perform adaption on this block (Not Working
 in DPLR 4.01.1)

 1 Perform adaption on this block

(ijk)flx - Specifies the method to use to extrapolate the
 Euler fluxes in the i, j, or k directions. Note that the
 method for flux extrapolation can be set separately
 in each computational direction. Allowable values
 are:

 0 No flux evaluation
 1 Upwind modified Steger-Warming with Δp
 2 MUSCL Steger-Warming with Δp [p, cs,

€

u ,

€

T]

 (recommended value)
 3 MUSCL Steger-Warming with Δp [ρs,

€

u ,

€

T]

 4 MUSCL Steger-Warming with Δp [p, cs,

€

u ,

€

e i , T]

 5 Pure 2nd order central difference (should not be used for
 problems which contain shock waves; could be unstable
 even for subsonic flows.)
 11 Upwind modified Steger-Warming without Δp
 12 MUSCL Steger-Warming without Δp [p, cs,

€

u ,

€

T]

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-41 10/27/09

 13 MUSCL Steger-Warming without Δp [ρs,

€

u ,

€

T]

 14 MUSCL Steger-Warming without Δp [p, cs,

€

u ,

€

e i , T]

Tech Tip: The settings (ijk)flux = 2-4 and 12-14 use a
MUSCL-based adaptive stencil to attain higher-order accuracy
via a more sophisticated approach. The difference between the
selections is in the set of variables that are extrapolated to attain
high-order accuracy, and whether a pressure gradient based
switch is employed to smoothly transition from high order to
first-order in the vicinity of strong shock waves.

 (ijk)ord - Specifies the nominal order of accuracy of the Euler flux
 extrapolation. Allowable values are:

1 First-order upwind
2 Second-order upwind biased
3 Third-order upwind biased (recommended value)

 omg(ijk) - Specifies the value of ω (as defined by Yee) to employ in
 the MUSCL extrapolation scheme. Recommended value:

 3

Tech Tip: DPLR will automatically reset this value to 2 for
second-order simulations.

 (ijk)lim - Specifies the type of flux limiter to use in the Euler flux
 extrapolation. Allowable values are:

1 Minmod (recommended value)
2 Superbee

 3 Van-Albada

Tech Tip: The Superbee and Van-Albada flux limiters, while
somewhat less dissipative, are also less stable and should only
be used when low dissipation schemes are actually necessary to
obtain highly accurate solutions, such as reactive mixing layer
flows.

 (ijk)diss - Specifies the type of eigenvalue limiter to use in the Euler
 flux extrapolation. Allowable values are:

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-42 10/27/09

0 No added dissipation (recommended value for body
 normal direction)

1 Standard eigenvalue limiting (recommended value for
 radial and circumferential directions)

2 Standard eigenvalue limiting on linear fields only
 3 Standard eigenvalue limiting on non-linear fields only

Tech Tip: Normally, eigenvalue limiters should be used in the
radial and circumferential flow directions, but should be avoided
in the body-normal direction when possible to avoid adding
dissipation in the boundary layer. However, in those very rare
instances when a normal direction limiter can be helpful, set
(ijk)diss=3 to apply the limiter only to fluxes with non-
linear eigenvalues or set kb1 to a positive integer to turn off the
eigenvalue limiter within the boundary layer.

 eps(ijk) - Specifies the magnitude of the eigenvalue limiter to use in
 the Euler flux extrapolation. Recommended values for
 hypersonic blunt body flow simulations are:

 0 No added dissipation – Recommended for body normal
 direction
 0.3 Recommended for radial and circumferential directions

Tech Tip: Much lower values of eps(ijk) – on the order of
0.01- can be used in separated flows which have no strong
shocks and are much more sensitive to the effects of added
(artificial) dissipation. DPLR will print a run-time warning if it
detects a non-zero value of eps(ijk)in the body-normal
direction in any block.

 iextst - Specifies the time advancement method to use in the
 simulation. Allowable values are:

1 Explicit first-order Euler
2 Explicit second-order Runge-Kutta

 -1 Implicit data-parallel line relation (DPLR)
 (recommended value for steady-state problems)

 -2 Implicit data-parallel full matrix (FMDP)

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-43 10/27/09

Tech Tip: For time accurate calculations, only the relatively
inefficient second-order Runge-Kutta (Midpoint) method is
offered at this time.

 nrlx - Specifies the number of implicit relaxation steps to use
 when using the DPLR or FMDP time advancement
 methods (iextst= -1 or -2). Recommended value:

 4

 ildir - Specifies the direction in which the lines are to be formed
 for the DPLR time advancement method (iextst= -1).
 Allowable values are:

0 Autodetect direction (recommended value)

1 i-direction

2 j-direction
3 k-direction
4 Alternate directions (changes orientation of lines with
 each iteration, alternating between i. j, and k direction
 solves. Provided for use with separated flows, although
 no significant advantage has been shown with this
 method.)

Tech Tips:
1). The DPLR time advancement method is based on the Gauss-
Seidel Line Relaxation (GSLR) method, and the lines should be
formed in the body-normal direction for maximum performance.
Setting ildir = 1, 2, or 3 will cause the code to orient
the solver in that block so that lines are formed in the i, j, or k-
directions respectively. If DPLR detects that a line is formed in a
non body-normal orientation a warning message will be printed.
It is not a fatal error to run DPLR with the lines in non body-
normal directions, but the convergence rate and stability of the
method will be degraded.

2) When ildir=0, DPLR will automatically determine the best
direction to form the lines for each block at runtime by
examining the block boundary conditions. For those blocks for
which no body-surface boundary condition is detected, the lines
will be formed in the i-direction. For those blocks with a body
surface boundary condition at more than one face, the lines will

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-44 10/27/09

be formed in the direction normal to the last body-surface
detected.

 ibcu - Specifies how often to update the implicit boundary
 conditions during the relaxation process for DPLR or
 FMDP (iextst = -1 or -2). Recommended value:

 1

Tech Tip: Updating implicit boundary conditions improves
parallel efficiency on machines for which message-passing is
very inefficient. ibcu=1 forces the implicit boundary
conditions to be updated during each relaxation step.

 iblag - Specifies whether to lag the implicit boundary conditions
 when using DPLR or FMDP (iextst = -1 or -2).
 Allowable values are:

 -1 or 0 Do not lag implicit boundary conditions
 (recommended value)

1 Lag implicit boundary conditions

Tech Tip: Although it is generally desirable to lag the implicit
boundary condition update in order to better mask the message-
passing latency and improve parallel performance of the time
advancement method, there are certain instances when the block
topology employed makes lagged boundary conditions
dangerous. In the future, DPLR may automatically determine
whether latency can be masked for a given application and this
flag will be automatically set by the code.

 ilt - Specifies whether to employ global or local time stepping
 for implicit simulations. Allowable values are:

 -1 Global time stepping
 -2 Global time stepping with maximum CFL limit
 1 Local time stepping

2 Local time stepping with a maximum CFL limit

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-45 10/27/09

Tech Tips:
1). When the DPLR method of time stepping is chosen
(iextst=-1), only global time stepping (ilt=-1 or -2)
should be used.

2) When one or more blocks of a complex simulation are
unstable, you can specify a maximum CFL number to use only
for the problem blocks by setting il =+2 and entering a
maximum CFL number in the cflm flag.

 ibdir - Specifies the grid direction in which to break single-block
 problems for parallel execution. Allowable values are:

1 i-direction

2 j-direction
3 k-direction

Tech Tip: When the simulations has only one master block with
no zonal interfaces, DPLR can perform the necessary
decomposition at runtime by breaking the problem into planes in
the direction chosen with the ibdir flag. Note that DPLR will
print a warning message if ibdir is set such that the grid is
broken in the body-normal direction.

 cflm - Specifies the maximum CFL number to use in the
 current master block. (Only used when ilt = + 2).

 ibc - Specifies the type of boundary condition to use at each of
 the six faces of each master block, i.e., imin, imax,
 jmin, jmax, kmin, kmax. Allowable values for each
 face are:

--
Basic Boundaries: 0-29
--
 0 Pointwise boundary condition read from input
 “*.pbca” file
 1 Fixed at freestream conditions (specified by
 ifree)
 2 Fixed at freestream if inflow; extrapolate if
 outflow (used in rapid analysis process)

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-46 10/27/09

 3 First order extrapolation (supersonic exit)
 4 Second order extrapolation (supersonic exit)
 5 RESERVED
 6 Subsonic reservoir inlet; constant mass flow
 7 Periodic
 8 Inviscid wall (flow tangency)
 9 Viscous adiabatic wall
 10 Viscous isothermal wall
 11 180 degree singular axis (u = -u) [3D]
 12 180 degree singular axis (v = -v) [3D]
 13 180 degree singular axis (w = -w) [3D]
 14 Singular x-axis (v = -v) [axi]
 15 Singular y-axis (u = -u) [axi]
 16 360 degree singular axis [3D]
 17 Plane of symmetry (u = -u)
 18 Plane of symmetry (v = -v)
 19 Plane of symmetry (w = -w)
 20 Zone boundary
 21 90 degree singular axis (v=-v; w=-w) [3D]
 22 90 degree singular axis (u=-u; w=-w) [3D]
 23 90 degree singular axis (u=-u; v=-v) [3D]
 24 RESERVED
 25 Catalytic isothermal wall
 26 Catalytic radiative equilibrium wall
 27 Non-catalytic radiative equilibrium wall

--
Blowing Wall Boundaries: 30 - 39
--
 30 Viscous isothermal wall with blowing
 35 Catalytic isothermal wall with blowing (Not
 Working in DPLR 4.01.1)
 36 Catalytic radiative equilibrium wall with
 blowing (Not Working in DPLR 4.01.1)

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-47 10/27/09

 37 Non-catalytic radiative equilibrium wall with
 blowing (Not Working in DPLR 4.01.1)
 38 inviscid wall with blowing (Not
 Working in DPLR 4.01.1)
 39 viscous adiabatic wall with blowing (Not
 Working in DPLR 4.01.1)

--
Slip Wall Boundaries: 40 - 49
--
 40 Viscous isothermal wall with slip
 45 Catalytic isothermal wall with slip (Not Working
 in DPLR 4.01.1)
 46 Catalytic radiative equilibrium wall with
 slip (Not Working in DPLR 4.01.1)
 47 Non-catalytic radiative equilibrium wall with
 slip (Not Working in DPLR 4.01.1)
 49 Viscous adiabatic wall with slip

--
Input Profile Boundaries: 60 - 69
--
 60 Input primitive variables (ρs, u, v, w, Tv, T)
 61 Input primitive variables (p, cs [2-ns], u, v, w,
 Tv, T)
 62 Input conserved variables (ρs, ρu, ρv, ρw, Ev, E)

Tech Tip: Entering one of these numbers will tell DPLR to look
in the “*.pcba” file to find values for the indicated variables. If
such a file does not exist, a runtime error may occur.

--
Material Response Coupling Boundaries: 70 - 79
--
 70 Input species mass flow rate & T, extrapolate
 for p with thermal equilibrium assumed
 71 Input cs, mass flow rate & T, extrapolate for p
 with thermal equilibrium assumed

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-48 10/27/09

 75 Activate surface kinetic mechanism, isothermal
 (icatmd=1001)

 76 Activate surface kinetic mechanism, radiative
 equilibrium (icatmd=1001)

--
Subsonic Inflow/Outflow Boundaries: 80 - 89
--
 81 Subsonic reservoir inlet; same as #6
 82 Subsonic inlet; specify mass flow rate
 (density * M/ReV (normal velocity)) & T,
 extrapolate p
 85 Subsonic exit; specify static pressure (pback),
 extrapolate others
 86 Subsonic inlet; specify subsonic temperature
 (subT0) and subsonic pressure (subp0);
 Assumed isentropic and T=Tv. Uses methods of
 characteristics.
 87 Subsonic exit; specify static pressure (pback),
 extrapolate others. Uses method of
 characteristics. Uses methods of characteristics.
 88 Subsonic exit; specify static pressure (pback),
 extrapolate others. Uses method of
 characteristics, disallows backflow.

--
Pointwise Twall Boundaries: 100 – 199 (100 +
corresponding isothermal boundary condition number)
--
 110 No slip (viscous) isothermal wall
 125 Catalytic isothermal wall
 130 No slip (viscous) isothermal wall with blowing
 135 Catalytic isothermal wall with blowing (Not
 Working in DPLR 4.01.1)
 140 Isothermal wall with slip

 145 Catalytic isothermal wall with slip (Not Working
 in DPLR 4.01.1)

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-49 10/27/09

--
Pointwise Twall and Blowing Boundaries: 200 – 299 (200
+ corresponding non-blowing boundary condition number)
--
230 No slip (viscous) isothermal wall
235 Catalytic isothermal wall (Not Working
 in DPLR 4.01.1)

--
Pointwise Blowing Boundaries: 300 – 399 (300 +
corresponding non-blowing boundary condition number)
--
330 No slip (viscous) isothermal wall with blowing
335 Catalytic isothermal wall (Not Working in DPLR
 4.01.1)

Tech Tip: To specify a pointwise boundary for any cell face, you
must first set up and include a “*.pbca” with the appropriate
data in your current working directory.

--
Overset Grid Boundary: 900 - 999
--
901 Specifies an overset boundary (supersonic exit
 1st order extrapolation if iover=0)

--
Mathematically Adjusted Boundaries: 1000 – 1099
(1011 – 1019 & 1021-1023 currently support augmented
eigenvalue limiters in the vicinity of standard singular axes or
symmetry planes when kdg ≠ 0.)
--
1011 180 degree singular axis (u = -u) [3D]
1012 180 degree singular axis (v = -v) [3D]
1013 180 degree singular axis (w = -w) [3D]
1014 Singular x-axis (v = -v) [axi]
1015 Singular y-axis (u = -u) [axi]
1016 360 degree singular axis [3D]
1017 Plane of symmetry (u = -u)
1018 Plane of symmetry (v = -v)

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-50 10/27/09

1019 Plane of symmetry (w = -w)
1021 90 degree singular axis (v=-v; w=-w) [3D]
1022 90 degree singular axis (u=-u; w=-w) [3D]
1023 90 degree singular axis (u=-u; v=-v) [3D]

--
Mathematically Adjusted Boundaries: 2000 – 2099
(2011 – 2019 & 2021-2023 currently support a maximum CFL in
the vicinity of standard singular axes axes or symmetry planes as
per cflm in each block when kdg ≠ 0.)
--
2011 180 degree singular axis (u = -u) [3D]
2012 180 degree singular axis (v = -v) [3D]
2013 180 degree singular axis (w = -w) [3D]
2014 Singular x-axis (v = -v) [axi]
2015 Singular y-axis (u = -u) [axi]
2016 360 degree singular axis [3D]
2017 Plane of symmetry (u = -u)
2018 Plane of symmetry (v = -v)
2019 Plane of symmetry (w = -w)
2021 90 degree singular axis (v=-v; w=-w) [3D]
2022 90 degree singular axis (u=-u; w=-w) [3D]
2023 90 degree singular axis (u=-u; v=-v) [3D]

Freestream Specification Flags – The flags in this portion of the DPLR input deck
define a set of conditions for an area of the flow from which all relevant fluid
dynamic quantities can be computed. You can define any number of freestream areas
this way (the total given in nfree)and use them to initialize master blocks and set
freestream boundary conditions on a block-by-block basis using the initi and
ifree flags, respectively. (In DPLR, freestream values are always expressed in standard
international (SI) units.)

 irm - Specifies whether a velocity, Mach number, or unit
 Reynolds number will be given as input. Allowable values
 are:

1 Mach number (assumed to be the equilibrium - as
 opposed to frozen - value)

2 Reynolds number per meter

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-51 10/27/09

 3 Velocity (recommended value)

Tech Tip: The most common (and least ambiguous) input for
most free-flight simulations is velocity, because each of the other
entries requires the velocity to be derived from the
thermodynamic and transport models employed in the given
simulation.

 density - Specifies the input freestream mass density.

 M/Re/V - Specifies the input Mach number, unit Reynolds number, or
 velocity depending upon the value of irm.

Tech Tip: Whichever choice is made in irm, DPLR will
determine the remaining two values using the input
thermodynamic and transport models distributed with the code.

 c(xyz) - Specifies the input velocity vector direction cosine. Allowable
 values are:

 0.0 < value < 1.0

Tech Tip: These values must be nondimensionalized.

 Tin, Tvin, - Specifies the input translational, vibrational, rotational,
 Trin, Tein and free electron temperatures, respectively.

Tech Tips:
1) The number of unique temperatures depends upon the thermal
non-equilibrium models chosen with the ivib, irot, ieex,
and iel flags.

2) At the current time, free electron non-equilibrium is not
supported in DPLR and so will be silently ignored.

3) Because only one thermal non-equilibrium model may be
employed in a given simulation, all blocks are assumed to be
governed by the same model. However, each block can have
different initial or freestream temperatures by defining multiple

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-52 10/27/09

freestream specifications and using the initi and ifree flags
in each block characterization.

 turbi - Specifies a freestream turbulence level for the two-equation
 turbulence models. For SST, specify omega as follows:

 > 0 use directly to define turbulence level
 < 0 set turbulence level to default level of 1.0E-4

Tech Tip: Not used for laminar or Baldwin-Lomax (algebraic)
turbulent simulations.

 tkref - Turbulent viscosity ratio. Initializes the freestream value of
 turbulent viscosity for Spalart-Allmaras turbulence models
 (itmod = 1000+n). Recommended value = 0:

0 (freestream turbulent viscosity specified
by)

>0 (freestream turbulent viscosity specified by

€

µT∞ = tkref)

<0 (freestream turbulent viscosity specified by

€

µT∞ = tkref µL∞)

Tech Tip Not used for laminar or Baldwin-Lomax (algebraic)
turbulent simulations.

 subp0 - Specifies stagnation pressure in simulations where subsonic
 boundary conditions are identified.

 subT0 - Specifies stagnation temperature in simulations where subsonic
 boundary conditions are identified.

 pback - Specifies back pressure for subsonic outflow in simulations
 where subsonic boundary conditions are identified..

 cs - An array of input species mass fractions.

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-53 10/27/09

Tech Tips:
1) There must be one entry per species in the chosen chemistry
model as specified in the input *.chem file.
2) All input mass fractions must sum to 1.0 or DPLR will exit
with an error message.
3) Input of mole fractions is not supported at this time.

CFL Number Listing – The final entries in the DPLR input deck are a list of
Courant-Friedrichs-Lewy (CFL) numbers to employ during the simulation.

CFL numbers are a measure of the explicit inviscid stability limited time step Δt and
are used by convention in CFD codes to enable time advancement to a steady state
solution. In DPLR, the CFL number for a given computational cell is defined as the
time it takes the fastest wave in the flow to traverse the thinnest dimension of the cell.

Global Timestepping: For implicit (non-time accurate) simulations, this time step is a
bit different for every cell in the flow. However, most DPLR-based simulations use
the minimum value of Δt at any cell in the flowfield for all cells in what is called
global timestepping – a set-up approach that has been shown to result in robust
solutions and good convergence rates.

Local Timestepping: DPLR does offer you the ability to implement local
timestepping where the local value of Δt is used for each computational cell by setting
ilt=1,2, but this approach is recommended only for simulations using the full-
matrix data-parallel method (FMDP), i.e., iextst=-2.

CFL Number Ranges: When you begin a simulation, you should use a very small
CFL value to verify that your proposed solution will, indeed, converge. After several
hundred iterations, if you see that the solution is progressing toward convergence, you
can increase or “ramp” the CFL value to specify a larger timestep and speed up the
solution process. Between each listed CFL number, DPLR will perform 20 iterations
of the solution. If you add an integer to a line with a CFL number, DPLR will
perform 20-times-that-integer iterations. (Note: After the first grid adaption, DPLR
performs only 10 iterations between CFL numbers and 10-times-the-added-integer
iteration on the assumption that a post-adaption grid is a better “starting point” and
justifies more aggressive CFL ramping.)

For example, the following CFL number listing might be appropriate for an initial
simulation of a problem:

0.01 DPLR performs 20 iterations at a 0.01 timestep
0.05 DPLR performs 20 iterations at a 0.05 timestep
0.10 2 DPLR performs 40 iterations at a 0.10 timestep

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-54 10/27/09

0.15 3 DPLR performs 60 iterations at a 0.15 timestep
0.25 3 DPLR performs 60 iterations at a 0.25 timestep
0.50 3 DPLR performs 60 iterations at a 0.50 timestep
1.0 5 DPLR performs 100 iterations at a 1.0 timestep
2.0 5 DPLR performs 100 iterations at a 2.0 timestep
5.0 5 DPLR performs 100 iterations at a 5.0 timestep
10.0 5 DPLR performs 100 iterations at a 10.0 timestep
20.0 DPLR performs 20 iterations at a 20.0 timestep
50.0 DPLR performs 20 iterations at a 50.0 timestep
100.0 DPLR performs 20 iterations at a 100.0 timestep
250.0 DPLR performs 20 iterations at a 250.0 timestep
500.0 DPLR performs 20 iterations at a 500.0 timestep
1,000.0 DPLR performs 20 iterations at a 1,000.0 timestep
-1 No more CFL values are available

Although larger CFL numbers imply larger timesteps and faster convergence rates,
there is usually a maximum CFL number that represents a stability limit for a given
problem. Using CFL values above this number can result in solution divergence. For
optimum performance, therefore, you should run at CFL numbers that approach, but
do not exceed this limit.

Over time and with experience, you will notice that certain classes of problems are
associated with an approximate range of stable CFL numbers, like those listed above
that were used for a capsule-shaped problem. By starting your DPLR run with one of
these stable CFL ranges, you should be able to get close enough to a solution to create
a restart file that can then be further customized by editing the CFL number range in
the input deck.

Tech Tips:
1) You can adjust the CFL number during a DPLR run by using a runtime control (*.ctrl)
file. See Section 6.4.

2) You can use exact timesteps (Δt) instead of CFL numbers by entering negative numbers
into the CFL Number Listing area of the DPLR Input Deck, however you cannot use both
CFL numbers and Δt values in a single DPLR simulation. Note that the term -1 in the CFL
number list tells DPLR to stop reading the CFL number list and refer to the istop flag for
the final iteration number.

4.3 ‘Neptune’ Sample Case

The sample case used throughout the DPLR Code User Manual to illustrate how the
Code Package works describes a Neptune entry type probe with an ellipsoidal body as

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-55 10/27/09

shown in Figure 4.1. This case is an example of aerocapture, where drag from the
atmosphere is used to decelerate the vehicle and bring it into orbit.

Figure 4.2 – Neptune Probe

4.3.1 Neptune DPLR Input Deck

The DPLR input deck below shows the problem-specific entries made before running
the initial DPLR run was made.

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-56 10/27/09

INPUT DECK FOR DPLR2D/DPLR3D CODE

gname,fname,bname,rname,dname,cname
'neptune-8PE'
'neptune'
'none'
'none'
‘none’
' sde1-fs/twhite/SF/dpcodeV4-00-0/cfdinput/neptune5sp_leibowitz76.chem'

 nblk igrid irest ibcf iradf nfree iinit
 2, 11, 11, 0, 0, 1, -1

 ivis ikt ikv ivmod idmod itmod islip iblow
 1, 1, 11, 3, 1, 0, 0, -1,

 icatmd ireqmd twall epsr gamcat xxxxx vwall
 2, 101, 3.0d3, 0.85d0, 1.0d0, 1.01d5, 0

 ichem ikeq ivib irot ieex iel irad ipen
 1, 3, 2, 2, 0, 1, 0, 0,

 itrmod itrans trloc trext itshk
 0, 0, 1.0d0, 0.1d0, 0,

 istop nplot iplot iaxi ires
 500 100, 1 -1 -2

 igdum kbl kdg istate iresv
 1, 0, 0, 0, 1,

 xscale ils Le/Sc LeT/ScT prtl prtlT
 1.0d0, 2, .5d0, 1.00d0, 0.72d0 0.90d0,

 xxxxx xxxx rvr resmin
 0.0d0 1.0d0 1.3d0, 1.0d-20

===
Space Marching 1D Implementation
===

 ispace dxmin slength nxtot
 0 1.0d-5 1.0d0 1000

==
TIME ACCURATE & STATISTICAL OPTIONS
===

 itime lmax dttol tfinal tfac
 0 5 1.0d-3 9.0d99 1.0d15

 ifstat iaero
 0 0

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-57 10/27/09

===
 GRID ADJUSTMENT/ALIGNMENT/MORPHING
==

 igalign ngiter nalign
 0, 500, 1,

 imedge imradial ngeom ismooth
 1, 2, 2, 3,

 fs_scale ds_mult gmargin
 0.95, 2.5, 0.0,

 ds1 cellRe ds1mx ds2fr
 0.0, 1.0, 1.0d-4, 0.3

==
 OVERSET GRID IMPLEMENTATION
==

 iover ioint xxxxx
 0 1 0

==
 BLOCK #1
==

 ntx nty ntz iconr isim ifree initi ibadpt
 32, 16, 64, -1, 1, 1, 1, 1

 iflx iord omgi ilim idiss epsi
 4, 3, 2.0d0, 1, 1, 0.3,

 jflx jord omgj jlim jdiss epsj
 4, 3, 2.0d0, 1, 1, 0.3,

 kflx kord omgk klim kdiss epsk
 4, 3, 2.0d0, 1, 0, 0.03,

 iextst nrlx ildir ibcu iblag ilt ibdir cflm
 -1, 4, 0, 1, -1, -1, 1, 1.0d20

 Boundary condition type [ibc]:
 imin imax jmin jmax kmin kmax
 20, 20, 20, 19, 26, 1

==
 BLOCK #2
==

 ntx nty ntz iconr isim ifree initi ibadpt
 48, 64, 64, -1, 1, 1, 1, 1

 iflx iord omgi ilim idiss epsi
 4, 3, 2.0d0, 1, 1, 0.3,

 jflx jord omgj jlim jdiss epsj

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-58 10/27/09

 4, 3, 2.0d0, 1, 1, 0.3,

 kflx kord omgk klim kdiss epsk
 4, 3, 2.0d0, 1, 0, 0.03,

 iextst nrlx ildir ibcu iblag ilt ibdir cflm
 -1, 4, 0, 1, -1, -1, 1, 1.0d20

 Boundary condition type [ibc]:
 imin imax jmin jmax kmin kmax
 20, 3, 19, 19, 26, 1

==
 Freestream Specification #1
==

 irm density M/Re/V cx cy cz
 3, 1.6313d-5 3.1045d4, 0.8090160044, 0.5877852523, 0.0d0

 Tin Trin Tvin Tein
 140.3, 140.3, 140.3, 140.3,

 turbi tkref
 0.001d0, 0.00d0

 subp0 subT0 pback
 2.650d2 2.650d2 1.05d5

 cs (Species order: H2 H He)
0.6822392
0
0
0.3177608
0

==
 List of CFL numbers or timesteps for ramping
==

.00001
.0001
.001
.01
.1
1
5
10
20
50
100
200
500
750
1000
2000
5000
-1

Figure 4-3 DPLR Input Deck for Neptune Probe

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-59 10/27/09

4.3.2 Neptune DPLR Input Deck Settings

This is a three-dimensional problem with one plane of geometric symmetry. The
original grid consists of two master blocks. The following table explains the meaning
of the DPLR input deck settings in this sample case.

Global Flags Setting Explanation

nblk 2 There are 2 master grid blocks in this simulation.

igrid 11 The input grid file is a parallel archival XDR file.

irest 11 The restart file to be created from this simulation will be a
parallel archival XDR file.

ibcf 0 Do not read a boundary condition file.

iradf 0 Do not read a radiation file.

nfree 1 There is one region of the freestream (a.k.a. freestream
specification) characterized in this DPLR input deck.

iinit -1 Start all blocks by initializing to the values in the freestream
specification characterized in this DPLR input deck.

ivis 1 DPLR will perform a laminar, full Navier-Stokes simulation.

ikt 1 Translational thermal conductivity is modeled in a manner
consistent with the baseline model used to compute mixture
viscosity and thermal conductivity, specified in the ivmod flag.

ikv 11 Vibrational thermal conductivity is modeled with standard
expression with Tv gradients.

ivmod 3 The baseline model used to compute mixture viscosity and
thermal conductivity is the Yos approximate mixing rules
which is preferred for all reacting gas flows.

idmod 1 The species diffusion coefficients for this simulation are
computed with a constant Lewis/Schmidt number.

itmod 0 This value is ignored because ivis=1, defining the problem
as a laminar flow simulation and telling DPLR to ignore
turbulence- and transition-related flags.

islip 0 Slip-wall calculations will be disabled.

iblow -1 Blowing-wall calculations will be disabled.

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-60 10/27/09

Global Flags
(cont.)

Setting
(cont.)

Explanation
(cont.)

icatmd 2 Wall catalysis is calculated with the constant γ, fully catalytic
to ions but supports homogeneous surface reactions such as
N + N = N2 & O + O = O2.

ireqmd 101 The radiative equilibrium wall is modeled with constant wall
emissivity set by the value in epsr and a maximum wall
temperature set by value in twall.

twall 3.0d3 Maximum temperature at the vehicle surface = 3,000 degrees
Kelvin.

epsr 0.85d0 The surface material is 85% efficient in emitting energy away
from the vehicle.

gamcat 1.0d0 The value of γ for the constant γ homogeneous catalysis
model is 1.

xxxxx 1.0d5 This flag is currently ignored in DPLR.

vwall 0 This value is ignored because iblow=-1, telling DPLR to
disable blowing-wall calculations.

ichem 1 Finite-rate chemistry is employed for the chemical reactions in
the gas phase.

ikeq 3 The equilibrium constants are computed from the Park 1990
model (n = 1016/cm3).

ivib 2 Vibrational energy is computed with vibrational equilibrium
using statistical mechanics.

irot 2 Rotational energy is computed with rotational equilibrium
using statistical mechanics.

ieex 0 Electronic energy of the gas is not modeled.

iel 1 Free electron energy of the gas is computed using the
coupled free electron and translational energy model.

irad 0 No model is used to compute shock layer radiation.

ipen 0 Not used by DPLR at this time.

itrmod 0 This value is ignored because ivis=1, defining the problem
as a laminar flow simulation and telling DPLR to ignore
turbulence- and transition-related flags.

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-61 10/27/09

Global Flags
(cont.)

Setting
(cont.)

Explanation
(cont.)

itrans 0 This value is ignored because ivis=1, defining the problem
as a laminar flow simulation and telling DPLR to ignore
turbulence- and transition-related flags.

trloc 1.0d0 This value is ignored because ivis=1, defining the problem
as a laminar flow simulation and telling DPLR to ignore
turbulence- and transition-related flags.

trext 0.1d0 This value is ignored because ivis=1, defining the problem
as a laminar flow simulation and telling DPLR to ignore
turbulence- and transition-related flags.

itshk 0 Not used by DPLR at this time.

istop 500 DPLR will run 500 iterations before stopping the simulation.

nplot 100 DPLR will write a restart file every 100 iterations.

iplot 1 DPLR will save only the most recently written restart file.

iaxi -1 This is a non-axisymmetric simulation.

ires -2 Screen output for this simulation will include the iteration
number, the global residual, and the CFL number being used
and will include a comparison with these values from the first
iteration of the simulation.

igdum 1 DPLR will compute grid dummy cell coordinates.

kbl 0 DPLR will ignore this flag.

kdg 0 DPLR will ignore this flag

istate 0 DPLR will use the equation of state for a perfect gas.

iresv 1 DPLR will track the total density of all species in the
simulation.

xscale 1.0d0 DPLR will not scale the input grid at runtime.

ils 2 Input numbers governing laminar diffusion coefficients will be
interpreted as Schmidt Numbers.

Le/Sc 0.5d0 The Schmidt number to be used in the simulation is 0.5.

LeT/ScT 1.00d0 This value is ignored because ivis=1, defining the problem
as a laminar flow simulation and telling DPLR to ignore
turbulence- and transition-related flags.

prtl 0.72d0 This value is ignored because ivmod=3 (not 2 or 12).

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-62 10/27/09

Global Flags
(cont.)

Setting
(cont.)

Explanation
(cont.)

prtlT 0.90d0 This value is ignored because ivis=1, defining the problem
as a laminar flow simulation and telling DPLR to ignore
turbulence- and transition-related flags.

xxxx 0.0d0 Not used by DPLR at this time.

xxxx 1.0d0 Not used by DPLR at this time.

rvr 1.3d0 The viscous overrelaxation parameter for this simulation is
1.3.

resmin 1.0d-20 When this simulation converges into a solution, the residual
will be essentially zero.

Space
Marching 1D

Impementation
Flags

Setting Explanation

ispace 0 Space marching is disabled in this simulation.

dxmin 1.0d-5 This value is ignored because ispace = 0.

slength 1.0d0 This value is ignored because ispace = 0.

nxtot 1000 This value is ignored because ispace = 0.

Time Accurate

& Statistical
Options Flags

Setting Explanation

itime 0 Use a 1st order integration of time accuracy.

1max 5 This value is ignored because itime ≠ 1.

dttol 1.0d-3 This value is ignored because itime ≠ 1.

tfinal 9.0d99 Final flow time is essentially infinity.

tfac 1.0d15 This value is ignored because itime ≠ 1.

ifstat 0 Do not compute flow statistics.

iaero 0 Do not compute aerodynamic variables.

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-63 10/27/09

Grid

Adjustment /
Alignment/
Morphing

Flags

Setting Explanation

igalign 0 Grid alignment will not be performed in this simulation.

ngiter 500 This value is ignored because igalign=0.

nalign 1 This value is ignored because igalign=0.

imedge 1 This value is ignored because igalign=0.

imradial 2 This value is ignored because igalign=0.

ngeom 2 This value is ignored because igalign=0.

ismooth 3 This value is ignored because igalign=0.

fs_scale 0.95 This value is ignored because igalign=0.

ds_mult 2.5 This value is ignored because igalign=0.

gmargin 0.0 The outermost radial spacing of the grid will remain as
specified in the grid file.

dsl 0.0 This value is ignored because igalign=0.

cellRe 1.0 This value is ignored because igalign=0.

dslmx 1.0d-4 This value is ignored because igalign=0.

ds2fr 0.3 This value is ignored because igalign=0.

Overset Grid
Implementation

Flags

Setting Explanation

iover 0 Overset logic is disabled for this simulation.

ioint 1 This value is ignored becaue iover=0.

xxxx 1 This value is not used in DPLR 4.01.0.

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-64 10/27/09

Block #1 Flags Setting Explanation

ntx 32 There are 32 computational cells in the x direction in Block #1.

nty 16 There are 16 computational cells in the y direction in Block #1.

ntz 64 There are 64 computational cells in the z direction in Block #1.

iconr -1 This value is ignored because iinit=-1.

isim 1 This block will be included in the simulation.

ifree 1 Use freestream specification #1 for this master block.

initi 1 Use freestream specification #1 to initialize the interior of this
master block.

ibadpt 1 Grid adaption will be performed on this block.

iflx 4 The Euler flux extrapolation method to use in the i direction is
MUSCL Steger-Warming with Δp.

iord 3 The Euler flux extrapolation order of accuracy is third-order
upwind biased.

omgi 2.0d0 The value of ω to employ in the MUSCL scheme is 2.

ilim 1 The MinMod flux limiter is used in the Euler flux extrapolation.

idiss 1 A standard eigenvalue limiter is used in the flux extrapolation.

epsi 0.3 The magnitude of the eigenvalue limiter is 0.3 in the flow
direction

jflx 4 The Euler flux extrapolation method to use in the j direction is
MUSCL Steger-Warming with Δp.

jord 3 The Euler flux extrapolation order of accuracy is third-order
upwind biased.

omgj 2.0d0 The value of ω to employ in the MUSCL scheme is 2.

jlim 1 The MinMod flux limiter is used in the Euler flux extrapolation.

jdiss 1 A standard eigenvalue limiter is used in the flux extrapolation.

epsj 0.3 The magnitude of the eigenvalue limiter is 0.3 in the j direction

kflx 4 The Euler flux extrapolation method to use in the k direction is
MUSCL Steger-Warming with Δp.

kord 3 The Euler flux extrapolation order of accuracy is third-order
upwind biased.

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-65 10/27/09

Block #1 Flags
(cont.)

Setting
(cont.)

Explanation (cont.)

omgk 2.0d0 The value of ω to employ in the MUSCL scheme is 2.

klim 1 The Minmod flux limiter is used in the Euler flux extrapolation.

kdiss 0 No eigenvalue limiter is used in the flux extrapolation in the k
direction.

epsk 0.03 This value is ignored because kdiss=0.

iextst -1 The time advancement method used when simulating this
master block will be implicit data parallel line relaxation.

nrlx 4 Four implicit data parallel line relaxation steps will be used in
simulating this master block.

ildir 0 The lines will be formed automatically in an appropriate
direction when simulating this master block.

ibcu 1 Implicit boundary conditions will be updated during each line
relaxation step.

iblag -1 Implicit boundary conditions will not be lagged when
simulating this master block.

ilt -1 Global timestepping will be employed when simulating this
master block.

ibdir 1 This value is ignored because nblk=2.

cflm 1.0d20 This value is ignored because ilt=-1 (not 2 or -2).

imin 20 Use a zonal interface boundary condition at this computational
cell face.

imax 20 Use a zonal interface boundary condition at this computational
cell face.

jmin 20 Use a zonal interface boundary condition at this computational
cell face.

jmax 19 w=-w is the plane of symmetry at this computational cell face.

kmin 26 The wall at this computational cell face is set to catalytic
radiative equilibrium.

kmax 1 The boundary conditions at this computational cell face are
fixed at freestream conditions.

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-66 10/27/09

Block #2 Flags Setting Explanation

ntx 48 There are 48 computational cells in the x direction in Block #2.

nty 64 There are 64 computational cells in the y direction in Block #2.

ntz 64 There are 64 computational cells in the z direction in Block #2.

iconr -1 This value is ignored because iinit=-1.

isim 1 This block will be included in the simulation.

ifree 1 Use freestream specification #1 for this master block.

initi 1 Use freestream specification #1 to initialize the interior of this
master block.

ibadpt 1 Grid adaption will be performed on this block.

iflx 4 The Euler flux extrapolation method to use in the i direction is
MUSCL Steger-Warming with Δp.

iord 3 The Euler flux extrapolation order of accuracy is third-order
upwind biased.

omgi 2.0d0 The value of ω to employ in the MUSCL scheme is 2.

ilim 1 The MinMod flux limiter is used in the Euler flux extrapolation.

idiss 1 A standard eigenvalue limiter is used in the flux extrapolation.

epsi 0.3 The magnitude of the eigenvalue limiter is 0.3 in the flow
direction

jflx 4 The Euler flux extrapolation method to use in the j direction is
MUSCL Steger-Warming with Δp.

jord 3 The Euler flux extrapolation order of accuracy is third-order
upwind biased.

omgj 2.0d0 The value of ω to employ in the MUSCL scheme is 2.

jlim 1 The MinMod flux limiter is used in the Euler flux extrapolation.

jdiss 1 A standard eigenvalue limiter is used in the flux extrapolation.

epsj 0.3 The magnitude of the eigenvalue limiter is 0.3 in the j direction

kflx 4 The Euler flux extrapolation method to use in the k direction is
MUSCL Steger-Warming with Δp.

kord 3 The Euler flux extrapolation order of accuracy is third-order
upwind biased.

omgk 2.0d0 The value of ω to employ in the MUSCL scheme is 2.

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-67 10/27/09

Block #2 Flags
(cont)

Setting
(cont)

Explanation
(cont)

klim 1 The MinMod flux limiter is used in the Euler flux extrapolation.

kdiss 0 Flux extrapolation will not be performed in the k direction.

epsk 0.03 This value is ignored because kdiss=0.

iextst -1 The time advancement method used when simulating this
master block will be implicit data parallel line relaxation.

nrlx 4 Four implicit data parallel line relaxation steps will be used in
simulating this master block.

ildir 0 The lines will be formed automatically in an appropriate
direction when simulating this master block.

ibcu 1 Implicit boundary conditions will be updated during each line
relaxation step.

iblag -1 Implicit boundary conditions will not be lagged when
simulating this master block.

ilt 1 Global timestepping will be employed when simulating this
master block

ibdir 1 This value is ignored because nblk=2.

cflm 1.0d20 This value is ignored because ilt=-1

imin 20 Use a zonal interface boundary condition at this computational
cell face.

imax 3 Use a first order extrapolation (supersonic exit) boundary
condition at this computational face.

jmin 19 w=-w is the plane of symmetry at this computational cell face.

jmax 19 w=-w is the plane of symmetry at this computational cell face.

kmin 26 The wall at this computational cell face is set to catalytic
radiative equilibrium.

kmax 1 The boundary conditions at this computational cell face are
fixed at freestream conditions.

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-68 10/27/09

Freestream
Specifications

Flags

Setting Explanation

irm 3 Velocity will be used as input for this area of the freestream.

density 1.6313d-5 The density of this area of the freestream is
.000016313kg/m3.

M/Re/V 3.1045d4 The velocity of this area of the freestream is 31,045 m/sec.

cx 0.8090160044 The cosine of the velocity vector in the x direction is
0.8090160044, i.e., cx=8 cos (34.2 degrees)

cy 0.5877852523 The cosine of the velocity vector in the y direction is
0.5877852523.

cz 0 The cosine of the velocity vector in the z direction is 0
because the flow vector is defined as 34.2 degrees in the x-y
plane.

Tin 140.3 The translational temperature in this area of the freestream is
140.3 degrees Kelvin.

Trin 140.3 The rotational temperature in this area of the freestream is
140.3 degrees Kelvin.

Tvin 140.3 The vibrational temperature in this area of the freestream is
140.3 degrees Kelvin.

Tein 140.3 The free electron temperature in this area of the freestream is
140.3 degrees Kelvin.

Turbi 0.001d0 This value is ignored because ivis=1, defining the problem
as a laminar flow simulation and telling DPLR to ignore
turbulence- and transition-related flags.

Tkref 0.00d0 This value is ignored because ivis=1, defining the problem
as a laminar flow simulation and telling DPLR to ignore
turbulence- and transition-related flags.

subp0 2.650d2 This value is ignored because no subsonic boundary
conditions are identified for this simulation.

subT0 2.650d2 This value is ignored because no subsonic boundary
conditions are identified for this simulation.

pback 1.05d5 This value is ignored because no subsonic boundary
conditions are identified for this simulation.

Cs H2 0.6822392 The fraction of the freestream mass contributed by H2 is
0.6822392.

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-69 10/27/09

Freestream
Specifications
Flags (cont.)

Setting
(cont.)

Explanation (cont.)

cs H 0 The fraction of the freestream mass contributed by H is 0.

cs H+ 0 The fraction of the freestream mass contributed by H+ is 0.

cs He 0.3177608 The fraction of the freestream mass contributed by He is
0.3177608

cs e 0 The fraction of the freestream mass contributed by electrons
is 0.

CFL numbers
or timesteps
for ramping

Setting

Explanation

 .00001 Perform 20 iterations of the simulation at a CFL setting of
.00001

 .0001 Perform 20 iterations of the simulation at a CFL setting of
.0001

 .001 Perform 20 iterations of the simulation at a CFL setting of .001

 .01 Perform 20 iterations of the simulation at a CFL setting of .01

 .1 Perform 20 iterations of the simulation at a CFL setting of .1

 1 Perform 20 iterations of the simulation at a CFL setting of 1

 5 Perform 20 iterations of the simulation at a CFL setting of 5.

 10 Perform 20 iterations of the simulation at a CFL setting of 10.

 20 Perform 20 iterations of the simulation at a CFL setting of 20.

 50 Perform 20 iterations of the simulation at a CFL setting of 50.

 100 Perform 20 iterations of the simulation at a CFL setting of 100.

 200 Perform 20 iterations of the simulation at a CFL setting of 200.

 500 Perform 20 iterations of the simulation at a CFL setting of 500.

 750 Perform 20 iterations of the simulation at a CFL setting of 750.

 1000 Perform 20 iterations of the simulation at a CFL setting of
1000.

 2000 Perform 20 iterations of the simulation at a CFL setting of
2000.

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-70 10/27/09

CFL numbers
or timesteps
for ramping

(cont.)

Setting
(cont.)

Explanation (cont.)

 5000 Perform 20 iterations of the simulation at a CFL setting of
5000.

 -1 Stop reading CFL numbers.

4.3.3 Neptune Output Summary

To run this problem in DPLR, type a command at the prompt that is similar to:

 mpirun –np 42 $DPLRBINDIR/dplr3d<neptune.inp

Upon execution, DPLR will create an on-screen summary, also known as a “standard
out” of the problem as shown below.

 dplr3d
 NASA Ames Version 4.01.0
 Maintained by Mike Wright; last modified: 02/05/09

Running on 8 processors
--> Allocating 1 nodes to block 1
--> Allocating 7 nodes to block 2
--> Total load imbalance = 3.92%
--> Input grid file hardwired for 8 processors

Executable Information
--> built by twhite on Thurs Feb 5 17:23:43 PST 2009
--> at host m100
--> running Linux 2.6.9-42.0.2.ELsmp x86_64

Makefile Settings
--> LD_LIBRARY_PATH = /opt/intel/fce/9.1.037/lib
/opt/ompi1.1.2/lib
--> LFLAGS = /home/atipa/hpl/libgoto_opteron-64-r0.99-3.so
/home/atipa/hpl/xerbla.o /home/lib.working/tecio64.a
/usr/lib/gcc/x86_64-redhat-linux/3.4.5/libstdc++.a
--> CPPFLAGS = -cpp -D_i686linuxipf
--> FFLAGS = -r8 -extend_source -O3 -pad -ip -W0 -cm
--> F77 = /opt/ompi1.1.2/bin/mpif90
--> FXDRLIB = /home/lib/libfxdr.a

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-71 10/27/09

Summary of enabled CPP compiler directives:
--> AMBIPOLAR = 1
--> PARKTEXP = 0.50
--> NOHTC

****WARNING: CPP macro AMBIPOLAR = 1
 uses a simplistic model for ambipolar diffusion

INFORM: Compiled for 32-bit compatible execution

Overset Logic is disabled

Dual time stepping is disabled

Neptune Mechanism: 5 species, 5 reactions (Liebowitz 1973 & 1976)
Model
--> Species List: H2 H H+ He e
--> Reaction rates from: neptune5sp_leibowitz76.chem
--> Reaction Status: 1 1 1 1 1
--> Keq Fit Used : 0 0 0 0 0
--> Park 1990 fits for Keq (n=10^16)
--> Assume molecules created/destroyed at mixture Tve

Catalytic wall BC enabled
--> Constant accomadation coeff; gamma = 1.000
--> Fully catalytic to ion recombination

Radiative equilibrium BC enabled
--> Constant wall emissivity; epsilon = 0.85
--> Maximum wall temperature = 3000.00 K

Rotational Equilibrium - Fully Excited

Vibrational Equilibrium - SHO

Electronic Energy Neglected
--> Assuming free electrons are coupled with T

Laminar Navier-Stokes Simulation
-->Gupta-Style Collision Integrals & Yos Mixing Rule
-->Fickian Diffusion(Mass Fraction Gradients);Schmidt Number= 0.50
-->SCEBD model used to compute diffusive fluxes

Ideal Gas Equation of State

3-Dimensional Flow

Implicit - Data Parallel Line Relaxation; nrlx = 4
--> Using Global Timestepping

Estimate 187MB stack memory required per PE

Reading grid file: neptune-8PE.pgrx

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-72 10/27/09

--> Reading block 1: grid cell size 32X 16X 64
--> Reading block 2: grid cell size 48X 64X 64
--> Total number of grid cells = 229376
--> Computing grid dummy cells

Freestream Reynolds Number = 8.024E+04 (1/m)
Freestream Frozen Mach Number = 3.715E+01
Freestream Equil. Mach Number = 3.715E+01

nit = 1 rmsres = 1.0000000000000E+00 cfl = 1.0E-05
nit = 2 rmsres = 9.9999996847695E-01 cfl = 1.0E-05
nit = 3 rmsres = 9.9999993691276E-01 cfl = 1.0E-05
.
.
.
nit = 98 rmsres = 3.8595952079619E-01 cfl = 1.0E-01
nit = 99 rmsres = 3.8034985848052E-01 cfl = 1.0E-01
nit = 100 rmsres = 3.7508579577703E-01 cfl = 1.0E-01

writing restart file: neptune.pslx
solution written at: Thurs Feb 5 07:21:13 2009

nit = 101 rmsres = 3.7017658887905E-01 cfl = 1.0E+00
nit = 102 rmsres = 3.2830292631577E-01 cfl = 1.0E+00
nit = 103 rmsres = 3.0949864923525E-01 cfl = 1.0E+00
.
.
.
nit = 198 rmsres = 1.5724959884754E-02 cfl = 5.0E+01
nit = 199 rmsres = 1.5236815979400E-02 cfl = 5.0E+01
nit = 200 rmsres = 1.4743944713869E-02 cfl = 5.0E+01

writing restart file: neptune.pslx
solution written at: Thurs Feb 5 07:35:27 2009

nit = 201 rmsres = 1.4303718730322E-02 cfl = 1.0E+02
nit = 202 rmsres = 1.7744774664322E-02 cfl = 1.0E+02
nit = 203 rmsres = 1.7218162636161E-02 cfl = 1.0E+02
.
.
.
nit = 298 rmsres = 2.3267700178866E-05 cfl = 1.0E+03
nit = 299 rmsres = 2.1545250679943E-05 cfl = 1.0E+03
nit = 300 rmsres = 2.0022263684723E-05 cfl = 1.0E+03

writing restart file: neptune.pslx
solution written at: Thurs Feb 5 07:49:42 2009

nit = 301 rmsres = 1.8676626863417E-05 cfl = 2.0E+03
nit = 302 rmsres = 1.9613965114431E-05 cfl = 2.0E+03
nit = 303 rmsres = 2.1038915489521E-05 cfl = 2.0E+03,

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-73 10/27/09

.

.

.
nit = 398 rmsres = 1.4656581391990E-08 cfl = 5.0E+03
nit = 399 rmsres = 1.3612594864547E-08 cfl = 5.0E+03
nit = 400 rmsres = 1.2656218641573E-08 cfl = 5.0E+03

writing restart file: neptune.pslx
solution written at: Thurs Feb 5 08:03:56 2009

nit = 401 rmsres = 1.1780771213662E-08 cfl = 5.0E+03
nit = 402 rmsres = 1.0979147316707E-08 cfl = 5.0E+03
nit = 403 rmsres = 1.0245683275129E-08 cfl = 5.0E+03
.
.
.
nit = 498 rmsres = 2.1745095792356E-10 cfl = 5.0E+03
nit = 499 rmsres = 2.0982611245646E-10 cfl = 5.0E+03
nit = 500 rmsres = 2.0246851605138E-10 cfl = 5.0E+03

writing restart file: neptune.pslx
solution written at: Thurs Feb 5 08:18:10 2009

Loop time = 4227.63 seconds on 8 processors

Figure 4-4 Standard Out for DPLR Run of Neptune Probe

4.3.4 Neptune Output Summary Information

In addition to verifying the values entered into the DPLR input deck, the DPLR
output summary displays information about computing resources required for the run,
values calculated by code, and an initial snapshot of the set of iterations that are being
performed as the problem converges to a solution.

In this sample case, DPLR estimates that 187 megabytes of stack memory will be
required for each of the 8 processors, calculates the Reynolds and Mach numbers
used in the simulation, shows that the early iterations of the run began with very large
residuals and and very small CFL timesteps, writes restart files every 100 iterations,
and ends the run with a very small residual at iteration 500 when the neptune.pslx
solution file is written. (Note that this estimate may not include additional memory
requirements for turbulence models.)

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-74 10/27/09

4.4 Monitoring the DPLR Run

When DPLR begins its execution of a simulation run, the screen will display the
standard out as discussed above in Section 4.3.4.

In addition to the standard out, you can actively monitor the simulation run by setting
up a POSTFLOW input deck to read restart files as they are being saved during the
DPLR run. As the simulation progresses, you can extract the data you want to
examine and launch Tecplot (or some other graphics visualization program) to read
the POSTFLOW output files and create a graphic representation of the state of your
solution at specific iterations or timesteps. (See Chapter 5 for more information on
Using POSTFLOW)

This workflow set-up can help you monitor the progress of your simulation run early
enough to see if you are accurately capturing flow conditions along the shock wave.
If not, you may be able to use a runtime control file to implement a grid adaption
process during the run to improve the quality of the simulation. (See Section 6.4 for
more information on runtime control files).

Ideally, your simulation will achieve convergence when the residual from the latest
iteration in your solution approaches zero and the resulting data visualization
accurately represents the flow conditions you are simulating as shown in the standard
out for the Neptune simulation at the 500th iteration. However, each case will have its
own set of unique convergence parameters to tell you when you have achieved an
acceptable solution. In practice, if your solution progresses far enough for the residual
to stop dropping by orders of magnitude over time and appears to level out, you may
have achieved an acceptable result.

 Using DPLR

DPLR Code Version 4.01.1 User Manual 4-75 10/27/09

Figure 4-5 Graphic Representation of Mach Contours and
 Convective Heating at the Wall in the Neptune

Simulation after 500 Iterations.

Chapter 5 - Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-1 10/27/09

Contents

5.0 Introduction ..2

5.1 Running POSTFLOW ...2

5.2 Input Flags for POSTFLOW ...4

5.3 Neptune Sample Case..26

5.3.1 Neptune Input Deck..27

5.3.2 Neptune Input Deck Settings..29

5.3.3 Neptune Output Summary..30

5.3.4 Neptune Output Information ...33

5.4 Extracting Datasets..33

5.4.1 Volume Data...34

5.4.2 Surface Data...34

5.4.3 Line Data at the Intersection of Two Boundaries..........................36

5.4.4 Zone Minima or Maxima ...37

5.4.5 Integrated Surface Data ...38

5.4.6 Freestream Data...39

5.4.7 Extracting Data for External Codes ..40

5.4.8 NaN’s (Not A Number)..41

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-2 10/27/09

5.0 Introduction

Restart files generated by DPLR contain all the input deck settings and physical
modeling parameters that were used in the simulation. These data exist independently
of the original input files used to run the simulation.
Using POSTFLOW, you can identify and extract specific data from a DPLR restart
file to use in a presentation or further process with graphics software (such as
Tecplot) to create appropriate visualizations of the results of your CFD simulation.

POSTFLOW always runs in serial mode on a single processor, regardless of the
number of processors used to run the simulation that generated the restart file.

Because DPLR maintains backward compatibility, the current version of
POSTFLOW can be used to post-process restart files generated with earlier versions
of the DPLR Code Package.

5.1 Running POSTFLOW

Step 1: Open the text editor program for your system.
Action: At the command line prompt, type:

 /[path to your post directory]/post_flow3d_mb.inp

Result: An input file appears on screen with placeholder
 default values. To start with a blank deck, delete the
 default values as shown on the following page.

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-3 10/27/09

Input file for postflow

imemmode itruev ifstat

inrest ingrid inbcf ouform iwrtd

interp nzones isep istyp iunits

lref aref xmc ymc zmc imrx imry imrz

iwind cxs cys czs

iexbc <== list of BC numbers to extract from dataset

ivarp <== list of variable numbers to extract from dataset

Tecplot/plot3d zone information:
iwrt ifac imin imax jmin jmax kmin kmax bkmin bkmax zonetitle
 'stag2d'
 'body2d'
 'flow2d'
 'terminator'

fname,pname,(gname),(bname)

Figure 5-1 POSTFLOW Input Deck

Step 2: Enter problem-specific values for each of the input variables or “flags”.

(See Section 5.2 for a description of input flags and a list of allowable
values.)

Step 3: Rename and Save your POSTFLOW input file to your working directory.

Step 4: Run POSTFLOW.

Action: At the command line prompt, type:
 postflow < yourpostflowfilename.inp

Result: An output file that can be processed by a third-party
 graphics program (such as Tecplot) is created according to
 your specifications along with an on-screen summary of

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-4 10/27/09

 actions performed by POSTFLOW. (See Section 5.3 for an
 example of a problem-specific POSTFLOW input deck and
 the output summary.)

5.2 Input Flags for POSTFLOW

Input variables for POSTFLOW are discussed below in the order they appear in the
deck.

 imemmode - Specifies the memory mode selected for running POSTFLOW.
 Allowable values are:

 1 low memory mode
 2 high memory mode (Recommended)

Tech Tip: Using high memory mode makes all the features
of POSTFLOW available and is the recommended setting. If
your computing resources are insufficient for running in this
mode, i.e., capable of holding all flow variables for the
largest physical block in the simulation at any one point in
time, then choosing the low memory mode will enable you to
use the program, but will require significantly longer
processing times.

 itruev - Specifies the method to use to compute derivative values, such
 as skin friction or heat transfer. Allowable values are:

 0 evaluate derivatives using a 1st-order approximation
 1 evaluate derivatives using accurate 2nd-order
 expressions (Recommended)

Tech Tip: When immode=1 (low memory), extraction of
true derivatives is not possible. In this case, POSTFLOW
automatically sets itruev=0, then echoes a warning to the
screen.

 ifstat - Specifies the type of statistical processing POSTFLOW
 performs on flow variables (if available). Allowable values are:

 0 process instantaneous flow variables (default)
 1 compute mean (exact for primitive quantities only)

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-5 10/27/09

 2 compute root mean square (RMS) (exact for primitive
 quantities only)

3 compute standard deviation (not available in DPLR
 4.01.1)

 inrest - Specifies the format of the restart file to be read by
 POSTFLOW. Allowable values are:

 1 parallel archival file (native unformatted)
 11 parallel archival file (XDR format)
 21 Parallel archival file (ASCII)

 ingrid - Specifies the format of the grid file to be used when
 post-processing the simulation data. Allowable values are:

 0 get format from restart file (Recommended)
 1 parallel archival file (native unformatted)
 11 parallel archival file (XDR format)
 21 parallel archival file (ASCII)

Tech Tip: Setting igrid=0 ensures that the grid file being used to
post-process the data is the same as the one used to generate the
data in the first place. However, if the name of the grid file, or its
location relative to the restart file is ever changed, you must use one
of the other settings in igrid to point POSTFLOW to the original
grid file,

 inbcf - Specifies the format of the boundary condition file, if any, that
 was used to generate the data in the restart file being read by
 POSTFLOW. Allowable values are:

0 get format from restart file (Recommended)
 1 parallel archival file (native unformatted)
 11 parallel archival file (XDR format)
 21 parallel archival file (ASCII)

Tech Tip: POSTFLOW will automatically look at the restart file to
determine if any boundary condition file is required and what the
format is. If no BC file was used during the simulation, the value of
inbcf is ignored.

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-6 10/27/09

 ouform - Specifies the desired format of the output data. Allowable
 values are:

 2 plot3d grid or q-file (native unformatted)
 3 plot3d grid or function file (native unformatted)
 5 Tecplot block ordered data binary
 6 Tecplot point ordered data binary
 7 compute max/min values for variables and output to
 STDOUT
 8 integrate variables over given surface(s) and output to
 STDOUT
 9 RESERVED
 10 print selected freestream quantities to STDOUT
 11 output datasets for Moment calculations
 17 compute max/min & maxloc/minloc and output to
 STDOUT
 18 print a list of NaN locations to STDOUT
 22 plot3d grid or q-file (ASCII)
 23 plot3d grid or function file (ASCII)
 25 Tecplot block ordered data ASCII
 26 Tecplot point ordered data ASCII
 28 RADEQUIL LOS file (ASCII)
 32 gzipped plot3d grid or q-file (ASCII)
 33 gzipped plot3d grid or function file (ASCII)
 110 print freestream quantities to STDOUT in tabular
 format

Tech Tips:
1). Formats for the output files will usually be plot3d
(ouform=3,23,33) - standard CFD output formats that can be
read by most commercial post-processing tools - and Tecplot
(ouform=5,6,25,26) – a file format used only by Amtec’s
Tecplot post processing visualization software .

2) The plot3d q file output option (ouform=2) is included
primarily for historical purposes. Although still technically
available, writing data to a q file requires the user to know and
include the specific variable set specified by that file format. With no
error checking performed by DPLR, data file validity becomes the

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-7 10/27/09

entire responsibility of the user.

3). To generate Tecplot binary files (ouform=5,6), the Amtec-
provided “tecio.a” (or “tecio64.a”) runtime library must be
installed on your system.

 iwrtd - Specifies whether a subdirectory called INPUTDECKS
 containing reconstructions of the DPLR input decks (including
 the physical property data decks) used to run the simulation
 will be created in your working directory. Allowable values
 are:

0 do not create a subdirectory containing reconstructed
 input decks

 1 create a subdirectory containing reconstruct input decks
 (recommended)

Tech Tip: One of the more powerful features of POSTFLOW is the
ability to recreate usable DPLR input and physical data decks
directly from the restart file. Because of this, it is always possible to
determine the settings and physical constants used to generate the
simulation, even if the original DPLR input deck has been altered or
misplaced. (Note: Although POSTFLOW can process restart files
generated by previous versions of DPLR, DPLR input decks
reconstructed and saved in the subdirectory created by POSTFLOW
will always be generated in the format of the current version of the
DPLR Code Package.)

 interp - Specifies how cell-centered finite-volume flow data are
 represented on a node-centered grid. Allowable values are:

0 move flow data to the lower-left cell (least accurate)
 1 interpolate grid points to cell centers (See Tech Tip #1)
 2 interpolate flow data to grid points (See Tech Tip #2)
 11 interpolate grid points to cell centers; no boundary
 points (See Tech Tip #3)
 21 interpolate grid points to cell centers; even at
 boundaries (See Tech Tip #4)

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-8 10/27/09

Tech Tips:
1). Generates cell-centered grids adding additional face-centered
points to the boundaries. Flow quantities are not interpolated to the
interior of the grid, thereby holding distortion of output data to a
minimum. Because output grid points lie at the cell centers of the
original CFD grid, the output grid resulting from interp=1 cannot
be used to run further CFD simulations.

2) Preserves the location of the CFD grid points and interpolates
finite-volume data onto these mesh points. Best to use when output
data is to be processed using SAGe or a utility such as Outbound to
move the outer boundary of the grid or adapt the grid to the
computed flowfield.

3) Identical to interp=1 except that additional points are not
added at the block boundaries, so the output grid will have “holes”
in it along those boundaries. Best to use for computing integrated
forces and moments, or for outputting pointwise forces for later
offline integration using the Moment utility program. See Section
9.1.5 for more information on Moment.

4). Identical to interp=1 except that even the points at the
boundaries are located using cell-centered interpolation. Maximum
output dimensions using this option is the number of cells in each
computational direction, plus two points in each direction
representing the points added within the boundaries. Primarily used
for debugging by code developers to gain access to the cell-centered
values of quantities in the grid dummy cells rather than the face-
centered values available using interp=1.

 nzones - Specifies the maximum number of output data zones to be
 generated.

 Recommended value = 20.

Tech Tip: Used by POSTFLOW to size certain output arrays, a
moderate value such as the recommended 20 should be sufficient.
However, if this value is too small for the output arrays you ask
POSTFLOW to generate, the program will abort and generate an
error message prompting you to increase the nzones value.

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-9 10/27/09

 isep - Specifies whether multiple output datasets are to be written to a
 single or multiple files Allowable values are:

 0 all active output datasets are written to a single file
 1 each active output dataset is written to its own file

 istyp - Specifies how to extract boundary condition data with iexbc.
 Allowable values are: (Not working in DPLR 4.01.1)

 -1 extract entire volume of data for each boundary
 condition
 1 extract a single plane of data for each boundary
 condition

 -2 extract 2 planes of data for each boundary condition

 iunits - Specifies whether a POSTFLOW will include SI units
 associated with data in output files formatted for Tecplot
 (ouform=5:6, 25:26). Allowable values are:

0 do not include units in the output file
 1 include SI units in the output file

Tech Tip: If outform is set to create output files NOT specifically
formatted for Tecplot, this flag will be ignored

 lref - Specifies the reference length, in SI units (meters), used for the
 normalization of moment coefficients.

Tech Tip: The extraction of moments and moment coefficients can
either be performed directly in POSTFLOW or with an included
utility program Moment. If Moment is used, the value you enter into
1ref will be passed to the ultility for use in computation.

 aref - Specifies the reference area, in SI units (square meters), used
 for the normalization of force and moment coefficients.

xmc, ymc, zmc - Indicates the x, y, z position, in meters, as specified in the input
 plot3d grid file of the moment reference center used for
 extracting moments and moment coefficients.

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-10 10/27/09

Tech Tip: Although extraction of hinge moments for control surfaces
is not currently supported in POSTFLOW, it can be accomplished
using the Moment utility.

imrx,imry,imrz- Specifies planes of symmetry used in the simulation.
 Allowable values are:

0 do not enforce symmetry about this plane
1 enforce symmetry about this plane

Tech Tips:
1). Possible planes of symmetry are defined as:
 imrx – body is symmetric about the yz-plane
 imry – body is symmetric about the xz plane
 imrz – body is symmetric about the xy plane

2) POSTFLOW currently supports bilateral symmetry (any one of
the above flags =1) and quadrilateral symmetry (any two of the
above flags =1) .

3) If the symmetry of the vehicle is more complex than a simple
bilateral or quadrilateral representation, set all of the above flags=0
and compute the symmetry relations off-line after post-processing is
complete.

4) If ouform=8 requesting integrated variable reporting over given
surface(s) and ivarp=600:673; 700:773 requesting force or moment
coefficients, it is important to set aref to specify the full reference
area when normalizing these computed forces if the symmetry flags
are also used.

5) All three symmetry flags are valid for 3D flows, and none are
valid for a 2D or axisymmetric flow.

 iwind - Specifies the velocity vector orientation axis (aka global
 “wind”) for calculation of certain output variables (i.e., ivarp
 values). Allowable values are:

 0 do not alter the raw output data

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-11 10/27/09

 1 determine sign by a dot product with freestream vector
 (recommended for simulations with only one freestream
 specification)
 2 determine sign by a dot product with supplied wind
 vector (recommended for simulations with more than one
 freestream specification)

Tech Tip: Because the global wind axis is used either to determine
the sign of the output skin friction (shear stress) or to convert output
forces into a wind-oriented (lift and drag) coordinate system, iwind
will be ignored unless ivarp=600:673; 700:773.

cxs, cys, czs - Specifies the direction cosines of the global wind axis in the
 xyz directions when iwind=2.

Tech Tips:
1) These are defined as unit metrics, such that:
 cxs2 + cys2 + czs2 = 1
and the components u, v, and w of the freestream velocity vector V
are given by u = V•cxs; v = V•cxy; w = V• cxz

2) User input values are always normalized by POSTFLOW to
ensure that these expressions are valid.

 iexbc - Boundary condition number(s) for the wall or surface from
 which data will be extracted. Allowable values, listed in
 Section 4.2 for the DPLR input flag ibc, must be an array of
 comma or space separated entries. Entering a value of -1
 disables this feature.

Tech Tips:
1) To extract data from the intersection of two surfaces, enter a
reference boundary value, then a forward slash, then the boundary
condition that is desired to intersect with the reference boundary.
This expression becomes one value and can then be added to the
array of numbers on this input line. For example:
 iexbc
 26/18 3
would extract data from the intersection between a catalytic
radiative equilibrium wall (ibc=26) and the y symmetry plane

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-12 10/27/09

(ibc=18) in addition to extracting data from the supersonic exit
plane (ibc=3).(Note that the order of the two numbers is
important as the wall must be defined before an intersecting plane of
symmetry can be specified.)

2) If the simulation contains multiple instances of a boundary
condition specified in iexbc, the resulting data extraction will be
saved as separate “blocks” for a plot3d output file or “zones” for a
Tecplot output file. Both designations refer to the same regions in the
simulation and will be named by the iexbc setting. For example, if
iexbc=19, POSTFLOW will display the words zone t=BC19 for
each block in which that boundary condition is extracted.

3) Entering appropriate values into iexbc is a quick and easy way
to extract defined surface data from a complex multiblock grid and
can be used with, or instead of, zone specification extraction as
defined below.

 ivarp - Specifies the flow variables to be extracted from the restart file.
 Entries must be an array of comma- or space-separated
 integers. Allowable values are:
 Grid Coordinates
 0 all grid coordinates
 1 x-coordinate (x)
 2 y-coordinate (y)
 3 z-coordinate (z)

 Grid-Related Variables
 10 all path-lengths
 11 path length along grid lines in i-direction (si)
 12 path length along grid lines in j-direction (sj)
 13 path length along grid lines in k-direction (sk)
 14 *unit outward normal x-direction cosine (sx)
 15 *unit outward normal y-direction cosine (sy)
 16 *unit outward normal z-direction cosine (sz)
 21 *body normal distance (dn)
 22 *deviation from orthogonality [deg.] (dev)
 23 *face area (Area)

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-13 10/27/09

 25 cell aspect ratio (dmax/dmin) (CAR)

 Mixture Transport Properties
 50 total viscosity (mu)
 51 total kinematic viscosity (nu)
 52 total translational thermal conductivity (kap)
 53 total rotational thermal conductivity (kapr)
 54 total vibrational thermal conductivity (kapv)
 55 free electron thermal conductivity (kape)
 56 total binary diffusion coefficient (D)
 57 mixture mean free path (mfp)
 58 unit Reynolds number (Re/L)
 59 cell Reynolds number (Re_c)

 Thermodynamic Properties
 60 ratio of frozen specific heats cp/cv (G)
 61 frozen specific heat at constant volume (cv)
 62 frozen specific heat at constant pressure (cp)
 63 translational specific heat at constant volume (cvt)
 64 rotational specific heat at constant volume (cvr)
 65 vibrational specific heat at constant volume (cvv)
 66 electronic specific heat at constant volume (cve)
 68 mixture gas constant (R)
 69 mixture molecular weight (Mw)

 Turbulence Quantities
 70 turbulent kinetic energy (TKE)
 71 turbulent omega (omega_t)
 72 RESERVED
 73 RESERVED
 75 Spalart-Almaras conserved variable (mu_SA)

 Laminar Transport Properties
 80 laminar viscosity (mu_l)

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-14 10/27/09

 81 laminar kinematic viscosity (nu_l)
 82 laminar thermal conductivity (kap_l)
 83 laminar rotational thermal conductivity (kapr_l)
 84 laminar vibrational thermal conductivity (kapv_l)
 85 laminar free electron thermal conductivity (kape_l)
 86 laminar binary diffusion coefficient (D_l)
 87 laminar Lewis number (Le)
 88 laminar Schmidt number (Sc)
 89 laminar Prandtl number (Pr)

 Turbulent Transport Properties
 90 turbulent eddy viscosity (mu_t)
 91 turbulent kinematic eddy viscosity (nu_t)
 92 turbulent thermal conductivity (kap_t)
 93 turbulent rotational thermal conductivity (kapr_t)
 94 turbulent vibrational thermal conductivity (kapv_t)
 95 turbulent free electron thermal conductivity (kape_t)
 96 turbulent binary diffusion coefficient (D_t)
 97 turbulent Lewis number (Le_t)
 98 turbulent Schmidt number (Sc_t)
 99 turbulent Prandtl number (Pr_t)

 Mixture Flow Properties

(Note that stagnation quantities (density, pressure, and
temperature) are computed assuming isentropic relations,
and thus are not valid for a chemically reacting flowfield.)

 100 mixture density (rho)
 101 mixture number density (N_tot)
 102 stagnation mixture density (r_o)
 110 pressure (p)
 111 dynamic pressure (Q)
 112 stagnation pressure (p_o)
 113 Pitot pressure (p_pitot)
 114 pressure coefficient (C_p)

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-15 10/27/09

 120 translational temperature (T)
 121 bulk temperature (T_b)
 122 stagnation temperature (T_o)
 124 rotational temperature (Tr)
 125 vibrational temperature (Tv)
 126 electronic temperature (Te)
 127 free electron temperature (Tel)
 132 total enthalpy per unit mass (h)
 133 static enthalpy per unit mass (h_s)
 134 total enthalpy per unit volume (rh)
 135 static enthalpy per unit volume (rh_s)
 142 total energy per unit mass (e)
 143 total translational energy per unit mass (et)
 144 total rotational energy per unit mass (er)
 145 total vibrational energy per unit mass (ev)
 146 total electronic energy per unit mass (ee)
 147 total free electron energy per unit mass (eel)
 148 total chemical formation energy per unit mass (eh)
 149 total kinetic energy per unit mass (eU)
 150 velocity in the x-direction (u)
 151 velocity in the y-direction (v)
 152 velocity in the z-direction (w)
 153 velocity magnitude (Vel)
 154 frozen Mach number (M)
 155 frozen speed of sound (a)
 156 mean thermal speed (cbar)
 157 normalized velocity in the x-direction (u/Vel)
 158 normalized velocity in the y-direction (v/Vel)
 159 normalized velocity in the z-direction (w/Vel)
 160 momentum per unit volume in the x-direction (rhou)
 161 momentum per unit volume in the y-direction (rhov)
 162 momentum per unit volume in the z-direction (rhow)
 163 total energy per unit volume (re)
 164 total rotational energy per unit volume (rer)

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-16 10/27/09

 165 total vibrational energy per unit volume (rev)
 166 total electronic energy per unit volume (ree)
 167 total free electron energy per unit volume (rel)
 168 total chemical formation energy per unit volume (reh)
 169 total kinetic energy per unit volume (reU)
 170 entropy (S)
 175 pointwise unit radiative emission (Erad)
 180 degree of ionization (zeta)
 181 debye length (lam_D)
 182 Tstar (Tstar)
 183 electron charge (ec)
 184 plasma frequency (wpe)
 185 critical transmission frequency (wpecrit)
 194 total energy per unit mass in rotational Eqn. (er_B)
 195 total energy per unit mass in vibrational Eqn. (ev_B)
 196 total energy per unit mass in electronic Eqn. (ee_B)
 197 total energy per unit mass in free electron Eqn. (el_B)
 202 *delta velocity at wall (Del_V)
 204 *delta temperature at wall (Del_T)
 250 velocity in the x-direction normalized by V∞ (u/Vin)
 251 velocity in the y-direction normalized by V∞ (v/Vin)
 252 velocity in the z-direction normalized by V∞ (w/Vin)
 324 limited rotational temperature (Tr_l)
 325 limited vibrational temperature (Tv_l)
 326 limited electronic temperature (Te_l)
 327 limited free electron temperature (Tel_l)

 Viscous Derivative-Based Quantities
 501 *skin friction coefficient (Cf)
 502 *unit viscous force on a face in x-direction (tau_x)
 503 *unit viscous force on a face in y-direction (tau_y)
 504 *unit viscous force on a face in z-direction (tau_z)
 507 *total wall shear stress (tau)
 511 *Stanton number [based on wall enthalpy] (Ch)

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-17 10/27/09

 512 *Heat transfer coefficient in mass flux units (Chm)
 517 *Stanton number [based on freestream conditions] (St)
 518 *Convective heating coefficient (Ct)
 520 radiative equilibrium heat transfer (Qeq)
 521 *total wall heat transfer (qw)
 522 *translational wall heat transfer (qT)
 523 *rotational wall heat transfer (qR)
 524 *vibrational wall heat transfer (qV)
 525 *free electron wall heat transfer (qEl)
 526 *catalytic wall heat transfer (qD)
 527 *velocity wall heat transfer (qU)
 531 *total wall heating (qwi)
 581 *spacing in wall units y+ (yp)
 584 *tangential velocity in wall units u+ (up)
 585 *normal velocity in wall unites v+ (vp)
 591 *blowing velocity through face (vb)
 594 *mass flow rate through face (mdot)
 595 *unit mass flow rate through face (mdotU)
 596 *thrust through face (Thrust)

 Aerodynamic Forces and Moments

Force and moment variables (ivarp=600:673, 700:773) are
usually extracted in conjunction with surface integration in order to
generate integrated aerodynamic data and/or coefficients. Because
an accurate surface integration cannot be performed if the data are
extrapolated to zone edges, POSTFLOW will automatically set
interp =11 whenever one or more force and moment variables are
specified as output. This will result in a surface mesh with gaps
along all block boundaries if pointwise surface data are requested
unless you perform an off-line integration using a utility program
such as Moment.

 600 *total force on a face in all directions
 601 *total force on a face in x-direction (Fx)
 602 *total force on a face in y-direction (Fy)
 603 *total force on a face in z-direction (Fz)
 604 *total force on a face in x-direction per unit area (Fx_a)

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-18 10/27/09

 605 *total force on a face in y-direction per unit area (Fy_a)
 606 *total force on a face in z-direction per unit area (Fz_a)
 610 *pressure force on a face in all directions
 611 *pressure force on a face in x-direction (Fx_P)
 612 *pressure force on a face in y-direction (Fy_P)
 613 *pressure force on a face in z-direction (Fz_P)
 614 *pressure force on a face in x-direction per unit area
 (Fx_Pa)
 615 *pressure force on a face in y-direction per unit area
 (Fy_Pa)
 616 *pressure force on a face in z-direction per unit area
 (Fz_Pa)
 620 *viscous force on a face in all directions
 621 *viscous force on a face in x-direction (Fx_V)
 622 *viscous force on a face in y-direction (Fy_V)
 623 *viscous force on a face in z-direction (Fz_V)
 624 *viscous force on a face in x-direction per unit area
 (Fx_Va)
 625 *viscous force on a face in y-direction per unit area
 (Fy_Va)
 626 *viscous force on a face in z-direction per unit area
 (Fz_Va)
 650 *total force coefficient on a face in all directions
 651 *total force coefficient on a face in x-direction (Cx)
 652 *total force coefficient on a face in y-direction (Cy)
 653 *total force coefficient on a face in z-direction (Cz)
 660 *pressure force coefficient on a face in all direction
 661 *pressure force coefficient on a face in x-direction
 (Cx_P)
 662 *pressure force coefficient on a face in y-direction
 (Cy_P)
 663 *pressure force coefficient on a face in z-direction
 (Cz_P)
 670 *viscous force coefficient on a face in all direction
 671 *viscous force coefficient on a face in x-direction
 (Cx_V)

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-19 10/27/09

 672 *viscous force coefficient on a face in y-direction
 (Cy_V)
 673 *viscous force coefficient on a face in z-direction
 (Cz_V)
 700 *total moment on a face in all directions
 701 *total moment on a face in x-direction (Mx)
 702 *total moment on a face in y-direction (My)
 703 *total moment on a face in z-direction (Mz)
 710 *pressure moment on a face in all directions
 711 *pressure moment on a face in x-direction (Mx_P)
 712 *pressure moment on a face in y-direction (My_P)
 713 *pressure moment on a face in z-direction (Mz_P)
 720 *viscous moment on a face in all directions
 721 *viscous moment on a face in x-direction (Mx_V)
 722 *viscous moment on a face in y-direction (My_V)
 723 *viscous moment on a face in z-direction (Mz_V)
 750 *total moment coefficient on a face in all directions
 751 *total moment coefficient on a face in x-direction
 (Cmx)
 752 *total moment coefficient on a face in y-direction
 (Cmy)
 753 *total moment coefficient on a face in z-direction
 (Cmz)
 760 *pressure moment coefficient on a face in all directions
 761 *pressure moment coefficient on a face in x-direction
 (Cmx_P)
 762 *pressure moment coefficient on a face in y-direction
 (Cmy_P)
 763 *pressure moment coefficient on a face in z-direction
 (Cmz_P)
 770 *viscous moment coefficient on a face in all directions
 771 *viscous moment coefficient on a face in x-direction
 (Cmx_V)
 772 *viscous moment coefficient on a face in y-direction
 (Cmy_V)

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-20 10/27/09

 773 *viscous moment coefficient on a face in z-direction
 (Cmz_V)

 Debugging/Status Information
 980 pointwise icatmd numbers along block edges (icatmd)
 981 pointwise ireqmd numbers along block edges (ireqmd)
 990 pointwise BC numbers along block edges (ibcp)
 991 net charge [should always be zero] (Qnet)
 992 sum of mass fractions [should always be one] (Csum)
 998 zero (zero)
 999 pointwise L2Norm residual (res)

 Species Data

The following variables are species-specific data. In each
case the user can choose to extract data for either a subset
of the species by entering just the desired variable numbers,
or data for all species by entering the appropriate” macro”
value. (See Tech Tip #2)

 1000 all species densities
 1000+n density of species n (n)

 1200 all species number densities
 1200+n number density of species n (N_n)

 1400 all species mass fractions
 1400+n mass fraction of species n (C_n)

 1600 all species mole fractions
 1600+n mole fraction of species n (X_n)

 1800 all species densities, normalized by ρ∞
 1800+n normalized density of species n (RnD_n)

 3400 all species rotational temperatures
 3400+n rotational temperature of species n (Tr_n)

 3600 all species vibrational temperatures
 3600+n vibrational temperature of species n (Tv_n)

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-21 10/27/09

 4000 all species total internal energies per unit mass
 4000+n total internal energy per unit mass of species n
 (e_n)

 4200 all species translational internal energies per
 unit mass
 4200+n trans. internal energy per unit mass of species n
 (et_n)

 4400 all species rotational internal energies per unit
 mass
 4400+n rotational internal energy per unit mass of
 species n (er_n)

 4600 all species vibrational energies per unit mass
 4600+n vibrational energy per unit mass of species n
 (ev_n)

 4800 all species electronic energies per unit mass
 4800+n electronic internal energy per unit mass of
 species n (ee_n)

 5000 *all species mass flow rates through surface
 5000+n *mass flow rate through surface of species n
 (mdot_n)

 5200 *all species mass flow rates through surface
 [per unit area]
 5200+n *mass flow rate through surface of species n
 (mdotU_n)

 6000 all species total specific heats at constant
 volume
 6000+n total specific heat at constant volume of species
 n (cvx_n)

 6200 all species translational specific heats at
 constant volume
 6200+n translational specific heat at const. vol. of
 species n (cvt_n)

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-22 10/27/09

 6400 all species rotational specific heats at constant
 volume
 6400+n rotational specific heat at const. vol. of species n
 (cvr_n)

 6600 all species vibrational specific heats at constant
 volume
 6600+n vibrational specific heat at const. vol. of species
 n (cvv_n)

 6800 all species electronic specific heats at constant
 volume
 6800+n electronic specific heat at const. vol. of species
 n (cve_n)

 7000 all species frozen specific heats at constant
 pressure
 7000+n specific heat at constant pressure of species n
 (cp_n)

 7200 all species frozen specific heats at constant
 volume
 7200+n specific heat at constant volume of species n
 (cv_n)

 8000 all species gas constants
 8000+n gas constant of species n (R_n)

 8200 all species equivalent degrees of freedom [nkT]
 8200+n equivalent degrees of freedom of species n
 (dof_n)

 8400 all species partial pressures
 8400+n partial pressure of species n (p_n)

 8600 all species mean thermal speeds
 8600+n mean thermal speed of species n (cbar_n)

 8800 all species chemical formation energies per unit
 mass
 8800+n formation energy per unit mass of species n
 (eh_n)

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-23 10/27/09

 10000 all species diffusion coefficients
 10000+n diffusion coefficient of species n (D_n)

 10200 all species ambipolar diffusion effectiveness
 10200+n ambipolar diffusion effectiveness of species n
 (DaC_n)

 10400 all species effective Schmidt numbers
 10400+n effective Schmidt number of species n (Sc_n)

 10800 all species unit diffusion mass fluxes
 10800+n unit diffusion mass flux of species n (MD_n)

Tech Tips:
1) A single set of output variables may be specified for a given run of
POSTFLOW. If a variable that is not permitted by the simulation
specifications is selected for extraction, such as the coefficient of
viscosity from an Euler simulation, POSTFLOW will remove it from
the ivarp array and echo a message to the screen.

2) The list of species-specific variables includes some italicized
“macro” selections that allow extraction of several related items.
For example, ivarp=1000 tells POSTFLOW to output species
densities for all species in the simulation, relieving you of the need to
identify each species by its order number in the .chem file. Whenever
macro values are used, only those variable relevant to the simulation
will be extracted, so ivarp=0 will automatically extract x,y, and z
coordinates for a 3D flow, but only x and y for a 2D or axisymmetric
flow.

3, Variables prefaced with an asterisk (*) are defined as surface-
specific quantities and are extracted with respect to a given surface
direction as defined either with the ifac flag in the zone
specifications (see below) or automatically determined when
extracting surfaces with the iexbc flag.

4). All extracted variables are output in SI units. Units for
dimensional output variables are echoed to the screen when one of
the standard output formats are specified.

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-24 10/27/09

Tecplot/Plot3D Zone Specification Flags – The flags in this section of the
POSTFLOW input deck define the extent of data extraction required for specified
flow volumes or “zones”. In general, one row of data defines each desired extraction.
The last line in this group is the “terminator” line in which iwtr=-1 instructs the
code to stop reading zone specification information. A terminator line must be present
or a run time error will occur.

 iwrt - Specifies whether or not POSTFLOW will perform data
 extractions for that line of the zone specification array.
 Allowable values are:

0 do not extract the data defined by this zone
 specification

1 extract the data defined by this zone specification
 -1 terminator line

Tech Tip: You can enter any number of zone specification lines in
the POSTFLOW input deck. However, only those that are turned on
by iwrt=1 will actually be extracted at runtime. This way, you can
set up a default input deck with multiple zone specification lines for
all possible desired output. Then, each time POSTFLOW is run, only
the data that are actually required can be “turned on” while the rest
are left inactive.

 ifac - Specifies the ijk orientation of the surface being extracted.
 Allowable values are:

0 No face selected

1 i-face
2 j-face

 3 k-face

Tech Tips:
1) ifac is only needed when surface-oriented variables are
specified in ivarp (i.e., those marked with an asterisk, such as skin
friction or heat transfer).

2) If ifac=0 in one or more “turned on” zone specifications and
one or more surface-oriented variables are specified in ivarp, the
variables will be removed from the output dataset and a warning
message will be echoed to the screen.

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-25 10/27/09

imin, imax, jmin, jmax, kmin, kmax - Specifies the extent of the desired
 extraction in the ijk directions. Numbering depends on the
 value of interp or the “shorthand” value as explained below.

interp=1 (interpolate grid points to cell centers)
 i, j, k min = cell # in that direction to start with
 i, j, k max = cell # in that direction to end with +2

interp=2 (interpolate flow data to grid points)
 i, j, k min = grid point # in that direction to start with
 i, j, k max = grid points # that direction to end with

shorthand values independent of interp setting

 i, j, k min = cell or grid point # to start with
 i, j, k max = -1 (extract all values in this direction)
 -2 (extract all values in this direction less 1)
 -3 (extract all values up to the midpoint in
 this direction)

Tech Tip: To extract data from a plane, set the min and max values
in that direction to be the same.

bkmin, bkmax - Specifies the range of master block numbers from which to
 extract data. Entering the shorthand value of “-1” in the bkmax
 flag tells POSTFLOW that the value of bkmax is the number of
 the last block in the simulation. For example, in a simulation
 composed of four master grid blocks:

 bkmin=2 bkmax=-1

 tells POSTFLOW to extract data from master blocks #2, #3, &
 #4.

 zonetitle - An ASCII string surrounded by single or double quotes that
 will be used to name the zone if Tecplot output is specified. If a
 zone name is not desired, this flag should contain an empty
 string as shown below.

Tecplot output “name of the zone”

Non-Tecplot output “”

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-26 10/27/09

I/O Filenames – All filenames must be enclosed with single or double quotes

 fname - Specifies the name of the restart file to process. (Required)

 pname - Specifies the name of the output file to create. (Required)

 gname - Specifies the name of the grid file to process. (Optional. Only
 needed if ingrid is > 0).

 bname - Specifies the name of the boundary condition file to process.
 (Optional. Only needed if inbcf > 0).

5.3 Neptune Sample Case

The sample case used throughout the DPLR Code User Manual to illustrate how the
Code Package works describes a Neptune entry type probe with an ellipsoidal body as
shown in Figure 5-2. This case is an example of aerocapture, where drag from the
atmosphere is used to decelerate the vehicle and bring it into orbit.

Figure 5-2 Neptune Probe

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-27 10/27/09

5.3.1 Neptune Input Deck

The input deck below shows two problem-specific entries to make for POSTFLOW
to process a restart file generated during the DPLR simulation of the Neptune case.
One input deck focuses on data generated at the surface of the probe (postsurf.inp)
and one examines data on the pitchplane (postpitch).

Input file for postflow

imemmode itruev ifstat
 2 1 0

inrest ingrid inbcf ouform iwrtd
 11 0 0 26 0

interp nzones isep istyp iunits
 1 10 0 1 1

lref aref xmc ymc zmc imrx imry imrz
 1.0 1.0 0.0 0.0 0.0 0 0 0

iwind cxs cys czs
 0 1.0 0.0 0.0

iexbc <== list of BC numbers to extract from dataset
 19

ivarp <== list of variable numbers to extract from
dataset
 0 110 120 154 150 151 152

Tecplot/plot3d zone information:
iwrt ifac imin imax jmin jmax kmin kmax bkmin bkmax zonetitle
 0, 1, 1, 1, 1, -1, 1, 1, 1, -1 'stag2d'
 0, 2, 1, -1, 1, 1, 1, 1, 1, -1 'body2d'
 0, 0, 1, -1, 1, -1, 1, -1, 1, -1 'flow2d'
 -1, 0, 1, -1, 1, -1, 1, -1, 1, -1 'terminator'

fname,pname,(gname),(bname)
'neptune'
'postpitch'

Figure 5-3 POSTFLOW Input Deck for Pitchplane Analysis of
 Neptune Probe

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-28 10/27/09

nput file for postflow

imemmode itruev ifstat
 2 1 0

inrest ingrid inbcf ouform iwrtd
 11 0 0 26 0

interp nzones isep istyp iunits
 1 10 0 1 1

lref aref xmc ymc zmc imrx imry imrz
 1.0 1.0 0.0 0.0 0.0 0 0 0

iwind cxs cys czs
 0 1.0 0.0 0.0

iexbc <== list of BC numbers to extract from dataset
 25,26

ivarp <== list of variable numbers to extract from
dataset
 0 110 120 507 521

Tecplot/plot3d zone information:
iwrt ifac imin imax jmin jmax kmin kmax bkmin bkmax zonetitle
 0, 1, 1, 1, 1, -1, 1, 1, 1, -1 'stag2d'
 0, 2, 1, -1, 1, 1, 1, 1, 1, -1 'body2d'
 0, 0, 1, -1, 1, -1, 1, -1, 1, -1 'flow2d'
 -1, 0, 1, -1, 1, -1, 1, -1, 1, -1 'terminator'

fname,pname,(gname),(bname)
'neptune'
'postsurf'

Figure 5-4 POSTFLOW Input Deck for Surface Analysis of
Neptune Probe

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-29 10/27/09

5.3.2 Neptune Input Deck Settings

The following table explains the meaning of the input deck settings in this sample
case.

Input Flag Setting Explanation

imemmode 2 Run POSTFLOW in high memory mode so that all the
features of the program are available.

itruev 1 Use accurate 2nd order expressions to compute derivative
values.

ifstat 0 Process flow variables instantaneously.

inrest 11 The restart file to process is an XDR parallel archival file.

ingrid 0 Use grid information found in the restart file.

inbcf 0 Use boundary condition information found in the restart file.

ouform 6 Output post-processed data into a Tecplot point binary file.

iwrtd 0 Do not reconstruct DPLR input decks from the restart file for
storage in a subdirectory of your working directory.

interp 1 Interpolate grid points to cell centers.

nzones 10 The maximum number of output data zones to be generated
is 10.

isep 0 All active output datasets are written to a single file.

istyp 1 This flag is ignored in DPLR 4.01.0.

iunits 1 Include SI units in the output file

lref 1.0 Use 1 meter as the reference length to normalize moment
coefficients.

aref 1.0 Use 1 square meter as the reference area to normalize force
and moment coefficients

xmc 0.0 The moment reference center is located at 0.0 on the x axis.

ymc 0.0 The moment reference center is located at 0.0 on the y axis.

zmc 0.0 The moment reference center is located at 0.0 on the z axis.

imrx 0 Do not enforce symmetry about the yz plane.

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-30 10/27/09

Input Flag
(cont)

Setting
(cont)

Explanation (cont)

imry 0 Do not enforce symmetry about the xz plane.

imrz 0 Do not enforce symmetry about the xy plane.

iwind 0 Do not alter the raw output data (Ignored).

cxs 1 Cosine of the global wind axis in the x direction = 1 (Ignored)

cys 0 (Ignored)

czs 0 (Ignored)

iexbc 19

25

26

Extract the boundary conditions from the z symmetry plane
(pitch plane).

Extract data from the intersection between a catalytic
isothermal wall (ibc=25) and a catalytic radiative equilibrium
wall (ibc=26) i.e. the probe surface.

ivarp 0 Extract all grid coordinates.

 110 Extract pressure data.

 120 Extract translational temperature data.

 150 Extract velocity in the x-direction (u)

 151 Extract velocity in the y-direction (v)

 152 Extract velocity in the z-direction (w)

 154 Extract the frozen Mach number.

 507 Extract the total wall shear stress (tau)

 521 Extract total wall heat transfer.

iwert 0 Do not extract data in these zones

fname neptune The restart file to be post-processed by POSTFLOW is named
‘neptune’

pname postsurf

postpitch

The output files created by POSTFLOW for use by Tecplot
are named ‘postsurf’ and ‘postpitch’.

5.3.3 Neptune Output Summary

Upon execution, POSTFLOW will create an on-screen summary of the problem for
each input deck run as shown below:

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-31 10/27/09

 postflow
 NASA Ames Version 4.01.0
 Maintained by Mike Wright; last modified: 02/05/09

Parsing the restart file to get physical modeling data...
 restart file format: NASA Ames Version 4.01.0
 solution run at: Thurs Feb 5 08:18:10 2009

 run in 500 iterations in 4.23E+03 seconds

 CPP-macro settings enabled during run:
 AMBIPOLAR=1
 PARKTEXP=0.50
 NOHTC

 Keq limiter set at 100.00

 input ns = 5; ner = 0; nev = 0; net = 0
 number of blocks = 2
 file dimension = 3

 extracting the following BCs : 17 18 19
 note that extraction of pointwise BCs not supported yet

 output variables=x,y,z,p,T,M,u,v,w

 running in high memory mode

 interpolating grid to cell centers

 processing grid variable 1 2 3
 processing flow variable 1 2 3 4 5 6 7 8 9 10

 block # 1: nx = 32; ny = 16; nz = 64
 zone t=BC19 i= 34 j= 1 k= 66

 processing grid variable 1 2 3
 processing flow variable 1 2 3 4 5 6 7 8 9 10

 block # 2: nx = 48; ny = 64; nz = 64
 zone t=BC19 i= 50 j= 1 k= 66

 zone t=BC19 i= 50 j= 1 k= 66

 writing tecplot file: postpitch.dat

 using grid file: neptune-8PE.pgrx
 using flow file: neptune.pslx

Figure 5-5 POSTFLOW Onscreen Summary for Pitchplane Analysis of

Neptune Probe

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-32 10/27/09

 postflow
 NASA Ames Version 4.01.0
 Maintained by Mike Wright; last modified: 02/05/09

Parsing the restart file to get physical modeling data...
 restart file format: NASA Ames Version 4.01.0
 solution run at: Thurs Feb 5 08:18:10 2009

 run in 500 iterations in 4.23E+03 seconds

 CPP-macro settings enabled during run:
 AMBIPOLAR=1
 PARKTEXP=0.50
 NOHTC

 Keq limiter set at 100.00

 input ns = 5; ner = 0; nev = 0; net = 0
 number of blocks = 2
 file dimension = 3

 extracting the following BCs : 25 26
 note that extraction of pointwise BCs not supported yet

 output variables=x,y,z,p,T,tau,qw

 running in high memory mode

 processing grid variable 1 2 3
 interpolating grid to cell centers

 processing flow variable 1 2 3 4 5 6 7 8 9 10

 block # 1: nx = 32; ny = 16; nz = 64
 ==> extracted derivative data from the KMIN-surface
 ==> derivative data computed using full viscous fluxes
 zone t=BC26 i= 34 j= 18 k= 1

 processing grid variable 1 2 3
 processing flow variable 1 2 3 4 5 6 7 8 9 10

 block # 2: nx = 48; ny = 64; nz = 64
 ==> extracted derivative data from the KMIN-surface
 ==> derivative data computed using full viscous fluxes
 zone t=BC26 i= 50 j= 66 k= 1

 writing tecplot file: postsurf.dat

 using grid file: neptune-8PE.pgrx
 using flow file: neptune.pslx

Figure 5-6 POSTFLOW Onscreen Summary for Surface Analysis of
Neptune Probe

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-33 10/27/09

5.3.4 Neptune Output Information

In addition to verifying the values entered into the POSTFLOW input deck, the
POSTFLOW output summary displays information about the grid and the flow
solution components of the restart file being extracted for processing.

In this sample case, POSTFLOW displays the Keq (equilibrium constant) limiter that
DPLR calculated from ikeq setting in the DPLR input deck, restates that the number
of species used in the simulation was 5, confirms that the rotational, vibrational, and
translational energies of the flow were ignored for this simulation, and verifies that
this solution for the Neptune entry probe is based upon a 2 block, 3D simulation.
POSTFLOW then names the output variables that were specified by ivarp in the
input deck and confirms that post-processing of the restart file is taking place in high
memory mode.

Next, POSTFLOW displays a running indicator of block-by-block progress in
processing the restart file, while verifying block dimensions.

Finally, the summaries show the name of the output files, in this case
postpitch.dat and postsurf.dat, while displaying the names of the grid file
and the restart file that were used to create the output.

5.4 Extracting Datasets

The primary use of POSTFLOW is to extract volume or surface data from the restart
file for further post-processing or visualization.

Using the ouform flag in the POSTFLOW input deck, data can be saved in two
primary output file formats:

• plot3d (ouform = 2, 3, 22, 23, 32, 33)

• Tecplot (ouform = 5, 6, 25, 26)

The plot3d format is a standard CFD output format that can be read by most
commercial post-processing tools while the Tecplot format is specific for use with
Amtec’s Tecplot data visualization software.

POSTFLOW can write Tecplot ASCII (“*.dat”) files as well as binary (“*.plt”)
files, although Tecplot binary output requires linking to the Amtec-provided “tecio.a”
(or “tecio64.a”) runtime library. If this library is not available on your machine,
Tecplot binary files cannot be generated.

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-34 10/27/09

Gzipped plot3d output (ouform=32,33) is generated via a system call to the gzip
utility provided with UNIX and LINUX systems. This option may not be available on
Windows systems.

5.4.1 Volume Data

Volume data can be extracted from a restart file using the zone specification lines in
the POSTFLOW input deck.

For example, assume that a simulation was performed on a five-block, 3D volume
grid, and the desired output variables are pressure (ivarp = 110), temperature
(ivarp = 120), Mach number (ivarp = 154), and pointwise residual (ivarp
= 999). The ivarp array would be:

ivarp

110 120 154 999

The following zone specification lines could then be used to extract data from the
entire volume:

iwrt ifac imin imax jmin jmax kmin kmax bkmin bkmax zonetitle

 1, 0, 1, -1, 1, -1, 1, -1, 1, -1 'volume'

-1, 0, 1, -1, 1, -1, 1, -1, 1, -1 'terminator'

Using the shorthand code of -1 to mean “maximum” or “all”, these lines tell
POSTFLOW to read the “volume” line (iwrt=1), ignore surface data (ifac=0),
extract all points in the i (imin=1, imax=-1), j (jmin=1, jmax=-1) and k
(kmin=1, kmax=-1) directions from all master blocks (bkmin=1, bkmax=-1).
Then, with iwrt=-1, the terminator line tells POSTFLOW to stop reading zone
specification information.

POSTFLOW will now generate five output zones (one for each block) which contain
the entire volume. Each zone will be called “volume” if a Tecplot output file format is
selected by setting ouform=5:6,25:26 in the POSTFLOW input deck.

5.4.2 Surface Data

Surface data can be extracted from a restart file in two ways:
• Using zone specification lines
• Using the iexbc flag

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-35 10/27/09

Zone Specification Lines

Continuing with the 5 block 3D example in Section 5.4.1, assume that all blocks have
a body surface at j = 1, and that these five surfaces completely define the body. The
following zone specification lines could then be used to extract data from the entire
body surface:

iwrt ifac imin imax jmin jmax kmin kmax bkmin bkmax zonetitle

 1, 2, 1, -1, 1, 1, 1, -1, 1, -1 'body'

-1, 0, 1, -1, 1, -1, 1, -1, 1, -1 'terminator'

Using the shorthand code of -1 to mean “everything” or “all”, these lines tell
POSTFLOW to read the “body” line (iwrt=1), extract the j face (ifac=2), and
extract the j surface (jmin=1, jmax=1) from all blocks (bkmin=1, bkmax=-1).
Then, with iwrt=-1, the terminator line tells POSTFLOW to stop reading zone
specification information.

Now, assume further that the exit (outflow) plane of the problem can be completely
defined as the imax surface of block #5. You can tell POSTFLOW to extract data
from this surface by creating the following zone specification lines:

iwrt ifac imin imax jmin jmax kmin kmax bkmin bkmax zonetitle

 1, 1, -1, -1, 1, -1, 1, -1, 5, 5 'outflow'

-1, 0, 1, -1, 1, -1, 1, -1, 1, -1 'terminator'

These lines tell POSTFLOW to read the “outflow” line (iwrt=1), extract the i face
(ifac=1), and extract the i surface (imin=-1, imax=-1) from block #5 (bkmin=5,
bkmax=5). Then, with iwrt=-1, the terminator line tells POSTFLOW to stop
reading zone specification information.

iexbc Flag
Instead of using zone specification lines to extract surface data from a restart file (a
process that can be cumbersome to set up and which requires you to pre-determine
the locations of all surface sub-zones in the simulation), you can use the iexbc flag
to accomplish the same result.

To extract data from all six surfaces of each master block in the simulation, simply set
iexbc to one or more values of the boundary condition settings allowed for the ibc
flag in the DPLR Input deck (See Section 4.2).

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-36 10/27/09

For example, if you want to extract ivarp-specified data from all possible symmetry
planes and outflow boundaries of a multiblock grid, the iexbc setting would be as
follows:

iexbc

17 18 19 3

This setting tells POSTFLOW to extract the ivarp-specified variables for the x, y, z
planes of symmetry and the first order extrapolation of the supersonic exit surface.

Extracting data via the iexbc flag is a powerful tool within POSTFLOW and should
be used whenever possible to simplify extraction of complex surface datasets.

Tech Tip: Note that the iexbc flag can be used together with the zone specification lines in
a single POSTFLOW run to extract BOTH surface and volume datasets. By using a
combination of these methods, it should be possible to extract almost any desired subset of
flowfield data.

5.4.3 Line Data at the Intersection of Two Boundaries

The iexbc flag can also be used to extract data at the intersection of two surfaces,
such as along the vehicle centerline. To extract surface intersections, specify your two
desired boundary conditions and separate them with a forward slash.

For example, if you want to extract quantities on a radiative equilibrium catalytic
surface (ibc=26) along the xz-symmetry plane (ibc=18) you would enter:

iexbc

26/18

The first number is always the “reference” boundary, telling POSTFLOW how to
extract desired derivative quantities (such as heat flux and shear stress). The second
number is the boundary condition that you want to intersect with the reference
boundary.

You can request multiple intersections in a single POSTFLOW run if you present
them in a space or comma-separated list. For example, the following iexbc entry
will extract intersections between a radiative equilibrium catalytic surface (26) and all
180° symmetry planes:

iexbc

26/17 26/18 26/19

You can extract boundary intersection data in conjunction with extracting standard
boundary conditions and volume data. For example:

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-37 10/27/09

iexbc

26/18 3

would extract the intersection between boundary condition 26 and 18 as well as data
for the exit plane.

Tech Tip: Intersection extraction does not currently work properly with pointwise specified
boundary conditions. However, you can extract the intersection with all pointwise specified
boundary conditions by using ibc = 0 in an intersection specifier.

5.4.4 Zone Minima or Maxima

POSTFLOW can extract the minimum or maximum values of selected output
variables in each output dataset, and, if desired, the ijk location of these values.

You can accomplish this by setting the value of ouform in the POSTFLOW input
deck either to 7 or to 17. In both cases, however, the results of this operation are only
written to the screen in the standard out, (STOUT) not to an output datafile.

For example, if you set ouform=7 in the Neptune Sample Case described in Section
5.3, the on-screen output summary would be show:

block # 1: nx = 32; ny = 16; nz = 64
 zone t=BC19 i= 34 j= 1 k= 66

 Zone Maximum and Minimum Values:
 p [max] = 5.0043E+04; [min] = 3.5910E+01
 T [max] = 1.5345E+04; [min] = 1.2807E+02
 M [max] = 3.2322E+01; [min] = 0.0000E+00

 processing grid variable 1 2 3
 processing flow variable 1 2 3 4 5 6 7 8 9

 block # 2: nx = 48; ny = 64; nz = 64
 zone t=BC19 i= 50 j= 1 k= 66

 Zone Maximum and Minimum Values:
p [max] = 4.4431E+04; [min] = 3.5910E+01
T [max] = 1.4203E+04; [min] = 1.2807E+02
M [max] = 3.2322E+01; [min] = 0.0000E+00

If you set ouform = 17, POSTFLOW displays a longer listing to this onscreen
summary which includes the ijk locations of these maximum and minimum values in
the zone.

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-38 10/27/09

Tech Tip: Note that the ijk location is computed relative to the output zone. If ijk values for
all blocks are required, the entire volume should be selected as output.

5.4.5 Integrated Surface Data

POSTFLOW can integrate data for the following surface variables:

• face area (ivarp = 23)
• total heating (ivarp = 531)
• mass flow rate (ivarp = 594)
• thrust (ivarp = 596)
• aerodynamic forces (ivarp = 600:673
• aerodynamic moments (ivarp = 700:773)
• species mass flow rate (ivarp = 5000+n)

You can accomplish this by setting outform=8 and interp=11 and making sure
that all output datasets define surfaces, either with the iexbc or the ifac flag.
As with the computation of minimum and maximum values, the results of this
operation are only written to the screen in the standard out (STOUT) where results for
each zone and a sum for all zones are shown, not to an output datafile.

For example, if you set ouform=8 and interp=11 in the Neptune Sample Case
described in Section 5.3, the on-screen output summary might show:

block # 1: nx = 32; ny = 16; nz = 64
 ==> extracted derivative data from the KMIN-surface
 ==> derivative data computed using full viscous fluxes
 zone t=BC19 i= 32 j= 16 k= 1

 Fx = 9.872234694840E+02 (N)
 Fy = 3.249055280159E+02 (N)
 Fz = -3.865734146780E+02 (N)

 processing grid variable 1 2 3
 processing flow variable 1 2 3 4 5 6 7 8 9

 block # 2: nx = 48; ny = 64; nz = 64
 ==> extracted derivative data from the KMIN-surface
 ==> derivative data computed using full viscous fluxes
 zone t=BC19 i= 48 j= 64 k= 1

 Fx = 2.919904481514E+03 (N)
 Fy = 1.605495325835E+04 (N)
 Fz = -9.258734449289E+03 (N)

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-39 10/27/09

 Integrated Surface Quantities
 Summary Over All Output Surfaces:
 XZ-Symmetry Enforced During Final Summation

 Fx = 7.814255901995E+03 (N)
 Fy = 0.000000000000E+00 (N)
 Fz = -1.929061572793E+04 (N)

Tech Tips:
1) Any ivarp values not included in the list above will be removed from the input deck
when ouform=8.

2) If aerodynamic forces are selected and iwind is set to either 1 or 2, output forces will be
rotated into the wind coordinate system based on either the internal (iwind = 1) or
provided (iwind = 2) velocity cosines, and will be output as lift, drag, and side forces in
addition to the xyz forces otherwise reported. Note that this option assumes that the employed
grid is in standard aircraft coordinates.

5.4.6 Freestream Data

POSTFLOW can extract freestream data from the restart file.

You can accomplish this by setting the value of ouform in the POSTFLOW input
deck either to 10 to display requested ivarp values with their SI units or to 110 to
display a tabular listing of data better suited for direct import to a spreadsheet
application. In both cases, however, the results of this operation are only written to
the screen in the standard out, (STOUT) not to an output datafile.

Freestream data are calculated and output for each grid block in the simulation,
irrespective of any surface extraction or zone specification flags that have been set.
Separate freestream data are presented for each grid block, since DPLR allows
multiple freestream specifications to be applied when a simulation is run. However, in
most cases, all blocks will have the same freestream information.

For example, if you set ouform=10 and ivarp=110,120,154,58 in the Neptune
Sample Case described in Section 5.3, the on-screen output summary might show:

block # 1: nx = 32; ny = 16; nz = 64

 Freestream Quantities:

 Block # 1

 p = 3.591044259306E+01 (Pa)
 T = 1.280700000000E+02 (K)
 M = 3.232180261501E+01 ()

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-40 10/27/09

 Re/L = 3.151858720834E+05 (1/m)

 block # 2: nx = 48; ny = 64; nz = 64

 Block # 2

 p = 3.591044259306E+01 (Pa)
 T = 1.280700000000E+02 (K)
 M = 3.232180261501E+01 ()
 Re/L = 3.151858720834E+05 (1/m)

5.4.7 Extracting Data for External Codes

Several of the output format options (ouform) in POSTFLOW create files intended
for use with third-party codes or provided post-processing utilities. In these cases,
options are hardwired to the values required by the particular third party software.

Extraction for Moment
As of release version 3.05, POSTFLOW can directly compute moments or moment
coefficients. However, the Moment utility, provided as part of the DPLR Code
Package, can also do this computation. Moment requires plot3d grid and function
files along with an input “moment.inp” file to be created by POSTFLOW (See
Section 9.1.6).

To tell POSTFLOW to create these files:

• set ouform=11
• set interp=11
• set ivarp to either total forces (604:606), pressure forces (614:616), or viscous

forces (624:626)
• set output datasets to define surfaces either with iexbc or ifac

At the current time the only function of Moment that is not built into POSTFLOW is
for the extraction of hinge moments.

Extraction for RADEQUIL
To tell POSTFLOW to output a line-of-sight file for further processing with the shock
layer radiation code RADEQUIL, set ouform=28.

POSTFLOW will then automatically assume the following (hardwired) settings:
interp = 1
ivarp = 11 12 13 110 120 125 1600

 Using POSTFLOW

DPLR Code Version 4.01.1 User Manual 5-41 10/27/09

The output will be an ASCII format file with the suffix “.los”.

When using this option, you must specify “single body-normal line of sight” either
with the iexbc flag (e.g., iexbc = 14 will extract the stagnation line of an
axisymmetric body), or by specifying a 1D line for extraction with the Tecplot
specifier flags.

Because RADEQUIL requires a certain set of species mole fractions in a certain
order, POSTFLOW will compare the input mole fractions with the expected set in
RADEQUIL and reorder as necessary. Species expected by RADEQUIL that are not
in the current CFD dataset will be filled in with zeros as required. The resulting file
should then be ready for direct processing in RADEQUIL.

5.4.8 NaN’s (Not A Number)

POSTFLOW can extract the locations of any NaN’s in the restart file to help you
determine where the simulation begins to diverge. Although rarely used in practice,
this option can be a handy tool to use in locating the occasional evil bug.

You can accomplish this by setting ouform=18.

The output data generated by this operation consists of a list of ijk locations of all
NaN's in the volume, listed block-by-block. However, the results are only written to
the screen in the standard out, (STOUT) not to an output datafile.

Tech Tip: Note that once a NaN is generated by DPLR, it will quickly be convected
throughout the solution domain, so if you want to view the location where the NaN first
occurred, you need to stop the simulation and write a restart file at the conclusion of the
iteration in which the NaN was first generated, typically the iteration PRIOR to when the
residual itself becomes NaN.

Chapter 6 - DPLR Input / Output Files

DPLR Code Version 4.01.1 User Manual 6-1 10/27/09

Contents

6.0 Introduction ..2

6.1 Grid Files...2

6.2 Zonal Interface Files...3

6.2.1 Creating Zonal Interface Files by Hand ..3

6.2.2 Input Variables for Zonal Interface Files...4

6.2.3 Neptune Zonal Interface File ..6

6.2.4 Input Values in Neptune Zonal Interface File7

6.2.5 Creating Zonal Interface Files Automatically8

6.3 Boundary Condition Files..13

6.3.1 Creating a Pointwise Boundary Condition File13

6.3.2 Input Flags for Pointwise Boundary Condition Files15

6.4 Runtime Control Files ..18

6.4.1 Creating a Runtime Control File ...18

6.4.2 Input Flags for Runtime Control Files ...20

6.4.3 Syntax for Runtime Control Files..20

6.5 Restart Files..21

6.5.1 Converting Function Files to Restart Files....................................21

6.6 Chemistry Files...23

6.7 Radiation Files..23

6.8 Convergence Files ...24

6.9 Aerodynamic Files ...25

6.10 Log Files..25

6.11 Tecplot Files ...27

 DPLR Input / Output Files

DPLR Code Version 4.01.1 User Manual 6-2 10/27/09

6.0 Introduction

This chapter of the DPLR Code User Manual discusses the 11 types of input and
output files created and/or used by the DPLR Code Package Version 4.01.1: grid
files, zonal interface files, boundary condition files, runtime control files, restart files,
chemistry files, radiation files, convergence files, aerodynamic files, log files and
Tecplot files.
Although each file type can be written in two or more different formats, not all
formats are compatible with all parts of the DPLR Code. For example, FCONVERT
can read plot3d formatted grid and function files as input, but DPLR2D, DPLR3D,
and POSTFLOW cannot. (See Section 9.2 for more information on file formats.)

6.1 Grid Files

Grid files define the discretized computational geometry of the CFD problem. Grid
files can exist in the following formats:

Description Suffix

unformatted parallel pgrd

XDR parallel pgrx

ASCII parallel pgra

unformatted plot3d gu

XDR plot3d gx

ASCII plot3d g

gzipped ASCII plot3d gz

The plot3d files created by third-party grid-generation software packages such as
GridGen or GridPro can be read as input by FCONVERT, which typically converts
them to the XDR parallel grid file format “*.pgrx” to be used in a DPLR simulation
run.

Tech Tip: Although FCONVERT can write grid files in all of the formats listed above, the
preferred format for use in the DPLR working environment is XDR parallel (“*.pgrx”) -
a binary, machine-readable file.

 DPLR Input / Output Files

DPLR Code Version 4.01.1 User Manual 6-3 10/27/09

6.2 Zonal Interface Files

A zonal interface, or zonal boundary, is a region where two grid blocks abut, sharing
the same grid points. Information about these areas of abutment, in the form of an
ASCII zonal interface file, must be provided as input for DPLR to ensure that data are
mapped correctly across grid blocks during the CFD computation.

Zonal interface files can be prepared in three ways:
• manually, through direct observation of the serial plot3D input grid (init=1)
• automatically, by FCONVERT (init=2-4
• automatically, by using the TEMPLATE utility (See Section 8.1.5)

When the plot3D input grid describes a relatively simple set of master blocks and
resulting zonal boundaries, developing the information for a zonal interface file by
hand may be a straightforward way to proceed. However, when a multi-block input
grid contains a large number of blocks or describes complex geometries (as is often
the case in aerospace problems), using FCONVERT or TEMPLATE to develop the
detailed data required to accurately describe each zonal interface is likely to be the
more productive approach.

6.2.1 Creating Zonal Interface Files by Hand

Step 1: Examine the plot3D input grid to determine the location of all zonal
 interfaces, making note of how the points in each master block abut those
 in another block.

Step 2: Open the text editor program for your system, and create an ASCII file
 with the format shown below.

ZONAL BOUNDARY INFORMATION

Cell Matching - No dummy cells

zvers izdum

nblk ninta nintc

Zonal Boundary #

nz nface ndr1 nst1 nen1 ndr2 nst2 nen2

 DPLR Input / Output Files

DPLR Code Version 4.01.1 User Manual 6-4 10/27/09

Step 3: Enter values that describe the number, location, extent direction, and
 range of each zonal interface identified in the input plot3D grid file.

Step 4: Save the file.

Action: At the command line, type:
 save ‘filename.inter’

Result: The ASCII zonal interface file required by DPLR (and
 identified by the xname flag in the FCONVERT input
 deck) is saved.

6.2.2 Input Variables for Zonal Interface Files

Input variables required in a zonal interface file are discussed below in the order they
appear in the file.

 zvers - Specifies the version number of the interface file. This is used by
 FCONVERT to automatically upconvert older interface files when
 they are read, thus assuring full backward compatibility. Allowable
 values are the real numbers of the major and minor releases of the
 DPLR Code Package, from 2.31 through the current version
 number, 4.01.1.

 izdum - Specifies whether dummy cells are accounted for in the interface
 file. Allowable values are:

 0 Input file does not include dummy cells
 1 Input file includes dummy cells

Tech Tip: This option is meant for developers to use in
debugging. If izdum=1, FCONVERT will automatically
strip the dummy cell information before processing the zonal
interface file, which could have unwanted results.

 nblk - Specifies the number of master blocks in the input plot3D grid.

 ninta - Specifies the number of zonal interfaces in the input plot3D input
 grid.

 DPLR Input / Output Files

DPLR Code Version 4.01.1 User Manual 6-5 10/27/09

 nintc - Specifies the number of corner/edge zonal interfaces in the input
 plot3D grid. Allowable values are:

 0 Input grid contains no corner/edge zonal interfaces.
 Non-zero value – meant for debugging

Tech Tip: This option is meant for developers to use in
debugging. If nintc>0, FCONVERT will automatically
strip the corner/edge zonal interface information before
processing the file.

 nz - Specifies the grid blocks that define the common face of the zonal
 boundary being described.

 nface - Specifies the block faces that abut, thereby indicating the plane in
 which the zonal boundary lies. Allowable values are:

 1 imin face
 2 imax face
 3 jmin face
 4 jmax face
 5 kmin face
 6 kmax face

Tech Tip: If the grid is for a 2D or axisymmetric problem,
nface must =1-4, since such problems are assumed to lie
in the ij plane.

 ndr1 - Specifies the first extent direction of the zonal boundary being
 described. Allowable values are:

 1 i-direction
 2 j-direction
 3 k-direction

 nst1 - Specifies the starting point of the interface range (from cell center
 to cell center) in the direction indicated by the value in ndr1.

 nen1 - Specifies the ending point of the interface range (from cell center
 to cell center) in the direction indicated by the value in ndr1.

 DPLR Input / Output Files

DPLR Code Version 4.01.1 User Manual 6-6 10/27/09

 ndr2 - Specifies the second extent direction of the zonal boundary being
 described. Allowable values are:

 1 i-direction
 2 j-direction
 3 k-direction

 nst2 - Specifies the starting point of the interface range in the direction
 indicated by the value in ndr2.

 nen2 - Specifies the ending point of the interface range in the direction
 indicated by the value in ndr2.

6.2.3 Neptune Zonal Interface File

The following zonal interface file was created by hand for the Neptune sample case
(inint=1).

ZONAL BOUNDARY INFORMATION

Cell Matching - No dummy cells

 zvers izdum

 3.05 0

 nblk ninta nintc

 2 3 0

Zonal Boundary # 1

 nz nface ndr1 nst1 nen1 ndr2 nst2 nen2

 1 1 2 1 16 3 1 64

 2 1 2 16 1 3 1 64

Zonal Boundary # 2

 nz nface ndr1 nst1 nen1 ndr2 nst2 nen2

 1 2 2 1 16 3 1 64

 2 1 2 49 64 3 1 64

 DPLR Input / Output Files

DPLR Code Version 4.01.1 User Manual 6-7 10/27/09

Zonal Boundary # 3

 nz nface ndr1 nst1 nen1 ndr2 nst2 nen2

 1 3 3 1 64 1 1 32

 2 1 3 1 64 2 17 48

===

6.2.4 Input Values in Neptune Zonal Interface File

The input plot-3D grid for this problem consists of two master blocks and three
interfaces between these two blocks. Each interface (zonal boundary) is described by
two lines of data in the interface file. The following table explains the meaning of the
values entered into the zonal interface file for this sample case.

Input Value Setting Explanation

zvers 3.05 The 3.05 version of the DPLR Code package is being used.

izdum 0 There are no dummy cells accounted for in this interface file.

nblk 2 There are 2 master blocks in the input grid file.

ninta 3 There are 3 zonal interfaces in the input grid file.

nintc 0 Input grid contains no corner/edge zonal interfaces.

nz 1,2; 1,2; 1,2 Master blocks #1 and #2 participate in the three zonal
boundaries being described.

nface 1,1; 2,1; 3,1 The first zonal interface is located at the imin of both blocks,
placing it in the kj plane. The second zonal interface is located
at the imax of one block and the imin of the other, placing it in
the jk plane. The third zonal interface is located at the jmin of
one block and the imin of the other, placing it in the ik plane,

ndr1 2,2; 2,2; 3,3 The first extent direction for the first interface zone is j. The
first extent direction for the second interface zone is also j.
The first extent direction for the third interface zone is k.

nst1 1, 16; 1,49;
1,1

The starting point in the first extent direction for one block in
the first zonal interface is 1 and for the abutting block it is 16.
The starting point in the first extent direction for one block in
the second zonal interface is 1 and for the abutting block it is
49. The starting point in the first extent direction for one block
in the third zonal interface is 1 and for the abutting block it is
also 1.

 DPLR Input / Output Files

DPLR Code Version 4.01.1 User Manual 6-8 10/27/09

Input Value
(cont)

Setting
(cont)

Explanation

(cont)

nen1 16,1; 16,64;
64,64

The ending point in the first extent direction for one block in
the first zonal interface is 16 and for the abutting block it is 1.
The ending point in the first extent direction for one block in
the second zonal interface is 16 and for the abutting block it is
64. The ending point in the first extent direction for one block
in the third zonal interface is 64 and for the abutting block it is
also 64.

ndr2 3,3; 3,3; 1,2 The second extent direction for the first interface zone is k.
The second extent direction for the second interface zone is
also k. The second extent direction for the third interface zone
is i to j.

nst2 1, 1; 1,1; 1,17 The starting point in the second extent direction for one block
in the first zonal interface is 1 and for the abutting block it is
also 1. The starting point in the second extent direction for
one block in the second zonal interface is 1 and for the
abutting block it is also 1. The starting point in the second
extent direction for one block in the third zonal interface is 1
and for the abutting block it is 17.

nen2 64,64; 64,64;
32,48

The ending point in the second extent direction for one block
in the first zonal interface is 64 and for the abutting block it is
also 64. The ending point in the second extent direction for
one block in the second zonal interface is 64 and for the
abutting block it is also 64. The ending point in the second
extent direction for one block in the third zonal interface is 32
and for the abutting block it is 48.

6.2.5 Creating Zonal Interface Files Automatically

Although it is valuable to fully understand the meaning and origin of data in the zonal
interface files, it is likely that day-to-day use of the DPLR Code Package will more
often involve automatic generation of these files.
Currently, there are three tools available to automatically compute and generate zonal
interface files that are readable by DPLR:

 DPLR Input / Output Files

DPLR Code Version 4.01.1 User Manual 6-9 10/27/09

1. GASP® / zbconvert
2. Template
3. FCONVERT

GASP / zbconvert
Some commercial grid generation tools are capable of automatically generating
interface information in a format that is readable by the commercial CFD code GASP
Version 3. For this reason, a utility (zbconvert) is included with the DPLR Code

Package that can convert zonal interface information from GASP® Version 3 to
DPLR –readable zonal interface files. See Section 9.1.1 for more information about
the utility zbconvert.

Template
Zonal interface files can also be created by the software tool Template, developed by
Scott Thomas and David Saunders, which automatically generates a DPLR input deck
and interface file from a multi-block grid. Template is supplied as a utility with the
DPLR 4.01.1 Code Package. (For more information about Template, see Section
9.1.5.)

FCONVERT
As previously discussed in Section 3.2, setting inint=2-4 in the FCONVERT input
deck tells the program to automatically generate the type of zonal interface data
required by DPLR for grid processing. However, each inint setting option offers
different levels of computational speed and accuracy.

Setting inint=2 results in a rapid detection of full-face zonal interfaces as shown in
Figure 6-1 by comparing the centroid of each master block face (where the centroid is
computed by averaging all cells in that face). Index directions of the two faces can be
arbitrary as long as the centroids of a face pair are within a tolerance (determined
internally based on grid dimensions and clustering). Because this method detects full-
face interfaces only, this option should only be used if it is known that the input grid
does not contain sub-face interfaces, i.e., areas where one block face abuts only a
portion of another block face as shown in Figure 6-2. It is useful to note that the
computational accuracy of this setting is comparable to that achieved using the
Template software utility.

 DPLR Input / Output Files

DPLR Code Version 4.01.1 User Manual 6-10 10/27/09

Figure 6-1 Full Face Zonal Interface

Figure 6-2 Sub-Face Zonal Interface

 DPLR Input / Output Files

DPLR Code Version 4.01.1 User Manual 6-11 10/27/09

Setting inint=3 results in moderately rapid detection of both full-face and sub-face
zonal interfaces and is the recommended option for most DPLR cases. Using a
modern (2007-era) computer and working at a speed of approximately one minute per
million grid cells analyzed, this option works by examining all edge cells of all block
faces for interfaces. Figure 6-3 shows a typical block where edge cells that are
checked are highlighted in red. The only type of interface that will not be detectable
using the inint=3 option is a case where an interior sub-face of a 3D block face
touches another interior sub-face of the same block as shown in Figure 6-4.

Figure 6-3 Edge Cells Checked with inint = 3 (shown in red).

Setting inint=4 results in accurate detection of all zonal interfaces, including the
interior-to-interior zonal boundaries that a setting of inint=3 would miss as shown
in Figure 6-3. As might be expected, this setting employs a slow search algorithm
where every single exposed face cell is compared with every other exposed face cell,
requiring on the order of 15 minutes of 2007-era computer time for every million grid
cells analyzed. Cases requiring the use of this option are likely to be infrequent,
although it is a useful tool to have when needed.

 DPLR Input / Output Files

DPLR Code Version 4.01.1 User Manual 6-12 10/27/09

Figure 6-4 Interior-to-Interior Zonal Interface Detectable Only

with inint = 4.

Tech Tips:

1) All intra-zonal interface boundaries (singularity or
degenerate axes, self-closing blocks, etc.) will be detected
using any of the detection options inint = 2-4.

2) Some grid generation programs and post-processors
introduce round-off error in the xyz grid coordinates that
can result in the points on either side of an interface being
slightly different. FCONVERT has a built-in tolerance factor
to determine when two slightly different points are likely the
same, but this is not foolproof. To determine if all interfaces
have been accurately detected, you can (1) compute them all
by hand as a check case, or (2) run the resulting case and
look for mismatched interfaces in the resulting solution, or
(3) monitor the tolerance of each interface found in the input
grid as reported by FCONVERT or (4) look for a large
number of small patchy interfaces between two faces
resulting from an FCONVERT run .

 DPLR Input / Output Files

DPLR Code Version 4.01.1 User Manual 6-13 10/27/09

 6.3 Boundary Condition Files

Boundary condition files (also called “pointwise boundary condition files”) provide
information to DPLR about the chemical, radiation, and turbulence conditions that
exist at each point on a specified face of a master grid block.

Pointwise boundary condition files are optional. If you prepare one for your
simulation, you must enter the filename in the bname flag in the DPLR input deck.
Boundary condition files typically have the suffix “*.pbca”. If a boundary
condition file is not prepared for your simulation, you should set bname =none.

A generic boundary condition file named pointwise.pbca is distributed with the
DPLR Code Package Version 4.01.1 can be found in the cfdinput directory.

6.3.1 Creating a Pointwise Boundary Condition File

Step 1: Open the text editor program for your system.
Action: At the command line prompt, type:

 /[path to your cfdinput directory]/ pointwise.pbca

Result: A generic input file appears on screen, with place-holder
 default values as shown below. To customize the file for
 your simulation, remove the default values but take special
 care to preserve the line spacing. Specifically, there must
 be three lines (shown with # signs) between lines with
 value entries.

Step 2: Enter appropriate, problem-specific values for the input variables as
described in Section 6.3.2.

Step 3: Save your boundary condition file to your working directory.

Tech Tip: Although you can add as many lines as you need to
specify the sizes and ibc numbers for each master block in your
input grid, preserve the line spacing within each section and
throughout the global areas of the input deck. If lines are added to
or subtracted inappropriately within these areas, DPLR will not be
able to read the file accurately.

 DPLR Input / Output Files

DPLR Code Version 4.01.1 User Manual 6-14 10/27/09

-2 4.01 0 #Pointwise PBCA File template, Version 4.01

nblk idim

 2 3

neq ns ner nev nee net

 13 8 0 1 0 0

nmc nme nmt nmv f2 f3 f4

 0 0 0 0 0 0 0

block sizes

 16 12 78

 40 40 78

ibc numbers for each block

 20 20 18 20 26 60

 20 3 18 18 26 60

Profile Data for Block # 1; Face # 6

 1.632708000000000E-01 1.632708000000000E-01 1.632708000000000E-01

 and so on...

Profile Data for Block # 2; Face # 6

 1.632708000000000E-01 1.632708000000000E-01 1.632708000000000E-01

 and so on...

End PBCA Data

 DPLR Input / Output Files

DPLR Code Version 4.01.1 User Manual 6-15 10/27/09

6.3.2 Input Flags for Pointwise Boundary Condition Files

Input flags for a pointwise boundary condition file are discussed below in the order
they appear in the file. (Note that the first three flags that appear in the file are not
labeled.)

Flag#1 (ibtyp) - It is always -2 and should not be changed.

Flag#2 (bvers) - Specifies the version number of the DPLR Code Package
 that contained the file template.

Flag#3 (ibdum) - Specifies if the file contains values for dummy cells.
 Allowable values are:

0 The file does not contain values for dummy cells.
1 The file does contain values for dummy cells.

 nblk - Specifies the number of master blocks in the input grid.

 idim - Specifies the dimensions of the simulation. Allowable
 values are:.

2 Two dimensional simulation
3 Three dimensional simulation

 neq - Specifies the total number of coupled equations included
 in the matrix expression of the boundary conditions. The
 value is calculated as follows:

 neq = ns+ner+nev+nee+idim+1

 where: ns = number of chemical species in the flow
 ner = number of rotational energy equations
 nev =number of vibrational energy equations
 nee = number of electron/electronic energy
 equations

 net - Specifies the number of uncoupled turbulence equations.

 nmc - Specifies whether there is a catalytic material map.
 Allowable values are:

 DPLR Input / Output Files

DPLR Code Version 4.01.1 User Manual 6-16 10/27/09

0 No, a catalytic material map does not exist
1 Yes, a catalytic material map does exist

 nme - Specifies whether a surface radiation map exists. Allowable
 values are:

0 No, a surface radiation map does not exist
1 Yes, a surface radiation map does exist

 nmt - Specifies whether a transition map exists. Allowable
 values are:

0 No, a transition map does not exist
1 Yes, a transition map does exist

 nmv - Specifies whether a view factor map exists. Allowable
 values are:

0 No, a view factor map does not exist
1 Yes, a view factor map does exist

Tech Tip: A view factor map is used to account for the ability of
concave block faces to “see” each other and thus describing
how energy behaves within a concave surface geometry.

 f2 - Not used by DPLR at this time.

 f3 - Not used by DPLR at this time.

 f4 - Not used by DPLR at this time.

block sizes- Specifies the total number of computational cells in the i, j,
 k directions, respectively, for a master block.

Tech Tips:
1) Although unlabeled, each line of values corresponds to one
 master block.
2) Values also found in the ntx, nty, and ntz flags in the
 block-specific areas of the DPLR input deck.

 DPLR Input / Output Files

DPLR Code Version 4.01.1 User Manual 6-17 10/27/09

ibc numbers for each block -Specifies the boundary condition values
 entered for each face of a master block in the DPLR
 input deck - imin, imax, jmin, jmax, kmin,
 kmax – respectively.

Tech Tip: Although unlabeled, one line of values corresponds to
one master block.

Optional Lines

Catalytic material map specifiers, if nmc=1.

Surface radiation map specifiers, if nme=1.

Transition map specifiers, if nmt=1.

View Factor map specifiers, if nmv=1.

Profile Data for Block #; Face # - Listing of variable values specified by
 the ibc number for a particular master block face. For
 example, if Block #1, Face #6 has a value of 60, DPLR
 will look at this file, in this place for numeric values for ρs,
 u, v, w, Tv, T.

Tech Tips:
1) For boundary conditions to be accurately simulated, the
data in this area must appear in the exact order the variable
listing appears in the corresponding ibc flag entry
.
2) DPLR reads data in this file in the following order:
 1. Any pointwise boundary condition numbers (first) and
 input profiles (second)
 2. Any surface material maps
 3. Any surface radiation maps
 4. Any surface transition maps
 5. Any surface view factor maps.

3) DPLR then loops in the following order:
 Inner loop over the face number (1-6), followed by a loop
 over the block number (1-nblk), then repeat the outer loop
 over read order listed above.

4) Data should be written in standard “plot3d-like” format, in
the order shown in the file above.

 DPLR Input / Output Files

DPLR Code Version 4.01.1 User Manual 6-18 10/27/09

6.4 Runtime Control Files

As you are monitoring a DPLR run, you may notice that your solution is not working
the way you anticipated. In version 4.01.1 of DPLR Code Package, you can
dynamically interact with a simulation mid-run to change timestep settings and
DPLR’s grid adaption values to correct problems without having to stop the run and
start over through the use of a runtime control file.

A generic runtime control file named generic.ctrl is distributed with the DPLR
Code Package Version 4.01.1 and can be found in the cfdinput directory.

6.4.1 Creating a Runtime Control File

Step 1: Open the text editor program for your system.
Action: At the command line prompt, type:

 /[path to your cfdinput directory]/ generic.ctrl

Result: A generic input file appears on screen, with placeholder
 default values as shown below. To customize the file for
 your simulation, replace flags and values with those you
 want to change. Note that whenever a # sign appears in this
 file, DPLR considers whatever follows to be comments and
 will not parse the information.

Step 2: Save your control file to your working directory after giving it the same
prefix as your solution file and adding the suffix “.ctrl”.

DPLR will check for the existence of a control file in your working directory, by
default, every 100 iterations during the solution run. If a control file exists and is
correctly formatted, DPLR will read the new settings for the grid flags and/or
timestepping flags and continue the simulation using those values.

 DPLR Input / Output Files

DPLR Code Version 4.01.1 User Manual 6-19 10/27/09

Run-time control example

nplot = 200; iplot = 1

@iteration 500 ngiter=500 nalign=4, gmargin 2.5 # Trailing comment

@iteration 1000 igalign=1 nalign=3, gmargin 3. # Another comment

@end

Iteration-number-dependent controls

istop

nplot

iplot

nruntime_freq

Grid-tailoring controls

igalign

ngiter

nalign

imedge

imradial

ngeom

ismooth

fs_scale

ds_mult

gmargin

ds1

cellRe

ds1mx

ds2fr

Miscellaneous controls

cfl

Figure 6-5 Example of Runtime Control File

 DPLR Input / Output Files

DPLR Code Version 4.01.1 User Manual 6-20 10/27/09

6.4.2 Input Flags for Runtime Control Files

In DPLR Code Version 4.01.1, the following input flags can be dynamically changed
in a runtime control file (see Section 4.2 for more information on each flag):

 Global Flags: istop, nplot, iplot, nruntime_freq

Tech Tip: nruntime_freq is not found in the standard DPLR input deck. It is used to
specify how often the control file is to be read by DPLR, i.e., after n iterations. Default
value = 100.

 Grid-Adaption Flags: igalign, ngiter, nalign, imedge, imradial,
 ngeom, ismooth, fs_scale, ds_mult, gmargin,
 ds1, cellRe, ds1mx, ds2fr

 Timestepping Flags: cfl

Tech Tip: Note that changes to the cfl number list should be
made via an iteration-specific command as illustrated below.

6.4.3 Syntax for Runtime Control Files

Unlike other DPLR file formats, you do not have to use any of the control file input
flags in any particular order. Also, the syntax for this type of input file is as follows:

• For comments, type a # sign first, and everything after that on that line will
not be “seen” by the code. For example:

 # I am expanding this grid.

 would not cause DPLR to change the running simulation in any way.

• For a generic command, type the name of the flag you want to change
followed by an = sign followed by a numeric value. More than one generic
command can appear on a line, but they should be separated by a comma or
colon or semicolon. For example:

 nplot=300; iplot=2

 would result in DPLR changing the value of those flags when it reads the
 control file after 100 more iterations.

• For an iteration-specific command, type an @ sign, followed by the word
‘iteration’ , followed by an = sign, followed by a numeric value. Then type the

 DPLR Input / Output Files

DPLR Code Version 4.01.1 User Manual 6-21 10/27/09

name of the flag you want to change at that iteration, an “=”, then a numeric
value. An iteration-specific command can also have several flags associated
with it, but they should be separated by a comma, colon or semicolon. For
example:

 @iteration 2000 igalign=3; imradial=2

 would result in DPLR changing the value of those flags when it reaches
 iteration 2000, assuming that iteration had not already been passed when the
 control file was read.

 When changing a cfl number listing, the following syntax should be used:

 @iteration 2000 cfl = 100

 @iteration 2100 cfl = 250

 @iteration 2500 cfl = 500

 This entry in a control file in your working directory will tell DPLR that when
 it reaches the first iteration in this list that has not yet been passed, it will
 adopt this timestepping schedule in place of the one in the DPLR input deck
 and not refer back to that original listing unless the run is stopped and
 restarted.

6.5 Restart Files

The restart file is the DPLR solution file. It is named via fname in the DPLR Input
Deck and typically has the suffix “*.pslx”.

The first time a simulation is run, DPLR writes a restart file as frequently as specified
in the nplot input flag and saves as many restart files as specified in the iplot input
flag.

Restart files contain all the input deck values and physical modeling parameters that
were used in the simulation. Once written, a restart file is linked within DPLR to the
binary, machine-readable “*.pgrx” grid file that was used for the simulation.

Tech Tip: Although restart files can be written in unformatted parallel (“*.psln”) and
ASCII parallel (“*.psla”) formats, the preferred format in the DPLR working
environment is XDR parallel (“*.pslx”) - a binary, machine-readable file.

6.5.1 Converting Function Files to Restart Files

The only CFD solution file (aka “function” file) that can be used as direct input to
DPLR is a “*.pslx” restart file. Thus, if you want to rerun a solution in DPLR that

 DPLR Input / Output Files

DPLR Code Version 4.01.1 User Manual 6-22 10/27/09

was originally created in another CFD solver application such as radial_interp or
SAGe, you must first convert the function file from that program (in these cases a
plot3d file) into a “*.pslx” restart file – a task that can be accomplished using
FCONVERT.

Step 1: Make sure:
 1) the input function file contains the following variables in the
 following order:

€

ρs,u,v,(w),T,(TR),(TV),(Te),(turb)

 where rs are the species densities, u, v, and w are the velocity
 components, T is the translational temperature, Tr is the rotational
 temperature, Tv is the vibrational temperature, Tel is the free electron
 temperature, and turb are the turbulence variables.

 2) the input function file has dimensions of the number of internal cells in
 each grid block if idummy = 0, or the number of internal cells + 2 to
 account for a single row of dummy cells if idummy = 1.

Tech Tip: The second layer of dummy cells, used for high order flux
extrapolations, should never be included in the input function file. Either style
can be used to create restart files. If dummy cell information is not provided in
the function file, values in the dummy cells will be extrapolated from the interior,
and then overwritten by the corrected values when DPLR is run. If the dummy
cells are included in the file, the values contained in the dummy cells should be
face centered values at all solid surfaces. This allows for an exact specification
of the viscous wall boundary condition. If dummy cells are not included, the
boundary condition at any viscous walls will be reinitialized on restart, which
will lead to a significant perturbation to the flowfield and L2norm residual

Step 2: Open an FCONVERT input deck file (See Section 3.1) and set
 iaction=10, ifile=2, inform=3 or 23, nsin = # of chemical
 species, nerin, nevin, necin = # of independent temperatures in
 each mode, ntbin = # of turbulence variables, and the rest of the flags to
 problem-specific values.

Step 3: Save the input deck file.
Step 4: Run FCONVERT.

Tech Tip: During the conversion process, FCONVERT will generate all
necessary header elements and format the file properly for DPLR. However, the
resulting restart file does not contain all of the CFD modeling flags, and thus
cannot be post-processed with POSTFLOW until it has been run at least 1
iteration and re-saved in DPLR.

 DPLR Input / Output Files

DPLR Code Version 4.01.1 User Manual 6-23 10/27/09

6.6 Chemistry Files

The DPLR Code Package contains a large number of chemistry model files that are
automatically placed in the cfdinput directory when the software is installed along
with other physical property databases. (See Section 2.4 for more information on the
contents of directories installed with the DPLR Code Package Version 4.01.1).

Chemistry files contain the input information DPLR needs to define species lists,
chemical kinetic reactions, and reaction rates for a simulation. A chemistry file is
required input for all simulations and should be specified to DPLR by the cname
variable in the DPLR input deck along with an absolute pathname.

To help you choose the chemistry file that is most appropriate for your simulation,
file names typically contain a descriptive indication of the flow environment being
modeled, the number of chemical species included in the model, the personal or
institutional source of the model and the year the model was published, followed by a
“*.chem” suffix. For example, the file name:

 air7sp-park93.chem

tells you that it is a model of earth “air” containing seven chemical species, that it was
developed by Park, and that it was published in 1993.

Tech Tip: For a more complete description of the model contents, reference publication, and
author(s), see the legend at the end of each “*.chem” file.

6.7 Radiation Files

The radiation coupling file is an optional input file used to input pointwise

€

∇ ⋅QR
information obtained from an offline radiation transport code. This plot3D-formatted
file name typically has a “*.pdrx” suffix and is specified by the rname variable in
the DPLR input deck.

An example of a radiation file for a 2 block grid where one block size is 32x64x64
points and a second block size is 64x32x64 points is given below:

 2

32 64 64 1

64 32 64 1

[block radiation data in the i, j, and k
 directions]

 DPLR Input / Output Files

DPLR Code Version 4.01.1 User Manual 6-24 10/27/09

The first integer in the first line is the number of blocks. The four integers in the next
line is the number of points in the first block in the i,j,k directions followed by a “1”
for one variable, then repeated for the points in the second block on the next line. This
is followed by the real block radiation data supplied by the offline radiation transport
code.

Tech Tip: Although optional, if an “rname” is specified in the DPLR input deck, a
“*.pdrx” file must exist in the cfdinput directory to avoid a runtime error.

6.8 Convergence Files

When ires >0 in the DPLR input deck, DPLR automatically creates a convergence
file when a simulation is run and places it in your working directory.

The convergence file contains information on the iteration number, CFL number or
timestep, and L2norm of the flow variable specified by the iresv flag of the DPLR
input deck.

An example of a convergence file where ires=2 and iresv=1 is given below.

Summary of enabled CPP compiler directives:

--> AMBIPOLAR=1,PARKTEXP=0.50,SCEI=1.00,NOHTC

computing L2norm residual of density

 # nit global resid cfl

 1 1.000000000000000E+00 1.0E-03

 2 9.999989632126156E-01 1.0E-03

 3 9.999980913475810E-01 1.0E-03

 4 9.999975461771219E-01 1.0E-03

 5 9.999973229450715E-01 1.0E-03

 …………

 ………… etc.

 98 8.653047974124419E-01 2.5E+00

 99 8.637292011393368E-01 2.5E+00

 100 8.621722044117890E-01 2.5E+00

Loop time = 8.75 seconds on 8 processors

 DPLR Input / Output Files

DPLR Code Version 4.01.1 User Manual 6-25 10/27/09

Convergence files, named with the same prefix as the restart file and the suffix
“*.con”, are usually retained for archival purposes and can be used to plot the rate of
convergence of a specified variable in a given simulation.

Tech Tip: If the current job began with a restart file, DPLR appends the new convergence
data to the existing file (if any). If the current job is a fresh start, a new file is created and any
previous file with the same name is automatically overwritten.

6.9 Aerodynamic Files

When ires=5 or 15 in the DPLR input deck, DPLR automatically creates an
aerodynamic datafile when a simulation is run and places it in your working
directory.

The aerodynamic file contains information on the iteration number and the three force
and moment coefficients computed as dimensional quantities. Moments are computed
about the origin (0, 0, 0), and vehicle symmetries are not incorporated.

An example of an aerodynamic file where ires=5 is given below.

nit Fx Fy Fz Mx My Mz

 2001 2.5777E+05 4.706E+04 8.5400E-02 -1.0967E-01 -6.2569E-02 2.7165E+05

 2002 2.5777E+05 4.706E+04 8.5075E-02 -1.0972E-01 -5.8149E-02 2.7165E+05

 2003 2.5777E+05 4.706E+04 8.4872E-02 -1.0975E-01 -5.4368E-02 2.7165E+05

………… etc.

Aerodynamic files, named with the same prefix as the restart file and the suffix
“*.aero”. Typically used as an additional means of monitoring the progress of a
simulation run toward convergence, these files are usually retained for archival
purposes and can be used to plot the rate of convergence of a given aerodynamic
simulation.

6.10 Log Files

DPLR automatically creates a log file or standard out when a simulation is run and
places it in your working directory. Log files, names with the same prefix as the
restart file and the suffix “*.log”, are usually retained for archival purposes and

 DPLR Input / Output Files

DPLR Code Version 4.01.1 User Manual 6-26 10/27/09

can be parsed to automatically fill out quality check forms if those are used as part of
your CFD process.

The log file contains a subset of the same information that is echoed to your screen in
a standard out (STDOUT).

An example of a log file is given below.

Summary of enabled CPP compiler directives:

--> AMBIPOLAR = 1

--> PARKTEXP = 0.50

--> NOHTC

Air Mechanism: 5 species, 5 reactions (Park 1990) Model

--> Species List: N2 O2 NO N O

--> Reaction rates from: air5sp_park90.chem

--> Reaction Status: 1 1 1 1 1

--> Keq Fit Used : 0 0 0 0 0

--> NASA Lewis thermo fits used to find Keq

--> Assume molecules created/destroyed at mixture Tve

Catalytic wall BC enabled

--> Constant accomadation coeff; gamma = 1.000

Rotational Equilibrium - Fully Excited

Vibrational Non-Equilibrium - SHO

Electronic Energy Neglected

Laminar Navier-Stokes Simulation

--> Gupta-Style Collision Integrals & Yos Mixing Rule

--> Taking gradients of ev

--> Multi-Species Binary Diffusion (Mole Fraction Gradients)

--> Binary diffusion coefficients from Gupta Collision Integrals

 DPLR Input / Output Files

DPLR Code Version 4.01.1 User Manual 6-27 10/27/09

--> SCEBD model used to compute diffusive fluxes

Ideal Gas Equation of State

Axisymmetric Flow - rotate about x-axis

Implicit - Data Parallel Line Relaxation; kmax = 4

--> Using Global Timestepping

INFORM: saving 2 previous restarts

Freestream Reynolds Number = 8.260E+06 (1/m)

Freestream Frozen Mach Number = 1.087E+00

Freestream Equil. Mach Number = 1.133E+00

Figure 6-6 Example of Log File

Tech Tip: To avoid having DPLR overwrite archival output files with files generated by re-
runs of simulation, rename your restart file before beginning each run so that all the
automatically created output files will indicate which simulation run created them.

6.11 Tecplot Files

Amtec’s Tecplot® visualization software is a tool often used to process results of
DPLR simulations. For this reason, POSTFLOW has the capability of writing dataset
files in two Tecplot-specific formats:

• Tecplot binary (“*.plt”)
• Tecplot ASCII (“*.dat”)

As noted in Section 2.2, 5.2, and 5.4, however, the Amtec-provided “tecio.a” (or
“tecio64.a”) runtime library must be installed on your system to generate binary
“*.plt” files and may be available from the Tecplot website at:
 http://www.tecplot.com.

Chapter 7 - DPLR Workflow

DPLR Code Version 4.01.1 User Manual 7-1 10/27/09

Contents

7.0 Introduction ..2

7.1 DPLR Work Flow Chart ..3

7.1.1 Initial Simulation Run..4

7.1.2 Subsequent Simulation Runs ...5

7.2 Workflow Shortcuts ...6

7.2.1 Sequence the Grid..6

7.2.2 Use Runtime Control Files to Adjust Grids and CFL Schedules7

7.2.3 Use Template To Create DPLR Input and Zonal Interface Files ...8

7.2.4 Understand Your Computing Resources..8

 DPLR Workflow

DPLR Code Version 4.01.1 User Manual 7-2 10/27/09

7.0 Introduction

Using the DPLR Code Package to achieve hypersonic flow simulation solutions can
be a complex undertaking. Although the main tasks, i.e., grid file generation, grid file
conversion, solution processing, and data extraction, are essentially sequential in
nature, they are also iterative and often require concurrent execution to make the most
productive use of your time, your tool, and your computing resources.

This chapter will suggest a set of actions or “flow of work” that may help you achieve
solutions in a more timely manner. Once you become familiar with the use and robust
capabilities of the DPLR Code Package, however, it is likely that you will develop
your own customized workflow.

 DPLR Workflow

DPLR Code Version 4.01.1 User Manual 7-3 10/27/09

7.1 DPLR Work Flow Chart

Geometry of Interest
(CAD File)

pgrx grid file

pslx (restart / solution) file
+

 Flow Simulation Graphic

standard out

upsequence restart
file

dat / plt (Tecplot input) file

GridGen

plot3d format grid file
 +

[zonal interface file]
 +

FCONVERT

pgrx grid file
+

DPLR
convergence file
log file

 standard out

fconvert.inp file

dplr.inp file

POSTFLOW

postflow.inp file

Tecplot

adapt grid
to capture

shock

standard out

Template or FCONVERT

 DPLR Workflow

DPLR Code Version 4.01.1 User Manual 7-4 10/27/09

7.1.1 Initial Simulation Run
Geometry of Interest GridGen plot3d grid file

This first time you run a flow simulation problem for a geometry of interest (most
likely a vehicle of some sort) using the DPLR Code Version 4.01.1 Package, you will
need to generate a new (or adapt an existing) structured computational grid that you
believe will capture the shock wave the object will encounter at hypersonic speeds
within a specified flow environment. This “first guess” can be created from
specifications in a CAD design or from scratch. In either case, you will need to use a
grid generation program such as GridGen or GridPro to develop the grid file for use
with DPLR. In most cases, the preferred form of the structured grid file you create
will be plot3d.

With DPLR Code Version 4.01.1, you have the option of processing your plot3d
grid file through SUGGAR to enable overset grid capabilities with your simulation,
assuming you have successfully installed the required third-party software
(SUGGAR) and data libraries (DirTlib) before compiling the DPLR Code Package as
discussed in Chapter 8. After processing with SUGGAR, you will have an overset-
capable version of your plot3d grid file which may (or may not) have an altered
block order along with a domain connectivity file (.dci) in your home directory.

plot3d grid file + fconvert.inp FCONVERT pgrx grid file, standard out

Once you have created your structured grid file, you will need to create an input file
for FCONVERT that specifies, among other things, how many processors will be
used to run your simulation and how your grid file should be “decomposed” for
parallel processing. When both files are available, you will run the DPLR file
conversion executable, FCONVERT, to create a structured grid file that can be read
by DPLR. In most cases, the recommended form of the structured grid file you create
through this file conversion process will be pgrx. In addition to the new grid file,
FCONVERT will create a screen report called a “standard out” of the actions taken to
create the pgrx file. This report file can be saved for archival purposes.

pgrx grid file + dplr.inp DPLR pslx file, log file, convergence file, standard out

When the pgrx file for your problem is prepared, you will then create an input file for
DPLR that specifies a variety of information about the flow environment your object
will encounter, conditions of flow entry, conditions at the surface of different portions
of your object, and the timestepping regimen you want DPLR to employ during its
solution calculations. When both files are available, you will run the appropriate

 DPLR Workflow

DPLR Code Version 4.01.1 User Manual 7-5 10/27/09

DPLR executable, DPLR2D or DPLR3D, to create a solution or restart file. In most
cases, the recommended form of the solution file will be pslx. In addition to the
restart file, DPLR will also create a log file, a convergence file, and another standard
out file to capture various aspects of the progress of the solution run. All three of
these report files can be saved for archival purposes.

pslx file + postflow.inp POSTFLOW flow.plt, standard out

When DPLR completes the specified number of iterations to achieve a solution and
write a restart file, you will need to create an input file for POSTFLOW that specifies
the data you want extract from the solution and the format of the file you want
POSTFLOW to write – something that will depend upon the third-party data
reporting or visualization program, such as Tecplot, you are using. When both files
are available, you will run the DPLR data extraction executable POSTFLOW, to
create an input file for your flow simulation graphics program. If you are using
Tecplot, the form of this file will be .plt. In addition to the new input file,
POSTFLOW will create a screen report called a “standard out” of the actions taken to
create the file which, again, can be saved for archival purposes.

flow.plt Tecplot graphic representation of simulation solution

When the post-process data file is available from POSTFLOW, you can launch your
data visualization program to read in the information and create a graphic
representation of your simulation run.

7.1.2 Subsequent Simulation Runs

Although you began your solution run with a structured grid that represented your
“best guess” for capturing the shock wave in a hypersonic flow simulation problem, it
is common to find that some adjustment of this grid is needed for your solution to
adequately converge. These adjustments can be accomplished in subsequent runs of
your simulations using the following technique.

pslx file + revised DPLR.inp DPLR revised pslx file, log file, convergence file,
 standard out

After DPLR has created a restart file (pslx) that represents a solution needing some
“adjustments”, create a revised DPLR input file by creating and renaming a copy of
the dplr.inp file you used for your initial run. In your new input file, enter the
following input flag settings: iinit=1 ; igalign=1; nalign=4; ngiter=500.

 DPLR Workflow

DPLR Code Version 4.01.1 User Manual 7-6 10/27/09

These new settings tell DPLR that the run will be using a restart file, that grid
alignment is to take place, that four such alignments will take place during the
simulation, and that they will occur every 500 iterations of the run.

When the revised pslx file is created and data is extracted by POSTFLOW and
visualized by a graphics program, you can decide if further “adjustment” to your
structured grid is needed to capture the shock wave. If so, repeat the process above,
but consider setting a more aggressive CFL ramping schedule (i.e., greater time
stepping intervals) as you approach a converged solution.

7.2 Workflow Shortcuts

Over the years, a variety of tools and procedures have been developed to decrease the
time spent in creating and running DPLR simulations. This section describes several
of the more commonly used of these workflow shortcuts.

7.2.1 Sequence the Grid

As discussed in Section 3.5, computational grids composed of a large number of data
points typically take longer to solve than grids with fewer points. As a result, grids
used for initial solutions of CFD problems are sometimes coarsened or “sequenced”
to reduce the number of points while maintaining the topology of the mesh. After an
acceptable “first guess” is acquired, the grid is restored in a step-wise fashion to its
original number of points for final solution and post-solution data reporting.

To sequence or coarsen an input grid, open the fconvert.inp file, and enter the
following settings: imseq=1; iseq=n; jseq=n; kseq=n where n is the number of times the
grid for that block should be coarsened in the i, j, k directions. (See Section 3.5.1 for
more information on this technique).

To restore grid points and refine your solution, use FCONVERT to upsequence your
restart file and create a new pgrx file that matches the refined level of your
upsequenced restart file.

“coarsened” restart file + 1st revised fconvert.inp FCONVERT upsequenced
 restart file

plot3d grid file + 2nd revised fconvert.inp FCONVERT refined pgrx grid file
 that matches points in the
 upsequenced restart file

This can be accomplished by following the steps below:

 DPLR Workflow

DPLR Code Version 4.01.1 User Manual 7-7 10/27/09

Step 1: Open and name a new fconvert.inp file.

Step 2: Set ifile=2, inform=11, imseq=-2, iseq, jseq, kseq to
values used during sequencing, iname= coarsened
restart file name, oname= new (less sequenced) restart
file name (*.pslx).

Step 3: Save file to your working directory.

Step 4: Run FCONVERT < new FCONVERT input file.

Step 5: Open and name another new FCONVERT input file.

Step 6: Set ifile=1, inform=2, imseq=0, iname= original plot3d
grid filename, oname= new (less sequenced) XDR
parallel grid file name (*.pgrx).

Step 7: Save file to your working directory.

Step 8: Run FCONVERT < second new FCONVERT input file.

Your working directory now contains an upsequenced restart file that can be used to
start a new solution run along with the DPLR-readable grid file containing the same
number of data points as the upsequenced solution file. See Section 3.5.2 for more
information on Mesh Sequencing.

7.2.2 Use Runtime Control Files to Adjust Grids and CFL Schedules

With DPLR Code Version 4.01.1, you no longer need to wait until your initial
solution run is complete to adjust your “first guess” grid or change your CFL
timestepping schedule, and then re-run the simulation. Using a runtime control file,
you can dynamically interact with a simulation mid-run while monitoring the
progress of convergence with concurrently running graphic visualizations of restart
files as they are being written during your DPLR run.

By using this option, you may avoid the need to repetitively stop and restart
simulation runs. (See Section 6.4 for more information on creating and managing
Runtime Control Files).

 DPLR Workflow

DPLR Code Version 4.01.1 User Manual 7-8 10/27/09

7.2.3 Use Template To Create DPLR Input and Zonal Interface Files

Manually creating DPLR input and zonal interface files can be a time-consuming
task. However, by using the Template utility, created by Scott Thomas and David
Saunders and distributed with the DPLR Code Package Version 4.01.1, these two
tasks can be automated.

plot 3d grid file + sample.inputs file TEMPLATE dplr.interfaces,
 dplr.inputs, gasp.inp,
 template.con

To use Template to automatically create zonal interface files and block-specific areas
of the DPLR input file, perform the following steps:

Step 1: Rename the ‘generic.inp’ file in the cfdinput directory as ‘sample.inputs’
and save it to your working directory.

Step 2: Place the structured plot3d grid file of your object of interest in your
working directory.

Step 3: Run Template.

Your working directory now contains four new files: dplr.inputs; dplr.interfaces;
gasp.inputs, template.con.

When you open the dplr.inputs file, you will see that Template has created content for
the block-specific areas of your DPLR input file. You may use this content as a guide
to enter the values manually or simply copy and paste it into the DPLR input file you
are creating for your simulation run.

When you open the dplr.interfaces file, you will see that Template has created a zonal
interface file for use in your simulation. This method detects full-face interfaces only,
unlike FCONVERT which has the option of detecting subfacing through different
settings of inint. Thus, the zonal interface file generated by Template should only
be used when no sub-face interfaces exist in the computational grid.

See Section 9.1.5 for a more complete discussion of the Template utility.

7.2.4 Understand Your Computing Resources

The efficiency of the DPLR Code Package as a CFD solver depends, in part, on the
number of processors available for parallel solution of your flow problem. Thus, the

 DPLR Workflow

DPLR Code Version 4.01.1 User Manual 7-9 10/27/09

more processors you can allocate to your simulation run, the less time it will take to
achieve a solution.

In addition to raw computing power, however, knowing the exact number of
processors that can be dedicated to your solution will allow you decompose the
plot3d input grid into computational blocks that can be most efficiently handled by
your computing resources. This is accomplished in the FCONVERT input file by
setting iaction=2; nbreak=n where n is the number of available processors.

Chapter 8 - Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-1 10/27/09

Contents

8.0 Introduction ..2

8.1 Installation ...2

8.1.1 Installation of the DPLR Code Package ...2

8.1.2 Installation of USURP...6

8.2 Utilities ..7

8.3 Pre-Processing ...10

8.3.1 Special Considerations for SUGGAR ...10

8.3.2 Special Considerations for FCONVERT.......................................12

8.4 Running DPLR ..12

8.5 Grid Adaption ...13

8.6 Post-Processing ...14

8.6.1 Field Plots...14

8.6.2 Surface Integration ...14

8.6.3 Surface Plots ..15

8.7 Examples...16

8.7.1 Overset 2D Cylinder Case with Tilted Hole Patch16

8.7.2 3D MSL Flight Case with Overset Nose Patch.............................22

8.7.3 Huygens-PH Example with 2D Grid Alignment28

8.7.4 3D MSL Flight Example with Grid Alignment................................33

8.7.5 2D ARD Capsule Example ...36

8.7.6 2D DART Capsule Example ...41

8.7.7 3D Capsule Example..46

8.8 References ..52

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-2 10/27/09

8.0 Introduction

 An overset grid capability has been added to the DPLR Code Package beginning with
Version 4.01.1. Overset grid techniques can extend traditional structured grid
approaches to problems with greater geometric complexity and can be used to
facilitate automated grid-generation or rapid analysis of configurations during design.

This chapter will describe modifications to the installation process required to enable
the overset grid capability in the DPLR Code Package as well as modifications to the
typical DPLR workflow that arise due to the use of overset grids.

8.1 Installation

This section details special installation steps required to make the overset logic
available within the DPLR Code Package, as well as the steps necessary to compile
several utilities that may be useful for pre- and post-processing.

8.1.1 Installation of the DPLR Code Package

The overset capability in DPLR is built upon the DiRT and P3D libraries [1], which
must be compiled separately and included in the link step for the DPLR Code
Package executables. Each makefile in DPLR has been modified to access these
libraries via environment variables, DIRTLIB_DIR and DIRTINC_DIR for the DiRT
library (DiRTlib) and P3DLIB_DIR for the accompanying Plot3D library (P3Dlib).
Therefore, for the overset grid capability to be available in DPLR, these two libraries
must be compiled, and the assoicated environment variables must be defined.1

Step 1: Define the environment variables.

Action: Depending on your environment, include in your login
script (e.g. .cshrc file) commands such as the following:

 setenv DIRT_HOME $(HOME)/src/DiRTlibV1.36/src

 setenv DIRTINC_DIR $(DIRT_HOME)

 setenv DIRTLIB_DIR $(DIRT_HOME)

1 DPLR Version 4.01.1 requires DiRTlib version 1.36 or greater.

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-3 10/27/09

 setenv P3D_HOME $(HOME)/src/P3Dlib/src

 setenv P3DLIB_DIR $(P3D_HOME)

Result: DIRTINC_DIR will specify the directory containing the
drt_version.h header file, DIRTLIB_DIR will specify the
directory containing the DiRT library file, and
P3DLIB_DIR will specify the directory containing the P3D
library file (see below).

Step 2: Compile the P3D library.

Action: At the command line prompt, type the following
commands:

 cd $P3D_HOME

 rm *.o *.a

 make

 mv libp3d.a $P3DLIB_DIR

Result: Assuming there were no problems, the archive file
libp3d.a is created and stored in the directory specified
by the P3DLIB_DIR environment variable. Also created is
the executable file p3dconvert, which will be used later
in this chapter.

Step 3: Compile the serial version of the DiRT library.

Action: At the command line prompt, type the following
commands:

 cd $DIRT_HOME

 make serial

 mv libdirt.a $DIRTLIB_DIR

 mv drt_version.h $DIRTINC_DIR

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-4 10/27/09

Result: Assuming there were no problems, the archive file
libdirt.a is created and stored in the directory specified
by the DIRTLIB_DIR environment variable.

Step 4: Compile the parallel version of the DiRT library.

Action: At the command line prompt, type the following
commands:

 cd $DIRT_HOME

 make mpich

 mv libdirt_mpich.a $DIRTLIB_DIR

Result: Assuming there were no problems, the archive file
libdirt_mpich.a is created and stored in the directory
specified by the DIRTLIB_DIR environment variable.

Tech Tip: The compilation command for the parallel version of the DiRT
library may vary considerably from platform to platform. On systems using
mpicc, the build process for the current step may be simplified considerably by
defining the environment variable MPICH_ROOT to specify the directory in
which bin/mpicc is located (such that $MPICH_ROOT/bin/mpicc specifies the
full path). On other systems, the mpich target in $DIRT_HOME/Makefile will
need to be edited appropriately. Refer to the $DIRT_HOME/README file for
further instruction.

Step 5: Compile the DPLR Code Package. (See Section 2.3 for instructions on
 installing the baseline DPLR Code Package.) Ensure that the
 DIRTINC_DIR, DIRTLIB_DIR and P3DLIB_DIR environment variables
 are defined as described in Step 1 above. Then compile (or recompile) the
 DPLR Code Package.

Action: At the command line prompt, type:

 cd $DPLR_HOME

 make clean

 make

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-5 10/27/09

Result: Assuming there were no problems, all executable files in
the package are created. Links to executables dplr2d,
dplr3d, fconvert, and postflow are located in the bin
directory.

Tech Tip: The DPLR makefile.comm file includes logic to define the
OVERSET CPP flag as part of the CPPFLAGS variable when the environment
variables described in Step 1 above are defined. If OVERSET is not defined,
most if not all of the overset logic is stripped from the code prior to creation of
the object files. As a result, a make clean on the entire DPLR Code Package is
required when switching between non-overset and overset compilations.

Step 6: Compile additional overset utilities.

Action: At the command line prompt, type:

 cd $DPLR_HOME/utilities/overset

 make

Result: Assuming there were no problems, all executable files in
the overset utilities directory are created. Examples include
merge_dplr and merge_usurp, which will be used later
in this chapter. All of the utilities are listed and briefly
described in Section 8.2.

Tech Tips:
1). The Makefile in $DPLR_HOME/utilities/overset specifies the Fortran 90
compiler and compiler flags. These can be modified directly or on the command
line by specifying the FORT and FFLAGS variables.

2). Adding $DPLR_HOME/utilities/overset to your path is recommended in
order to simplify access to the executables in that directory.

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-6 10/27/09

8.1.2 Installation of USURP

USURP is a separately packaged utility that allows for accurate surface integration in
grid systems that contain overlapping surface meshes [2]. It is written in Fortran
90/95 and thus requires a working f90 compiler on the destination machine. USURP
also utilizes some third-party routines written in C.

USURP is distributed as a gzipped tar file named for the specific version of the code
and date of release; e.g. usurp_v244_02242009.tgz. Version 2.44 of USURP is
the first that includes support for DPLR Version 4.01.0 input files.

Step 1: Define the environment variables. In order to read the preferred FXDR-
 formatted DPLR grid files, USURP must be linked with FXDR at compile
 time. For this to occur, the environment variable FXDR_HOME must be
 defined to specify the full path of the FXDR library (including the name of
 the library file itself, e.g. libfxdr.a).

Action: Depending on your environment, include in your login
script (e.g. .cshrc file) commands such as the following:

 setenv FXDR_HOME $HOME/src/fxdr_2.1c/libfxdr.a

Result: FXDR_HOME will specify the full path of the filename of
the FXDR library.

Step 2: Unpack the USURP files.

Action: At the command line prompt, type:

 tar xvzf usurp_v244_02242009.tgz

Result: A directory structure is created with the new directory
SOURCE2.44 as the root.

Step 3: Print the usage for the USURP make file.

Action: At the command line prompt, type:

 cd SOURCE2.44/src

 make

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-7 10/27/09

Result: The USURP Makefile prints a list of targets that can be
used to compile the executable, drawing from the
Make.sys file.

Step 4: Create the executable file.

Action: Select an option from the result of Step 3 and type the
respective command. For example, in an environment that
contains the Intel Fortran 90 compiler ifort, type the
following at the command line prompt:

 make intel8_little

Result: Assuming there were no problems, the executable file
usurp is created.

8.2 Utilities

The following codes or scripts are provided with the DPLR Code Package in the
utilities/overset directory:

• calc_dirt_ijk

• convert_to_2d

• dplr_grid_to_suggar

• gg2dplr

• gg2suggar

• interrogate_dplr

• merge_dplr

• merge_usurp

• overflowdnamelist2xml

• peg2xml

• plot_suggar_2d

• plot_suggar_3d

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-8 10/27/09

• run_suggar_2d

• run_suggar_3d

• scan_orphans

• update_suggar_2d

• update_suggar_3d

calc_dirt_ijk - a Fortran 90 code that converts i,j,k indices from DPLR into a 1D
index used by SUGGAR or vice versa. Input is interactive in response to prompts.

convert_to_2d - a Fortran 90 code that can be used to convert 2D grids from an
unformatted multiblock PLOT3D file containing ni, nj, and nk values in the header
(where nk=1) to an ASCII 2D PLOT3D format containing only ni and nj values in the
header. (The latter format may be more to the liking of FCONVERT.) Input is
interactive in response to prompts.

dplr_grid_to_suggar - a Fortran 90 code that can be used to convert 2D grids
from an unformatted multiblock PLOT3D file containing only ni and nj values in the
header to an unformatted multiblock PLOT3D file containing ni, nj, and nk values in
the header (where nk=1). (The latter format is required by SUGGAR.) Input is
interactive in response to prompts.

gg2dplr - a rudimentary Fortran 90 code that uses a generic Gridgen boundary
condition file to generate a baseline DPLR input file. Input is interactive in response
to prompts.

gg2suggar - a Fortran 90 code that uses a generic Gridgen boundary condition file
to generate a baseline SUGGAR input file. Input is interactive in response to prompts.

interrogate_dplr - a Fortran 90 code that allows the user to manually interrogate
the values written by POSTFLOW to a cell-centered Tecplot file. The output format
in POSTFLOW should be specified with ouform=25 and interp=11, with ivarp
consisting of any desired dependent variables. Input is interactive in response to
prompts.

merge_dplr - a Fortran 90 code that combines vertex-based grid coordinates with
cell-centered values of iblank (obtained from the DCI file) and any primitive
variables output from POSTFLOW. See Section 8.6 for more details.

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-9 10/27/09

merge_usurp - a Fortran 90 code that combines output data from POSTFLOW
with a unique surface definition output from USURP (i.e. having removed any
overlapping regions from the surface mesh). See Section 8.6 for more details.

overflowdnamelist2xml - a Fortran 90 code that uses an OVERFLOW-D input
file (redirected from stdin) to generate a baseline SUGGAR input file (output to
stdout). Usage:

 overflowdnamelist2xml < [input namelist]

peg2xml - a Fortran 90 code that uses a PEGASUS input file (redirected from
stdin) to generate a baseline SUGGAR input file (output to stdout). Usage:

 peg2xml < [input namelist]

plot_suggar_2d - a Fortran 90 code that converts the results from SUGGAR (the
composite grid and iblank information) into a Tecplot data file. Input is interactive in
response to prompts.

plot_suggar_3d - a Fortran 90 code that converts the results from SUGGAR (the
composite grid and iblank information) into a Tecplot data file. Input is interactive in
response to prompts.

run_suggar_2d - a shell script containing the commands typically needed to run
SUGGAR for a 2D case. The script assumes that the suggar_2d.linux executable
is in the user's path.

run_suggar_3d - a shell script containing the commands typically needed to run
SUGGAR for a 3D case. The script assumes that the suggar_3d_opt.linux and
surfasm executables are in the user's path.

scan_orphans - a Fortran 90 code that writes out regions of orphans from a
SUGGAR DCI file.

update_suggar_2d - a shell script containing the commands typically needed
for grid adaption in a 2D case. In order to be used by DPLR, it must be copied to a
file named update_suggar and placed in the main DPLR working directory.

update_suggar_3d - a shell script containing the commands typically needed
for grid adaption in a 3D case. In order to be used by DPLR, it must be copied to a
file named update_suggar and placed in the main DPLR working directory.

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-10 10/27/09

8.3 Pre-Processing

The primary change brought about by the use of overset grids is in the grid generation
step and in the necessity to generate the domain connectivity information, or DCI, for
the overset assembly. Both of these subjects are outside of the scope of the current
document beyond a few brief remarks.

The overset grid generation methods for DPLR are in theory no different than for any
other code, and in that respect, the usual grid generation packages such as
Gridgen/Pointwise and Chimera Grid Tools may be applied. It is recommended that
users who are new to overset grids refer to the paper “Best Practices in Overset Grid
Generation” [3] for a valuable introduction to the topic. Users must bear in mind that
cell-centered solvers such as DPLR will require more overlap than vertex-based
solvers such as OVERFLOW, and this must be accounted for when the grids are first
created.

The domain connectivity information is generally comprised of an iblank array which
designates each cell in the grid as either IN, OUT, FRINGE, or ORPHAN, along with
the interpolation stencil and interpolation weights associated with each FRINGE cell
that specify how data is communicated at overset boundaries. This information is
normally generated by grid assembly software, of which there are many options.

NASA has long been a lead organization for the development of overset methods and
supports a wide array of overset tools popular in government and industry. Among
these is Pegasus, a grid assembly tool that targets vertex-based flow solvers such as
OVERFLOW.

Compared to OVERFLOW, DPLR simulations are characterized by several features
that require special attention during the overset assembly process. For example,
DPLR generally utilizes a cell-centered, full-viscous stencil on grids that may include
point-matched, block-to-block interfaces. As of this writing, the only overset grid
assembly tool known by the current authors to explicitly support all of these
requirements is SUGGAR [4], which is therefore the recommended grid assembly
tool for DPLR.

8.3.1 Special Considerations for SUGGAR

Detailed instructions for running SUGGAR are beyond the scope of the current
document beyond a few brief remarks regarding the grid specification and SUGGAR
input file.

For DPLR users, the easiest way to import grids into SUGGAR is using the PLOT3D
format. Gridgen users, for example, should export the grid as a double-precision,

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-11 10/27/09

unformatted, PLOT3D volume grid. (Note that a volume grid should be created and
exported even for 2D grids.)

SUGGAR currently requires that any PLOT3D-formatted input grid files be separated
into single-block grid files. The p3dconvert utility included with P3Dlib provides a
simple mechanism to split an existing multiblock grid file using the command

 p3dconvert [input name] -sp3dudl [output name]

As an example, specifying an output name of Grids/block.grd results in a series of files
with the names Grids/block_1.grd, Grids/block_2.grd, etc.

Several utilities have been provided in the $DPLR_HOME/utilities/overset directory to
facilitate the creation of a baseline SUGGAR input file. Gridgen users, for example,
should export the boundary conditions from Gridgen using the generic analyis
software (AS/W) format and convert the resulting file to a SUGGAR Input.xml file
format using the provided gg2suggar utility. Users of Pegasus or OVERFLOW may
want to investigate the provided peg2xml or overflowdnamelist2xml utilities. Users of
Chimera Grid Tools may be able to export a SUGGAR input file directly using a Tcl
script written for CGT.

The following settings in the SUGGAR input file are recommended for DPLR users:

<cell_centered marking_using_neighbors="y"/>

<fringe_stencil type="diag+planar_first_offdiag"/>

If the thin-layer approximation to the viscous terms is applied in DPLR, then the
fringe_stencil element may be omitted.

Run SUGGAR using one of provided utility scripts or the appropriate command line
syntax. For 2D cases, the provided run_suggar_2d script is recommended, or the user
may execute directly from the command line using a command such as:

 suggar_2d.linux Input/Input.xml

For 3D cases, the provided run_suggar_3d script is recommended, or the user may
execute directly from the command line using a command such as

 suggar_3d_opt.linux -run_surfasm "" Input/Input.xml

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-12 10/27/09

8.3.2 Special Considerations for FCONVERT

Generally speaking, no modifications are necessary to the steps normally taken with
FCONVERT during DPLR set-up. When using FCONVERT to convert the grid
format or split the grid for parallel processing, there is no need to specify in any way
that the grid is overset. Two items that do require some discussion, however, are the
grid file and grid file format used as input to FCONVERT.

When using SUGGAR, it is recommended that the output grid from SUGGAR be
used as the input grid to FCONVERT. In this way, any grid modifications that occur
during the grid assembly process will be properly reflected in DPLR, and the grid
system in DPLR will be consistent with the information contained in the DCI file.

For example, SUGGAR allows for grid blocks to be independently transformed
(scaled, translated, and/or rotated) via the SUGGAR input file, a feature that is
enabled by and sometimes useful during overset gridding. SUGGAR may also require
that blocks be re-ordered within the SUGGAR input file in order to achieve the
correct hole-cutting and assembly. In both cases, the composite grid that is output by
SUGGAR would differ from the original grid that was input to SUGGAR, and it is
the output composite grid that should be input to FCONVERT.

For 3D cases, specifying inform=2 in the FCONVERT input file will allow
FCONVERT to read the unformatted PLOT3D composite grid file output by
SUGGAR (e.g. SUGGAR/allgrids.p3dudl). For 2D cases, SUGGAR outputs
a 3D PLOT3D grid file that specifies nk=1 in all blocks. A recent modification to
FCONVERT (released with DPLR Code Package Version 4.01.1) should allow
FCONVERT to read such a file correctly by specifying idim=2 and inform=2, for
example. Alternatively, the provided convert_to_2d utility can be used to convert
the SUGGAR composite grid file to a formatted 2D PLOT3D file acceptable to
FCONVERT, at which point inform=22 can be used in FCONVERT to read the
resulting formatted file (e.g. SUGGAR/allgrids.g.

Generally speaking, run FCONVERT as usual, using iaction=10 to convert the
grid to FXDR format (ouform=11), for example, or iaction=1 if any block
splitting is desired (See Chapter 3 for more information on Using FCONVERT).

8.4 Running DPLR

Once the grid and DCI files have been generated, only a few considerations are
necessary when running the DPLR flow solver for overset grids.

• For the overset logic to be available in DPLR, the DPLR Code Package must
be linked with DiRTlib at compile time (see Section 8.1).

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-13 10/27/09

• For the overset logic to be activated, the iover flag must be set to 1 in the
DPLR input file, and the name of the DCI file must be specified. (See the
discussion for the Input Filenames and Overset Grid Implementation portions
of the DPLR input file in Section 4.2.)

• The boundary condition on overset boundaries should be specified using
boundary flag 901.

Tech Tips:
1). Currently, the only DCI file format that is supported is the flex file generated
by SUGGAR. (DiRTlib can automatically detect and read both ASCII and
unformatted versions of this file.) As such, the ioint flag in the Overset Grid
Implementation section of the DPLR input file is presently ignored.

2). The boundary condition on overset boundaries should have no influence on
the flow solution. First-order extrapolation is recommended on these
boundaries simply to provide reasonable values to the post-processing and
visualization codes. Boundary flag 901 has been added beginning with DPLR
Code Package Version 4.01.1 to designate this specification for overset
boundaries, but within DPLR, boundary flags 3 and 901 are treated identically.

8.5 Grid Adaption

Extra steps are required when grid adaption is performed on overset grids. Each time
that the grid is adapted in DPLR, the domain connectivity information must be
recalculated and imported. DPLR currently executes SUGGAR via a system call to a
script named update_suggar, which must be placed in the main working directory.
Example scripts named update_suggar_2d and update_suggar_3d, to be used
with 2D and 3D cases respectively, are provided in the utilities/overset
directory. Each script performs the following basic steps:

Step 1: Convert the adapted output grid from DPLR to a form suitable for
 SUGGAR using fconvert. In 2D cases, this requires the extra step of
 converting the 2D file to a pseudo-2D file that specifies nk=1 for all
 blocks.

Step 2: Split the grid into single block files using p3dconvert.

Step 3: Re-run SUGGAR.

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-14 10/27/09

8.6 Post-Processing

Tecplot is the preferred visualization software for overset DPLR solutions due to its
ability to handle cell-centered (or primary value) blanking explicitly. Retaining the
iblank information at the cell centers is recommended because of the fact that the
iblank values cannot be transferred from the cell centers to the vertices in an
entirely meaningful way.

Modifications to the steps normally taken with POSTFLOW during post-processing
may be necessary when overlapping grids are involved. The following sections
discuss several such recommendations.

8.6.1 Field Plots

Ideally, some variables (e.g. the grid coordinates) should be stored at the vertices
while others (e.g. the iblank array and possibly the dependent variables) should be
stored at the cell centers. Tecplot accommodates this mixed-mode method of storage,
but POSTFLOW currently does not. In the meantime, such a file can be created by
the provided merge_dplr utility.

Therefore, for 2D or 3D plots of the flow field, run POSTFLOW, choosing
ouform=25 (Tecplot block ASCII format) and interp=11 (cell centers, no
boundaries). Do not include the grid coordinates (ivarp=0), and do not include the
iblank values (ivarp=26) in the variable list. Write all volumes points, and then use
the provided merge_dplr utility to combine the composite grid (from SUGGAR),
iblank values (from the DCI file) and dependent variables (from the POSTFLOW
output file). Within Tecplot, activate primary value blanking, blanking cells in which
the primary value of iblank is zero (which will disable the OUT cells, possibly
leaving some overlap between grids) or less than or equal to zero (which will disable
the OUT and FRINGE cells, possibly leaving some gaps between grids).

8.6.2 Surface Integration

If overlapping surface grids are present in the grid system, the panel weights
calculated by USURP must be incorporated into any surface integration (e.g. for the
calculation of aerodynamic forces or heat transfer).

Step 1: Run USURP, providing the DPLR input file by redirection; e.g.

 usurp < dplr.inp

where dplr.inp is the name of the DPLR input file of interest. Assuming there were
no problems, a panel_weights.dat file is created.

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-15 10/27/09

Tech Tip: USURP will obtain the name and format of the grid file, the name of
the DCI file (if the iover flag is set to 1), and the identity of all solid wall
boundaries from the DPLR input file.

Step 2: Run POSTFLOW, specifying the normal flags for surface integration,
 such as ouform=8, interp=11, and an appropriate value for ivarp (e.g.
 ivarp=521; see Chapter 5). If the panel_weights.dat file is present,
 POSTFLOW will automatically read it and apply it to the integrand of any
 surface integration operation.

Tech Tip: Hiding the panel_weights.dat file from POSTFLOW (by temporarily
changing its name) is one way to verify that the panel weights are being applied
to the surface integrations. Comparing values of the wetted surface area
calculated by USURP and by POSTFLOW (e.g. by specifying ouform=8,
interp=11, iexbc=26 and ivarp=23 in the POSTFLOW input file) is one way to
verify that the USURP panel weights are being applied correctly.

8.6.3 Surface Plots

Contour plots on surfaces comprised of overlapping surface grids can be cleaned up
considerably if the overlapping portions are removed. USURP has the ability to
remove the overlapping portions and produce a singly-defined surface mesh in its
place. The output surface quantities from POSTFLOW can then be transferred to this
new surface representation for visualization purposes.

The provided merge_usurp utility merges the derived variables from POSTFLOW
with the surface mesh definition from USURP to try to generate improved surface
plots.

Step 1: Run POSTFLOW, specifying interp=11 (cell-centered values, no
 boundary points) and ouform=26 (Tecplot point ASCII format).

Step 2: Run USURP, specifying these command line options:

 --tecformat=ascii (required by merge_usurp)

 --watertight (if possible)

 --basis=patch (optional)

e.g.,

usurp --tecformat=ascii --watertight --basis=patch < dplr.inp

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-16 10/27/09

(See the documentation included with the USURP distribution for more information.)

Step 3: Run merge_usurp. If USURP succeeded in generating a watertight
 triangulation in Step 2 above, then the resulting usurp-triangles.dat
 file should be provided as input to merge_usurp. Failing that, the
 usurp-surfaces.dat file can be used instead.

Step 4: Load the resulting merged_surfaces.dat file into Tecplot to view
 surface contours of the selected dependent variables.

8.7 Examples

A few simple examples will serve to demonstrate the basic functionality of the
overset version of DPLR and the procedures required to set-up, run, and post-process
the cases.2

8.7.1 Overset 2D Cylinder Case with Tilted Hole Patch

A simple 2D case for testing the overset logic was generated beginning from the
cylinder-ivib1 sample case distributed with DPLR.

Step 1: Prepare the grid files. The left-most panel of Figure 8-1 shows the
 original 101 x 101 mesh for that case (with every other grid point removed
 in each direction for better clarity). An overset case was manufactured by
 manipulating the original grid in Gridgen and then using SUGGAR to cut
 a hole in the original mesh, as shown in the center panel of Figure 8-1. To
 obtain a continuous solution over the domain, the hole was covered by a
 patch grid created from a subset of the original grid but rotated 5 degrees,
 as shown in the right-most panel of Figure 8-1.

2 All examples were conducted using SUGGAR Version 2.57 and, where applicable, the accompanying version of

surfasm, which was version 1.24.

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-17 10/27/09

Figure 8-1 Overset Grid for 2D Cylinder Example

Step 2: Prepare the SUGGAR input file. The SUGGAR input file was first
 generated using gg2suggar, and then the hole, which is shown in the
 right-hand panel of Figure 8-1, was created by adding the following line:

<blank_region range1="46:54"

 range2="64:80" range3="1:1" mark_centers="yes"/>

where range1 and range2 refer to the cells (due to the mark_centers command)
in the i-direction and j-direction respectively. The final SUGGAR input file is shown
in Figure 8-2. Because all four boundaries of the patch grid are overset boundaries, no
boundary conditions are specified for the patch grid in the SUGGAR input file, as can
be seen in the definition for block1 in Figure 8-2.

Step 3: Run SUGGAR.

Action: At the command line, type:

 run_suggar_2d

Result: SUGGAR generates the domain connectivity information
with no orphans. As specified in the SUGGAR input file,

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-18 10/27/09

the domain connectivity information is stored in
gen_dirt.dci, and the composite grid is stored in
allgrids.p3dudl as an unformatted, double-precision,
PLOT3D file.

Tech Tip: SUGGAR marks the cells in the hole region with iblank=0 and then
marks two layers of fringe cells (iblank < 0) around the hole, where values for
the dependent variables must be interpolated. The solution for the governing
equations must be obtained in the remaining "active" cells, where iblank=1. The
iblank values for the grid assembly are shown in Figure 8-3.

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-19 10/27/09

<global>
<cell_centered mark_using_neighbors="y"/>
<fringe_stencil type="diag+planar_first_offdiag"/>
<output>
 <structured_grid filename="allgrids.p3dudl" style="p3dudl"/>
 <donor_receptor_file filename="gen_dirt.dci"
 style="ascii_gen_drt_pairs"/>
</output>
<body name="root body">

 <volume_grid name="block1"
 style="p3d" filename="Grids/block_1.grd">
 </volume_grid>
 <volume_grid name="block2"
 style="p3d" filename="Grids/block_2.grd">
 <blank_region range1="46:54" range2="64:80" range3="1:1"
 mark_centers="yes"/>
 <boundary_surface name="jmin">
 <region range1="all" range2="min" range3="all"/>
 <boundary_condition type="solid"/>
 </boundary_surface>
 <boundary_surface name="imax">
 <region range1="max" range2="all" range3="all"/>
 <boundary_condition type="farfield"/>
 </boundary_surface>
 <boundary_surface name="jmax">
 <region range1="all" range2="max" range3="all"/>
 <boundary_condition type="farfield"/>
 </boundary_surface>
 <boundary_surface name="imin">
 <region range1="min" range2="all" range3="all"/>
 <boundary_condition type="farfield"/>
 </boundary_surface>
 </volume_grid>
</body>
</global>

Figure 8-2 SUGGAR Input File for 2D Cylinder Example

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-20 10/27/09

Figure 8-3 Iblank Values for 2D Cylinder Example

Step 4: Run FCONVERT (with iaction=1, idim=2, inform=2, ouform=11,
 and ibrk=jbrk=2 in each block) to convert the
 SUGGAR/allgrids.p3dudl file into an FXDR-formatted grid file
 named dplr.pgrx suitable for parallel execution on 8 processors. (Note
 that a modification to FCONVERT introduced in DPLR Code Package
 4.01.1 is necessary to read this 3D grid with nk=1 as a 2D grid in
 FCONVERT.)

Step 5: Prepare the DPLR input file. In this case, the DPLR input file was
 constructed by starting with the cylinder-ivib1.inp file that was
 provided with the “Cylinder” sample case. The input file describes laminar
 flow of a five-species air model in vibrational non-equilibrium, resulting
 in nine coupled partial differential equations. The primary modifications to
 the input file involved changing the number of blocks from 1 to 2 and
 adding a block-specific section for the patch grid, using ibc=901 on the
 overset boundaries. The maximum CFL number was set to 100,000. The
 overset logic was activated by setting iover=1 and specifying the name
 of the DCI file as SUGGAR/gen_dirt.dci.

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-21 10/27/09

Step 6: Run DPLR. In this case, DPLR was executed with the command

 mpirun -np 8 dplr2d < dplr.inp

 Over 1000 iterations, the RMS residual dropped 14 orders of magnitude.

Step 7: Run POSTFLOW (with ouform=25, interp=11, and
 ivarp=150,151) to generate ASCII Tecplot data. The POSTFLOW
 output was combined with the composite grid and DCI files from
 SUGGAR using merge_dplr. Velocity contours are shown for the final
 solution in Figure 8-4. It can be seen that the contours vary smoothly
 across the overset region. In the center and right-hand panel of Figure 8-4,
 the velocity contours are shown again, this time showing each block
 separately and using a piecewise-constant coloring scheme based on the
 local value of the velocity in each cell. The values of the dependent
 variables in the hole cells do not influence the solution in the active cells,
 so these cells are not shown in the center panel.

Figure 8-4 Velocity Contours for 2D Cylinder Example

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-22 10/27/09

8.7.2 3D MSL Flight Case with Overset Nose Patch

The Mars Science Laboratory Flight sample case that was distributed with DPLR
Version 3.05.0 consisted of a two-block point-matched grid, with one rectangular
mesh on the nose surrounded by an O-type grid covering the rest of the heat shield,
and with both blocks extruded away to the far field. In the example presented here,
the central block was removed and replaced by an overset nose patch, which was
extruded away to the original far field boundary location, as shown in Figure 8-5.

Figure 8-5 Overset Surface Grid for MSL Flight Example

Step 1: Prepare the grid files. Working from Gridgen, the 3D volume grid was
 exported as an unformatted, double-precision, PLOT3D file named msl-
 flight-3.grd, and the generic AS/W boundary conditions were
 exported to a file named bc.dat. The grid file was split into single block,
 double-precision, unformatted PLOT3D files using the commands

 mkdir Grids

 p3dconvert msl-flight-3.grd -sp3dudl Grids/block.grd

 which created block_1.grd and block_2.grd in a Grids
 subdirectory.

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-23 10/27/09

Step 2: Prepare the SUGGAR input file. In this case, the SUGGAR input file
 (Input.xml, which is shown in its entirety in Figure 8-6) was generated
 from the Gridgen output files using gg2suggar. The output from
 gg2suggar required only one modification in this case, which was to
 uncomment the symmetry element in the header and specify the
 symmetry plane as z.

<global>

<symmetry_plane axis="z"/>

<cell_centered mark_using_neighbors="y"/>

<fringe_stencil type="diag+planar_first_offdiag"/>

<output>

 <structured_grid filename="allgrids.p3dudl" style="p3dudl"/>

 <donor_receptor_file filename="gen_dirt.dci"

 style="ascii_gen_drt_pairs"/>

</output>

<body name="root body">

 <volume_grid name="B"

 style="p3d" filename="Grids/block_1.grd">

 <boundary_surface name="kmin">

 <region range1="all" range2="all" range3="min"/>

 <boundary_condition type="symmetry"/>

 </boundary_surface>

 <boundary_surface name="kmax">

 <region range1="all" range2="all" range3="max"/>

 <boundary_condition type="symmetry"/>

 </boundary_surface>

 <boundary_surface name="imax">

 <region range1="max" range2="all" range3="all"/>

 <boundary_condition type="non-overlap"/>

 </boundary_surface>

 <boundary_surface name="jmin">

 <region range1="all" range2="min" range3="all"/>

 <boundary_condition type="solid"/>

 </boundary_surface>

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-24 10/27/09

 <boundary_surface name="jmax">

 <region range1="all" range2="max" range3="all"/>

 <boundary_condition type="non-overlap"/>

 </boundary_surface>

 </volume_grid>

 <volume_grid name="A"

 style="p3d" filename="Grids/block_2.grd">

 <boundary_surface name="imin">

 <region range1="min" range2="all" range3="all"/>

 <boundary_condition type="symmetry"/>

 </boundary_surface>

 <boundary_surface name="jmin">

 <region range1="all" range2="min" range3="all"/>

 <boundary_condition type="solid"/>

 </boundary_surface>

 <boundary_surface name="jmax">

 <region range1="all" range2="max" range3="all"/>

 <boundary_condition type="non-overlap"/>

 </boundary_surface>

 </volume_grid>

</body>

</global>

Figure 8-6 SUGGAR Input File for MSL Flight Example

Step 3: Run SUGGAR.

Action: At the command line, type:

 run_suggar_3d

Result: SUGGAR generates the domain connectivity information
with no orphans. As specified in the SUGGAR input file,
the domain connectivity information is stored in

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-25 10/27/09

gen_dirt.dci, and the composite grid is stored in
allgrids.p3dudl as an unformatted, double-precision,
PLOT3D file.

Step 4: Run FCONVERT (with iaction=1, idim=3, inform=2, ouform=11) to
 convert SUGGAR/allgrids.p3dudl to an FXDR-formatted grid file
 named split.pgrx suitable for parallel execution on 11 processors. For
 the decomposition, (ibrk,jbrk,kbrk)=(7,1,1) for block 1 and
 (4,1,1) for block 2.

Step 5: Prepare the DPLR input file. In this case, the DPLR input file was
 modified from the original sample case with the new block-specific
 information for the overset nose patch and using ibc=901 on the overset
 boundaries. The laminar flow model consisted of an 8-species model of
 the atmosphere on Mars (beginning with 97.088% CO2 and 2.912% N2) in
 vibrational non-equilibrium, leading to 13 partial differential equations.
 The maximum CFL number was set to 100,000. The overset logic was
 activated by setting iover=1 and specifying the name of the DCI file as
 SUGGAR/gen_dirt.dci.

Step 6: Run DPLR. In this case, DPLR was executed with the command

 mpirun -np 11 dplr3d < dplr.inp

 Over 800 iterations, the RMS residual dropped 10 orders of magnitude.

Step 7: Run USURP.

Action: At the command line, type:

 usurp --basis=patch --never-skip < dplr.inp

Result: The data file panel_weights.dat and the Tecplot file
usurp-surfaces.plt are created.

The left-hand panel of Figure 8-7 shows the resulting mesh from usurp-
surfaces.plt, in which a portion of the original heat shield mesh has been
removed in favor of the finer nose patch mesh. Cells that are partially revealed at the
interface have been replaced by black triangles for visualization purposes. The right-
hand panel of Figure 8-7 shows the value of the panel weight in each cell (omitting
cells with panel weights less than 0.001). The panel weight is a scale factor that
multiplies the contribution on each cell face to any subsequent surface integration.
The panel weights in the nose patch are all 1.0 in this case, so cells in the heat shield

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-26 10/27/09

mesh have panel weights of zero in the overlap region or panel weights less than 1 in
the interface region.

Figure 8-7 Surface Integration Grid from USURP

In this case, USURP reported that the wetted area of the two surface grids was 2.837,
representing a 23% reduction from the value obtained if the area integration was
conducted without consideration for the overlapping region.

Step 8: Run POSTFLOW (with ouform=26, interp=11, and
 ivarp=150,151) to generate surface contour plots, following the
 procedure outlined in Section 8.6.3. A comparison of the pressure and
 temperature for the block-to-block and overset cases is presented in
 Figure 8-8. A comparison of the heat flux and wall shear stress for the
 block-to-block and overset grids is shown in Figure 8-9.

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-27 10/27/09

Figure 8-8 Comparison of Solutions for Surface Pressure and
Temperature

Figure 8-9 Comparison of Solutions for Surface Heat Flux and
Shear Stress

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-28 10/27/09

Step 9: Run POSTFLOW (with ouform=8 and interp=11) to generate
 integrated surface data. For this case, iexbc=26 and
 ivarp=23,531,611,621 to extract the total wetted area, total heating,
 pressure force in the x-direction, and viscous force in the x-direction,
 respectively. The results with and without the panel_weights.dat file
 present are presented in Table 8.1, where they are compared to those from
 the original block-to-block sample case.

Table 8.1 – Effect of Panel Weights on Surface Integrals

Quantity

Overset,
without
panel

weights

Overset,
with panel

weights

Block-to-Block

Area (m2) 3.693 2.839 2.837

Heat Flux (W) 1.063E+06 8.181E+05 8.160E+05

x-component of
pressure force
(N)

3.221E+04 2.402E+04 2.401E+04

x-component of
viscous force (N)

34.39 31.66 31.75

8.7.3 Huygens-PH Example with 2D Grid Alignment

The Huygens probe, built by the European Space Agency, touched down on Titan,
Saturn's largest moon, on January 14, 2005 after a journey of more than seven years.
The simulation here, which stems from the Huygens-PH example distributed with
DPLR Version 3.05.0, models a point of the descent at which the probe is traveling at
5.126 km/s. The atmosphere of Titan was modeled with 26 chemical reactions among

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-29 10/27/09

14 species, beginning from 97.65% nitrogen, 1.02% argon, and 1.33% methane at
176.6 K.

Step 1: Prepare the grid files. For demonstration purposes, a two-dimensional,
 single-block grid was created in Gridgen using hyperbolic extrusion from
 a 61-point connector defining the heat shield, using an initial spacing of 32
 microns, 64 steps, and a stretching ratio of 1.15. This initial 61 x 65 grid
 was then split into two overlapping 35 x 65 blocks, providing 8 cells of
 perfect overlap. The two-block 2D grid was exported as a volume grid to
 an unformatted, double-precision, PLOT3D file named huygens-
 overset.grd. The grid file was split into two single-block, double-
 precision, unformatted PLOT3D files for SUGGAR using the commands

 mkdir Grids

 p3dconvert huygens-overset.grd-sp3dudl Grids/block.grd

 which created block_1.grd and block_2.grd in the Grids
 subdirectory.

Step 2: Prepare the SUGGAR input file. The file Input.xml for this case was
 created automatically using gg2suggar and is shown in its entirety in
 Figure 8-10.

<global>

<cell_centered mark_using_neighbors="y"/>

<fringe_stencil type="diag+planar_first_offdiag"/>

<output>

 <structured_grid filename="allgrids.p3dudl" style="p3dudl"/>

 <donor_receptor_file filename="gen_dirt.dci"

 style="ascii_gen_drt_pairs"/>

</output>

<body name="root body">

 <volume_grid name="A"

 style="p3d" filename="Grids/block_1.grd">

 <boundary_surface name="jmin">

 <region range1="all" range2="min" range3="all"/>

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-30 10/27/09

 <boundary_condition type="solid"/>

 </boundary_surface>

 <boundary_surface name="jmax">

 <region range1="all" range2="max" range3="all"/>

 <boundary_condition type="farfield"/>

 </boundary_surface>

 <boundary_surface name="imin">

 <region range1="min" range2="all" range3="all"/>

 <boundary_condition type="axis"/>

 </boundary_surface>

</volume_grid>

<volume_grid name="B"

 style="p3d" filename="Grids/block_2.grd">

 <boundary_surface name="jmin">

 <region range1="all" range2="min" range3="all"/>

 <boundary_condition type="solid"/>

 </boundary_surface>

 <boundary_surface name="imax">

 <region range1="max" range2="all" range3="all"/>

 <boundary_condition type="farfield"/>

 </boundary_surface>

 <boundary_surface name="jmax">

 <region range1="all" range2="max" range3="all"/>

 <boundary_condition type="farfield"/>

 </boundary_surface>

 </volume_grid>

</body>

</global>

Figure 8-10 SUGGAR Input File for Huygens Example Case

Step 3: Run SUGGAR.

Action: At the command line, type:

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-31 10/27/09

 run_suggar_2d

Result: SUGGAR generates the domain connectivity information
with no orphans. As specified in the SUGGAR input file,
the domain connectivity information is stored in
gen_dirt.dci, and the composite grid is stored in
allgrids.p3dudl as an unformatted, double-precision,
PLOT3D file.

Step 4: Run FCONVERT (with iaction=10, idim=2, inform=2, ouform=11)
 to convert the SUGGAR/allgrids.p3dudl file into an FXDR-formatted
 grid file named dplr.pgrx. (Note that a modification to FCONVERT
 introduced in Version 4.01.1 is necessary to read this 3D grid with nk=1
 as a 2D grid in FCONVERT.)

Step 5: Prepare the DPLR input file. In this case, the input file was constructed
 by starting with the Nov11HR-t189s.inp input file that was distributed
 with the DPLR Version 3.05.0 sample cases and updating it to DPLR
 Version 4.01.0 using the dpconvert utility in $DPLR_HOME/utilities
 by executing the command

 dpconvert -i Nov11HR-t189s.inp -o dplr.inp

The simulation used the titan14sp-gokcen.chem file, a 14-species model of
Titan's atmosphere as discussed earlier, and assumed vibrational non-equilibrium
using a two-temperature model (ivib=4), resulting in a system of 18 partial
differential equations for this 2D case. The maximum CFL number was set to 3000.
For the overset grid case, a block-specific section was added for the second block,
and the boundary condition flag on the two overset boundaries was set to 901. The
overset logic was activated by setting iover=1 and specifying the name of the DCI
file as SUGGAR/gen_dirt.dci.

Step 6: Run DPLR. In this case, DPLR was executed with the command

 mpirun -np 2 dplr2d < dplr.inp

 Over 1200 iterations, the RMS residual dropped 9 orders of magnitude.

Step 7: Prepare the DPLR and SUGGAR input files for grid adaption. The DPLR
 input file was next modified to enable two rounds of grid alignment with
 500 iterations in between. The grid alignment flags are shown in
 Figure 8-11 below. The provided update_suggar_2d script was copied
 to a file named update_suggar and placed in the working directory.

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-32 10/27/09

 Each time that DPLR adapts the grid, update_suggar is executed to
 generate a new DCI file which is then imported by DPLR.

===================================

Grid Adaption

===================================

 igalign ngiter nalign i1stadpt

 1 500 2 1

 imedge imradial ngeom ismooth

 1 1 2 3

 fs_scale ds_mult gmargin

 0.92 2.5 0.0

 ds1 cellRe ds1mx ds2fr

 0.0 1.0 1.0d-4 0.3

===================================

Figure 8-11 Grid Adaption Flags

Step 8: Run POSTFLOW (with ouform=25, interp=11, and ivarp=110) to
 generate ASCII Tecplot data. The POSTFLOW output was combined with
 the composite grid and DCI files from SUGGAR using merge_dplr.
 Pressure contours are shown in Figure 8-12 for the two-block overset grid
 before and after alignment. The figure includes the (red and green)
 boundaries of the two overlapping grid blocks.

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-33 10/27/09

Figure 8-12 Pressure Contours for Huygens Grid Adaption Example

8.7.4 3D MSL Flight Example with Grid Alignment

In Section 8.7.2, the MSL Flight example that was distributed with DPLR
Version 3.05.0 used a grid that had already been aligned with the expected location of
the shock. The overset nose patch that was added was built to match this pre-
determined free stream grid spacing and location. This section presents the results
when the overset grid is rebuilt without prior knowledge of the shock location and
then subsequently aligned to the solution.

Step 1: Prepare the grid files. Using Gridgen, the surface mesh from
 Section 8.7.2 was extruded hyperbolically using 64 steps with an initial
 spacing of 5.4 microns and a stretching ratio of 1.15. The resulting volume
 grid was exported to an unformatted, double-precision, PLOT3D file
 named msl-adapt.grd, and the boundary conditions were exported in
 the generic AS/W format to a file named bc.dat. The grid file was split
 into two single-block, double-precision, unformatted PLOT3D files for
 SUGGAR using the commands.

 mkdir Grids

 p3dconvert msl-flight-adapt.grd -sp3dudl Grids/block.grd

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-34 10/27/09

 which created block_1.grd and block_2.grd in the Grids
 subdirectory.

Step 2: Prepare the SUGGAR input file. The SUGGAR input file was generated
 from the Gridgen output files using gg2suggar. As in Section 8.7.2, the
 file Input.xml produced by gg2suggar required only one modification,
 which was to uncomment the symmetry element in the header and
 specify the symmetry plane as "z".

Step 3: Run SUGGAR.

Action: At the command line, type:

 run_suggar_3d

Result: SUGGAR generates the domain connectivity information
with 59 orphans. As specified in the SUGGAR input file,
the domain connectivity information is stored in
gen_dirt.dci, and the composite grid is stored in
allgrids.p3dudl as an unformatted, double-precision,
PLOT3D file.

The left-hand panel of Figure 8-13 shows the cell-centered iblank values for this grid
prior to adaption, where the fringe cells are shaded blue and the orphan cells are
shaded red. In this case, the orphans result from the fact that the hyperbolic extrusion
did not extend the nose cap grid, which has a cyan border, as far as the main heat
shield grid, which has a purple border, such that not all fringe cells in the heat shield
grid had valid donors. As the two grid blocks were later aligned with the shock, this
offset and the associated number of orphans decreased, from 40 orphans after the first
alignment to 19 after the second, which is shown in the right-hand panel of
Figure 8-13.

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-35 10/27/09

Figure 8-13 Iblank Values Before and After Adaption

Step 4: Run FCONVERT (with iaction=1, idim=3, inform=2, ouform=11)
 to convert SUGGAR/allgrids.p3dudl to an FXDR-formatted grid file
 named dplr.pgrx suitable for parallel execution on 11 processors. For
 the decomposition, (ibrk,jbrk,kbrk)=(7,1,1) for block 1 and
 (4,1,1) for block 2.

Step 5: Prepare the DPLR input file. The input file was prepared in the same
 manner as in Section 8.7.2. The boundary flag on overset boundaries was
 again set to 901, and the overset logic was activated by setting iover=1
 and specifying the name of the DCI file as SUGGAR/gen_dirt.dci.

Step 6: Run DPLR. In this case, DPLR was executed with the command

 mpirun -np 11 dplr3d < dplr.inp

 An initial solution was obtained on the original grid using 800 iterations
 and a maximum CFL number of 3,000. Subsequently, two grid adaption
 steps were performed using the same settings as those shown in Figure 8-
 11, again with a maximum CFL number of 3,000.

Step 7: Run POSTFLOW. Surface integration for wetted area, total heating,
 pressure force, and viscous force was repeated using USURP and

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-36 10/27/09

 POSTFLOW as described in Section 8.7.2. Those values for the current
 simulation are shown in Table 8.2 below and again agree with the original
 block-to-block solution to within 1%.

Table 8.2 Comparison of Overset and Block-to-Block Surface Integrals

Quantity Overset,
with panel

weights

Block-to-
Block

Difference (%)

Area (m2) 2.837 2.837 -

Heat Flux (W) 8.191E+05 8.160E+05 0.37

x-component of
pressure force
(N)

2.394E+04 2.401E+04 -0.29

x-component of
viscous force (N)

31.83 31.75 0.25

8.7.5 2D ARD Capsule Example

The Atmospheric Re-entry Demonstrator (ARD) was an unmanned Apollo-like
capsule launched by ESA in October 1998. After performing a sub-orbital flight (830
km apogee), the capsule splashed down in the Pacific Ocean and was recovered by
the French Navy. Thus, the ARD was the first European spacecraft ever to be
successfully recovered. The ARD was 2.8 meters in diameter and was characterized
by a spherical blunt nose (R = 3.36 meters), a conical back shell with a 33° half angle,
and a back cap that housed the flotation balloons [5].

Step 1: Prepare the grid files. An overset grid for a 2D (axisymmetric)
 representation of the ARD was constructed using hyperbolic extrusion
 from the spherical nose and conical back shell, as shown in Figure 8-14
 (top left). Subsequently, a grid was added to represent the wetted area of
 the back cap, shown as the blue mesh in the top right portion of
 Figure 8-14. Finally, a third block, shown as the green mesh in the bottom

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-37 10/27/09

 left portion of Figure 8-14, was added as a collar grid to cover the junction
 between the back shell and cap. As described next, SUGGAR was used to
 cut away the portion of red mesh interior to the back cap, leaving the final
 assembly as shown in the bottom right portion of Figure 8-14. The grid
 has a near wall spacing of 32 microns, a stretching ratio of 1.2, and 65
 points in the body normal direction, leading to a far-field boundary that
 was approximately 16 meters from the capsule in all directions.

Figure 8-14 Overset Grid System for ARD Example

Step 2: Prepare the SUGGAR input file. As a starting point, a SUGGAR input
 file was generated using gg2suggar. The final input file, which is shown
 in Figure 8-15, resulted after several modifications. First, the symmetry
 element at the top of the file was activated (uncommented) and the
 symmetry axis was specified as "y". This change causes the geometry to
 appear to SUGGAR to be watertight, which is necessary for the hole-
 cutting step to be successful. Second, the root body was divided into two
 child bodies, with the first block comprising the cone body and the two
 smaller blocks comprising the frustrum body. Finally, the jmin boundary
 of the collar grid was divided into two portions, and one of the portions
 was marked as collar to the cone body.

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-38 10/27/09

<global>

<symmetry_plane axis="y"/>

<cell_centered mark_using_neighbors="y"/>

<fringe_stencil type="diag+planar_first_offdiag"/>

<output>

 <structured_grid filename="allgrids.p3dudl" style="p3dudl"/>

 <donor_receptor_file filename="gen_dirt.dci"

 style="ascii_gen_drt_pairs"/>

</output>

<body name="root body">

 <body name="cone">

 <volume_grid name="A"

 style="p3d" filename="Grids/block_1.grd">

 <boundary_surface name="jmin">

 <region range1="1:65" range2="min" range3="all"/>

 <boundary_condition type="solid"/>

 </boundary_surface>

 <boundary_surface name="jmax">

 <region range1="1:65" range2="max" range3="all"/>

 <boundary_condition type="farfield"/>

 </boundary_surface>

 <boundary_surface name="imin">

 <region range1="min" range2="all" range3="all"/>

 <boundary_condition type="symmetry"/>

 </boundary_surface>

 <boundary_surface name="jmin:2">

 <region range1="65:-1" range2="min" range3="all"/>

 <boundary_condition type="solid"/>

 </boundary_surface>

 <boundary_surface name="imax">

 <region range1="max" range2="all" range3="all"/>

 <boundary_condition type="symmetry"/>

 </boundary_surface>

 <boundary_surface name="jmax:2">

 <region range1="65:-1" range2="max" range3="all"/>

 <boundary_condition type="farfield"/>

 </boundary_surface>

 </volume_grid>

</body>

<body name="frustrum">

 <volume_grid name="B"

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-39 10/27/09

 style="p3d" filename="Grids/block_2.grd">

 <boundary_surface name="jmin">

 <region range1="1:17" range2="min" range3="all"/>

 <boundary_condition type="solid"/>

 <collar body="cone"/>

 </boundary_surface>

 <boundary_surface name="jmin:2">

 <region range1="17:-1" range2="min" range3="all"/>

 <boundary_condition type="solid"/>

 </boundary_surface>

</volume_grid>

<volume_grid name="C"

 style="p3d" filename="Grids/block_3.grd">

<boundary_surface name="jmin">

 <region range1="1:25" range2="min" range3="all"/>

 <boundary_condition type="solid"/>

 </boundary_surface>

<boundary_surface name="jmin:2">

 <region range1="25:-1" range2="min" range3="all"/>

 <boundary_condition type="solid"/>

 </boundary_surface>

<boundary_surface name="imax">

 <region range1="max" range2="all" range3="all"/>

 <boundary_condition type="symmetry"/>

 </boundary_surface>

</volume_grid>

 </body>

</body>

</global>

Figure 8-15 SUGGAR Input File for ARD Example

Step 3: Run SUGGAR.

Action: At the command line, type:

 run_suggar_2d

Result: SUGGAR generates the domain connectivity information
with no orphans. As specified in the SUGGAR input file,
the domain connectivity information is stored in

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-40 10/27/09

gen_dirt.dci, and the composite grid is stored in
allgrids.p3dudl as an unformatted, double-precision,
PLOT3D file.

Figure 8-16 shows the IBLANK values of the cells in each of the three blocks and the
full assembly, where the dark blue cells are fringe cells and the cyan cells within the
back cap are hole cells, which were eliminated by SUGGAR.

Figure 8-16 Iblank Values for ARD Example

Step 4: Run FCONVERT (with iaction=10, idim=2, inform=2, ouform=11)
 to convert the SUGGAR/allgrids.p3dudl file into an FXDR-formatted
 grid file named dplr.pgrx. (Note that a modification to FCONVERT
 introduced in Version 4.01.1 is necessary to read this 3D grid with nk=1
 as a 2D grid in FCONVERT.)

Step 5: Prepare the DPLR input file. The DPLR input file specified molecular
 nitrogen as a perfect gas with M∞ = 2.0, T∞ = 219 K, and a density
 corresponding to p∞ = 2891 Pa. The maximum CFL number was set to
 100,000.

Step 6: Run DPLR. In this case, DPLR was executed with the command

 mpirun -np 3 dplr2d < dplr.inp

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-41 10/27/09

 Over 1000 iterations, the RMS residual dropped 5 orders of magnitude,
 which was most likely limited by unsteadiness in the large separated
 region aft of the capsule.

Step 7: Run POSTFLOW (with ouform=25, interp=11,
 ivarp=150,151,154) and merge_dplr, following the procedure
 outlined in Section 8.6.1. The streamlines and Mach number contours
 from the overset solution are shown in Figure 8-17.

Figure 8-17 Mach Number Contours and Streamlines for ARD Example

8.7.6 2D DART Capsule Example

The Delft Aerospace Re-entry Test (DART) demonstrator was designed as a test-bed
for re-entry measurements. It is an axisymmetric, spherical blunt-cone/flare
configuration with an overall length of 1.63 meters, maximum diameter of 2.03
meters, and nose radius of 0.51 meters.

Two features set this example apart from the previous one. First, the overset grid is
comprised of two blocks, with one block hyperbolically extruded from the body itself
and a second Cartesian background block that extends to the far-field and
downstream along the wake. Second, the overlap minimization is activated in order to
improve the fringe locations.

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-42 10/27/09

Step 1: Prepare the grid files. The grid was created in Gridgen. The first block
 was created by hyperbolic extrusion using a near-wall spacing of 32
 microns, a stretching ratio of 1.2, and 53 steps, with symmetry boundary
 conditions applied along the x-axis. The second block was created using a
 uniformly spaced, rectangular grid, which extended from 3.6 meters
 upstream of the nose to 11 meters downstream of the back of the capsule,
 and out to a radius of just over 4 meters.

Step 2: Prepare the SUGGAR input file. The SUGGAR input file was created
 using gg2suggar. Only three modifications were needed. A body needed
 to be created to contain each block, in order that the blocks would cut one
 another, the symmetry element needed to be activated and the axis set to
 y, and the minimize_overlap element needed to be activated. The
 resulting file is shown in Figure 8-18.

<global>

<symmetry_plane axis="y"/>

<cell_centered mark_using_neighbors="y"/>

<fringe_stencil type="diag+planar_first_offdiag"/>

<minimize_overlap set_dsf="peg5"

 rm_fringe_from_donors="yes"/>

<output>

 <structured_grid filename="allgrids.p3dudl" style="p3dudl"/>

 <donor_receptor_file filename="gen_dirt.dci"

 style="ascii_gen_drt_pairs"/>

</output>

<body name="root body">

 <body name="capsule">

 <volume_grid name="A"

 style="p3d" filename="Grids/block_1.grd">

 <boundary_surface name="jmin">

 <region range1="1:25" range2="min" range3="all"/>

 <boundary_condition type="solid"/>

 </boundary_surface>

 <boundary_surface name="imin">

 <region range1="min" range2="all" range3="all"/>

 <boundary_condition type="symmetry"/>

 </boundary_surface>

 <boundary_surface name="jmin:2">

 <region range1="25:49" range2="min" range3="all"/>

 <boundary_condition type="solid"/>

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-43 10/27/09

 </boundary_surface>

 <boundary_surface name="jmin:3">

 <region range1="49:73" range2="min" range3="all"/>

 <boundary_condition type="solid"/>

 </boundary_surface>

 <boundary_surface name="jmin:4">

 <region range1="73:-1" range2="min" range3="all"/>

 <boundary_condition type="solid"/>

 </boundary_surface>

 <boundary_surface name="imax">

 <region range1="max" range2="all" range3="all"/>

 <boundary_condition type="symmetry"/>

 </boundary_surface>

 </volume_grid>

</body>

<body name="background">

 <volume_grid name="B"

 style="p3d" filename="Grids/block_2.grd">

 <boundary_surface name="imin">

 <region range1="min" range2="all" range3="all"/>

 <boundary_condition type="farfield"/>

 </boundary_surface>

 <boundary_surface name="jmax">

 <region range1="all" range2="max" range3="all"/>

 <boundary_condition type="farfield"/>

 </boundary_surface>

 <boundary_surface name="imax">

 <region range1="max" range2="all" range3="all"/>

 <boundary_condition type="farfield"/>

 </boundary_surface>

 <boundary_surface name="jmin">

 <region range1="all" range2="min" range3="all"/>

 <boundary_condition type="symmetry"/>

 </boundary_surface>

 </volume_grid>

 </body>

</body>

</global>

Figure 8-18 SUGGAR Input File for DART Example

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-44 10/27/09

Step 3: Run SUGGAR.

Action: At the command line, type:

 run_suggar_2d

Result: SUGGAR generates the domain connectivity information
with no orphans. As specified in the SUGGAR input file,
the domain connectivity information is stored in
gen_dirt.dci, and the composite grid is stored in
allgrids.p3dudl as an unformatted, double-precision,
PLOT3D file.

The resulting composite grid is shown in the left-hand panel of Figure 8-19. A hole
has been cut in the background (green) block, and the ragged boundaries created by
the overlap minimization can be seen. The right-hand panel of Figure 8-19 shows the
cell-centered iblank values for this grid. In this figure, the hole cells are disabled, the
fringe cells are the darker, blue cells, and the field cells are the yellow cells. It can be
seen that the minimization has caused the outer boundary fringe cells for the body
grid to be moved inward toward the body, away from the black circular boundary that
would otherwise have denoted the outer boundary of that block.

Figure 8-19 Overset Grid and Iblank Values for DART Example

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-45 10/27/09

Step 4: Run FCONVERT (with iaction=1, idim=2, inform=2, ouform=11)
 to convert the SUGGAR/allgrids.p3dudl file into an FXDR-formatted
 grid file named dplr.pgrx suitable for parallel execution on 14
 processors. (Note that a modification to FCONVERT introduced in
 Version 4.01.1 is necessary to read this 3D grid with nk=1 as a 2D grid in
 FCONVERT.) For the decomposition, (ibrk,jbrk) was set to (2,1)
 for block 1 and (3,4) for block 2.

Step 5: Prepare the DPLR input file. As with the ARD capsule example, the
 DART capsule is simulated using molecular nitrogen as a perfect gas at
 M∞ = 2.0, T∞ = 219 K, and a density corresponding to p∞ = 2891 Pa. The
 maximum CFL number was set to 100,000. The boundary condition flag
 on the overset boundary was set to 901. The overset logic was activated by
 setting iover=1 and specifying the name of the DCI file as
 SUGGAR/gen_dirt.dci.

Step 6: Run DPLR. In this case, DPLR was executed with the command

 mpirun -np 14 dplr2d < dplr.inp

 Over 1000 iterations, the RMS residual dropped just over 6 orders of
 magnitude.

Step 7: Run POSTFLOW (with ouform=25, interp=11, ivarp=154) and
 merge_dplr, following the procedure outlined for Field Plots in Section
 8.6. The resulting Mach number contours and shown in Figure 8-20.

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-46 10/27/09

Figure 8-20 Mach Number Contours for DART Example

8.7.7 3D Capsule Example

The final example considers the case of a capsule mounted on a sting, as it might be
for a wind tunnel test. The sting holds the capsule such that the heat shield is tilted 28
degrees relative to the flow.

Step 1: Prepare the grid files. An axisymmetric grid was first built for the
 capsule, using a connector containing 97 points along the capsule contour,
 excluding the axis of rotation to avoid any singularities. A domain was
 hyperbolically extruded using an initial spacing of 32 microns, a growth
 rate of 1.2, and 64 steps, such that the domain extended more than 16
 meters from the capsule. That domain was then rotated using 33 points
 through 180 degrees to create the volume. Overset patches were manually
 constructed to cover the centerline region at the top and bottom of the
 capsule.

A domain was constructed on the sting surface (with 49 points along the sting and 33
around the half-circumference) that was conformal to the outer boundary created by
the capsule grid at one end and that protruded into the capsule at the other end. A
volume grid for the sting was then created by normal extrusion in Gridgen, using a

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-47 10/27/09

near-wall spacing of 30 microns and a stretching ratio of 1.23, while constraining the
outer boundary to remain projected to the far-field boundary from the capsule body
grid. This volume grid extended more than 8 meters from the sting surface, which
was helpful in covering the hole that the sting cut into the relatively coarse far-field
region of the capsule body grid. A collar grid was added to cover the region where the
sting and capsule meet.

Step 2: Prepare the SUGGAR input file. For the grid cutting to occur, the capsule
 body grids and the sting grid were divided into two separate bodies in the
 SUGGAR input file, which is shown in Figure 8-21. In addition, cutting
 surfaces (structured_cutting_surface elements at the end of
 Figure 8-21) were provided to SUGGAR to close both ends of the sting in
 order to create a closed cutting surface. Initial runs with SUGGAR
 subsequently revealed the need for two interface grids to increase the
 amount of overlap in this region, probably due to the difficulty of growing
 a large collar grid on the concave side of the sting/capsule intersection.

<global>

<donor_quality value="0.8"/>

<symmetry_plane axis="z"/>

<cell_centered mark_using_neighbors="n"/>

<minimize_overlap set_dsf="peg5" rm_fringe_from_donors="yes" />

<output>

 <structured_grid filename="allgrids.p3dudl" style="p3dudl"/>

 <donor_receptor_file filename="gen_dirt.dci"

 style="ascii_gen_drt_pairs"/>

</output>

<body name="root body">

 <body name="capsule">

 <volume_grid name="capsule"

 style="p3d" filename="Grids/block_1.grd">

 <boundary_surface name="kmin" const_coord="z=0">

 <region range1="1:-1" range2="1:-1" range3="1:1"/>

 <boundary_condition type="symmetry"/>

 </boundary_surface>

 <boundary_surface name="kmax" const_coord="z=0">

 <region range1="1:-1" range2="1:-1" range3="-1:-1"/>

 <boundary_condition type="symmetry"/>

 </boundary_surface>

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-48 10/27/09

 <boundary_surface name="jmin">

 <region range1="1:-1" range2="1:1" range3="1:-1"/>

 <boundary_condition type="solid"/>

 </boundary_surface>

 <boundary_surface name="jmax">

 <region range1="1:-1" range2="-1:-1" range3="1:-1"/>

 <boundary_condition type="farfield"/>

 </boundary_surface>

 </volume_grid>

 <volume_grid name="bottom"

 style="p3d" filename="Grids/block_2.grd" never_cut="yes">

 <boundary_surface name="imin" const_coord="z=0">

 <region range1="1:1" range2="1:-1" range3="1:-1"/>

 <boundary_condition type="symmetry"/>

 </boundary_surface>

 <boundary_surface name="jmin">

 <region range1="1:-1" range2="1:1" range3="1:-1"/>

 <boundary_condition type="solid"/>

 </boundary_surface>

 <boundary_surface name="jmax">

 <region range1="1:-1" range2="-1:-1" range3="1:-1"/>

 <boundary_condition type="farfield"/>

 </boundary_surface>

 </volume_grid>

 <volume_grid name="top"

 style="p3d" filename="Grids/block_3.grd" never_cut="yes">

 <boundary_surface name="imin" const_coord="z=0">

 <region range1="1:1" range2="1:-1" range3="1:-1"/>

 <boundary_condition type="symmetry"/>

 </boundary_surface>

 <boundary_surface name="jmin">

 <region range1="1:-1" range2="1:1" range3="1:-1"/>

 <boundary_condition type="solid"/>

 </boundary_surface>

 <boundary_surface name="jmax">

 <region range1="1:-1" range2="-1:-1" range3="1:-1"/>

 <boundary_condition type="farfield"/>

 </boundary_surface>

 </volume_grid>

 <volume_grid name="collar-interface"

 style="p3d" filename="Grids/collar-interface2.p3du">

 <boundary_surface name="imin" const_coord="z=0">

 <region range1="1:1" range2="1:-1" range3="1:-1"/>

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-49 10/27/09

 <boundary_condition type="symmetry"/>

 </boundary_surface>

 <boundary_surface name="imax" const_coord="z=0">

 <region range1="-1:-1" range2="1:-1" range3="1:-1"/>

 <boundary_condition type="symmetry"/>

 </boundary_surface>

 </volume_grid>

</body>

<body name="sting">

 <!--add dynamic so that the capsule and sting

 are in different dynamic groups and hence separate

 cutter surfaces will be output-->

 <dynamic/>

 <volume_grid name="sting"

 style="p3d" filename="Grids/sting-block-5.grd">

 <boundary_surface name="kmin" const_coord="z=0">

 <region range1="1:-1" range2="1:-1" range3="1:1"/>

 <boundary_condition type="symmetry"/>

 </boundary_surface>

 <boundary_surface name="kmax" const_coord="z=0">

 <region range1="1:-1" range2="1:-1" range3="-1:-1"/>

 <boundary_condition type="symmetry"/>

 </boundary_surface>

 <boundary_surface name="jmin">

 <region range1="1:-1" range2="1:1" range3="1:-1"/>

 <boundary_condition type="solid"/>

 </boundary_surface>

 <boundary_surface name="imax">

 <region range1="-1:-1" range2="1:-1" range3="1:-1"/>

 <boundary_condition type="farfield"/>

 </boundary_surface>

 </volume_grid>

 <volume_grid name="collar"

 style="p3d" filename="Grids/collar.p3du" never_cut="yes">

 <boundary_surface name="kmin-collar-sting">

 <region range1="1:-1" range2="1:33" range3="1:1"/>

 <boundary_condition type="solid"/>

 </boundary_surface>

 <boundary_surface name="kmin-collar-capsule">

 <region range1="1:-1" range2="33:-1" range3="1:1"/>

 <boundary_condition type="solid"/>

 <collar body="capsule"/>

 </boundary_surface>

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-50 10/27/09

 <boundary_surface name="imin" const_coord="z=0">

 <region range1="1:1" range2="1:-1" range3="1:-1"/>

 <boundary_condition type="symmetry"/>

 </boundary_surface>

 <boundary_surface name="imax" const_coord="z=0">

 <region range1="-1:-1" range2="1:-1" range3="1:-1"/>

 <boundary_condition type="symmetry"/>

 </boundary_surface>

 </volume_grid>

 <volume_grid name="sting-interface"

 style="p3d" filename="Grids/sting_cyl-interface2.p3du">

 <boundary_surface name="jmin" const_coord="z=0">

 <region range1="1:-1" range2="1:1" range3="1:-1"/>

 <boundary_condition type="symmetry"/>

 </boundary_surface>

 </volume_grid>

 <structured_cutter_surfaces filename="Grids/cap.mbxyz"/>

 <structured_cutter_surfaces filename="Grids/root.mbxyz"/>

 </body>

</body>

</global>

Figure 8-21 SUGGAR Input File for Capsule Example

Step 3: Run SUGGAR.

Action: At the command line, type:

 surfasm -allow_dynamic_surface_overlap Input/Input.xml

 suggar_3d_opt.linux -allow_dynamic_surface_overlap -
surface_assem donors.xml Input/Input.xml

Result: After these steps, there remained only one orphan, which
was the result of a poor quality donor (i.e. one of the donor
cells was itself a fringe cell). To resolve this, the donor
quality tolerance was lowered to 0.8 (at the top of the
SUGGAR input file provided in Figure 8-21), resulting in
an assembly with no orphans. Once this was accomplished,
the overlap minimization was enabled (using the

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-51 10/27/09

minimize_overlap element near the top of the input file
provided in Figure 8-21), and SUGGAR was run one last
time, still resulting in an assembly with no orphans. A slice
along the symmetry plane of the final grid assembly is
shown in Figure 8-22.

Figure 8-22 Slice Along Symmetry Plane of Overset Grid System

Step 4: Run FCONVERT (with iaction=1, idim=3, inform=2, ouform=11)
 to convert SUGGAR/allgrids.p3dudl to an FXDR-formatted grid file
 named dplr.pgrx suitable for parallel execution on 24 processors. For
 the decomposition, kbrk was 8, 2, and 3 in blocks 1, 4, and 5,
 respectively, and ibrk was 8 for block 6.

Step 5: Prepare the DPLR input file. The same operating conditions are used as
 in the previous two examples, i.e. molecular nitrogen as a perfect gas at
 M∞= 2.0, T∞ = 219 K, and a density corresponding to p∞ = 2891 Pa. The
 maximum CFL number was set to 1000. The boundary condition flag on
 the overset boundaries was set to 901. The overset logic was activated by
 setting iover=1 and specifying the name of the DCI file as
 SUGGAR/gen_dirt.dci.

Step 6: Run DPLR. In this case, DPLR was executed with the command

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-52 10/27/09

 mpirun -np 24 dplr3d < dplr.inp

 Over 2000 iterations, the RMS residual dropped about 5 orders of
 magnitude.

Step 7: Run POSTFLOW (with ouform=25, interp=11, ivarp=110,154)
 and merge_dplr, following the procedure outlined in Section 8.6.1. A
 slice along the symmetry plane of the resulting Mach number contours is
 shown in the left and center panels of Figure 8-23, and pressure contours
 on the heat shield are shown in right-most panel.

Figure 8-23 Flow Solution for Sting-Mounted Capsule Example

8.8 References

1. Noack, R.W., “DiRTlib: A Library to Add an Overset Capability to Your Flow
Solver,” AIAA-2005-5116, 17th AIAA Computational Fluid Dynamics Conference,
Toronto, Ontario, Canada, 6-9 June 2005.

2. Boger, D.A., and Dreyer, J.J, “Prediction of Hydrodynamic Forces and Moments
for Underwater Vehicles Using Overset Grids,” AIAA-2006-1148, 44th AIAA
Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 9-12 January 2006.

Using Overset Grids

DPLR Code Version 4.01.1 User Manual 8-53 10/27/09

3. Chan, W.B., Gomez, R.J., Rogers, S.E., and Buning, P.G., “Best Practices in
Overset Grid Generation,” AIAA-2002-3191, 32nd AIAA Fluid Dynamics
Conference, 24-26 June 2002.

4. Noack, R.W., “SUGGAR: a General Capability for Moving Body Overset Grid
Assembly,” AIAA-2005-5117, 17th AIAA Computational Fluid Dynamics
Conference, Toronto, Ontario, Canada, 6-9 June 2005.

5. Mehta, R.C., “Numerical Simulation of Supersonic Flow Past Reentry Capsules,”
Shock Waves, Vol. 15, No. 1, pp. 31-41, 2006.

Chapter 9 – Appendices

DPLR Code Version 4.01.1 User Manual 9-1 10/27/09

Contents

9.0 Introduction ..2

9.1 DPLR Code Version 4.01.1 Utilities ..2

9.1.1 zbconvert ..2

9.1.2 dpconvert ..3

9.1.3 seqinput ..3

9.1.4 Moment...4

9.1.5 Template...5

9.2 Supported Input / Output File Formats ..8

9.2.1 Format Numbers...10

9.3 Parallel Decomposition..11

9.3.1 Load Imbalance ..11

9.3.2 Decomposition Strategies...12

9.3.3 Physical (Master) Blocks vs Virtual (Parllel) Blocks17

9.3.4 Testing for Load Balance..18

9.3.5 Single Block Input Files ..20

9.3.6 Parallel Recomposition...20

9.4 POSTFLOW Output Variables ...21

9.4.1 Grid-Related Variables ...21

9.4.2 Mixture Transport Properties ..22

9.4.3 Transport Properties...22

9.4.4 Mixture Flow Properties..23

9.4.5 Surface Properties..25

9.5 Reference Terms ...26

Appendices

DPLR Code Version 4.01.1 User Manual 9-2 10/27/09

9.0 Introduction

This section of the User Manual contains some reference material and more detailed
discussions of content found in previous sections of the publication. As the DPLR
Code Package is updated, additional features and reference information will be added
to this section.

9.1 DPLR Code Version 4.01.1 Utilities

The following codes or scripts are provided with the DPLR package in the “utilities”
directory:

• zbconvert
• dpconvert
• seqinput
• Moment
• Template

This section describes the functions and uses of each of these software tools.

9.1.1 zbconvert
zbconvert is a Perl script that can be used to convert zonal interface files to formats
that are readable by:

• GASP® Version 3.0 (a commercially available CFD code)

• SAGe (Self-Adaptive Gride codE – a NASA stand-alone grid-adaption
application that pre-dates grid-adaption capabilities in DPLR)

• DPLR

The script is run from the command line:

zbconvert –i old.inter –o new.inter [-sage –dplr –gasp]
(-g grid.g)

where: old.inter = infile = the interface file you are converting
 new.inter = outfile = the output file for the process

The script automatically detects the format of the input interface file and converts it to
one of the supported formats specified by the –sage, –dplr, or –gasp flags.

Appendices

DPLR Code Version 4.01.1 User Manual 9-3 10/27/09

Tech Tip: If the output format is –sage (SAGe), you must also specify the associated ASCII
plot3d grid file using the –g flag as shown above. This is because SAGe requires knowledge
of the grid size in the input deck, and this information is not available in the interface files for
either DPLR or GASP.

9.1.2 dpconvert

dpconvert is a Perl script that can be used to change the format of DPLR input decks
for use with different release versions of the software.

Although it is used primarily to enable rapid conversion of older DPLR input decks to
a format that is compatible with the current release, it can also be used to convert a
newer deck to a format that works with older versions of DPLR.

The script is run from the command line:

dpconvert –i old.inp –o new.inp (-V)

where: old.inp = infile = the original file you are converting
 new.inp = outfile = the modified file
 -V = DPLR Release Version for which file is being modified

At runtime, the script will automatically determine the version of the provided DPLR
input deck ‘old.inp’ and convert it to the current version. However, you can also
specify a desired output version number (other than the current version), using the –V
option.

9.1.3 seqinput

seqinput is a Perl script that can be used to easily sequence (coarsen) a DPLR input
deck. It works by dividing the grid sizes of each block in the input deck by a specified
sequencing factor.

The script is run from the command line:

seqinter –i old.inp –o new.inp –s I:J:K

where: old.inp = infile = the original file you are converting
 new.inp = outfile = the sequenced file
 -s = slist = a colon-separated list of sequencing factors in the i-, j-,
 and k- directions (it is assumed that all blocks are
 sequenced by the same factors).

Appendices

DPLR Code Version 4.01.1 User Manual 9-4 10/27/09

At runtime, the script will generate a new DPLR input deck, and rename the input
grid and restart files with the suffix “-sIJK” – a designation you can change to
whatever naming convention your are using.

9.1.4 Moment

Moment is a Fortran code that generates integrated force and moment data from an
input set of pointwise surface forces.

When POSTFLOW is run using ouform=11, POSTFLOW will automatically
generate a plot3d grid file, a cfd function file, and a Moment.inp file which is
the input deck for the Moment utility. Once these files have been generated, Moment
is run from the command line by typing:

Moment < Moment.inp

A sample of the output from the Moment script is presented below:

running Moment version 3.05.0

 Moment Center:
 Xm = 0.000000E+00 (m)
 Ym = 0.000000E+00 (m)
 Zm = 0.000000E+00 (m)

 Reference Values:
 lref = 3.650000E+00 (m)
 aref = 4.500000E+00 (m^2)
 qdyn = 2.784862E+03 (Pa)

 Vehicle Symmetries:
 xy-plane

 Wetted Area:
 Area = 0.000000E+00 (m^2)

 Force components:
 Fx = 1.777037E+07 (N) ; Cx = 1.418013E+03
 Fy = -1.165808E+04 (N) ; Cy = -9.302740E-01
 Fz = 0.000000E+00 (N) ; Cz = 0.000000E+00

 Moment components:
 Mx = 0.000000E+00 (N*m) ; Cmx = 0.000000E+00
 My = 0.000000E+00 (N*m) ; Cmy = 0.000000E+00
 Mz = -6.500303E+04 (N*m) ; Cmz = -1.421099E+00

At this time, there is no error checking in place to ensure that this output format is
used correctly. So although it is not an ‘error’ to select other variables as output, the

Appendices

DPLR Code Version 4.01.1 User Manual 9-5 10/27/09

results generated by the Moment utility will be incorrect unless forces per unit area
are selected.
At the current time, Moment is only needed for the extraction of hinge moments
because all other features of the utility are built directly into POSTFLOW.

Tech Tips:
1). You will need to compile Moment as the installation script that comes with the DPLR
Code Package will not automatically install the program on your system. Ask your System
Administrator for information on how to compile and install this tool in your utilities
directory.

2). Because Moment was originally written as a stand-alone tool, it has functionality that is
not being used in this mode.

9.1.5 Template

Template is a Fortran utility that can be used to automatically generate:

• zonal interface files from PLOT3D grid files

• block-specific portions of the DPLR input deck containing boundary
condition information

Manually creating DPLR input and zonal interface files can be a time-consuming
task. However, the Template utility, created by Scott Thomas and David Saunders
and distributed with the DPLR Code Version 4.01.0 Package, can automate some or
all of these two tasks depending on the grid complexity. (Note that FCONVERT can
also generate the interface file (see ‘inint’) but not the boundary condition portion of
the input deck.)

Overview

The name Template derives from its original intent, namely generation of most of the
connectivity file for the multiblock flow solver FLO107MB. Block faces not
adjacent to other block faces were left for their boundary conditions (e.g., subsonic
outflow) to be edited into the one-line-per-block template manually.

The grid blocks were (and still are) expected to be point-to-point matched. Grids with
subfacing can still be processed, but some of the interfaces will not be identified.
[See use of FCONVERT for subface cases.]

The grid may contain more than one layer of blocks, but following adaptation for
DPLR users, Template outputs are most complete for the common case of a single

Appendices

DPLR Code Version 4.01.1 User Manual 9-6 10/27/09

layer of blocks. For Shuttle Orbiter applications, including local grids around damage
and repair, the process has been fully automated with the help of ancillary input files.

Using Template

To generate all or most of the two DPLR control files using Template, perform the
following steps in the working directory containing your grid in PLOT3D multiblock
form (formatted or unformatted). (Caution: Existing dplr.inputs,
dplr.inputs.2, or dplr.interfaces file will be overwritten.)

Step 1: (Optional) Copy the ‘generic.inp’ file in the cfdinput directory as
‘sample.inputs’. (See below for ancillary input file details.)

Step 2: (Optional) Copy the ‘template.inp.2’ file from the utilities
directory. (See details below.)

Step 3: Run TEMPLATE. (You will be prompted for the name of the PLOT3D grid
file and a tolerance to use in its detection of matching faces.)

Step 4: Check the outputs, listed below. (Note that some boundary conditions may
need changing, while the free-stream flow conditions, CFL schedule, and flow
solver iteration limit typically need editing.)

Your working directory now contains five new files:

• dplr.inputs – file containing the block-specific mid-section of your DPLR
input deck (boundary conditions, etc.) or possibly all of the input deck,
depending on Step 1 above

• dplr.inputs.2 – variant of dplr.inputs intended for possible grid
sequencing

• dplr.interfaces – zonal interface file for the full-face interfaces of the
computational grid

• gasp.inputs – control file in GASP flow solver format

• template.con – connectivity file containing (most of) the interface and BC
information for the FLO107MB flow solver. Scanning this can help spot
possible problems caused by block faces that don’t meet the matching
tolerance, i.e., look for too many integer 0s in the one-line-per-block output

Ancillary Input Files

Template looks for two control files, both of which are optional. If either is present
in the working directory, it will be invoked, so beware of unintended usage.

Appendices

DPLR Code Version 4.01.1 User Manual 9-7 10/27/09

If ‘sample.inputs’ is present, the header and trailing portions of the sample input
deck are transcribed to dplr.inputs and dplr.inputs.2. Otherwise, only the
middle sections of those input decks will be produced.

If ‘template.inp.2’ is present, it can serve either of two purposes, or both.
Initially implemented to control the contents of dplr.inputs.2, it can also be used
to make the automation of boundary conditions complete for specialized grids of the
type developed for rapid analysis of Shuttle Orbiter damage and repair configurations.
(The latter use of template.inp.2 is typically confined to workgroups within NASA.)

A sample template.inp.2 file to be used with a wing leading edge plug (or tile
gap-filler) grid is shown below:

Sequencing controls
4 4 2
Plug blocks ! BC 2 at jmin will be changed to BC 26 (wall)
10:13

These controls are entered as line pairs (a text line followed by an integer list). Each
line pair is optional, case-insensitive, and the order does not matter, meaning either of
the pairs may be entered first or omitted.

The default grid sequencing is 2 2 1, meaning the grid block cell counts in output
file dplr.inputs.2 are halved in the i and j directions (only), whereas the 4 4 2
shown would enable solution with the grid coarsened twice as much.

Keywords implemented for the second type of input are Cavity and Plug, with
Plug also being appropriate for protruding tile gap filler cases. These controls allow
the appropriate faces of the indicated blocks to be marked as walls (specifically, BC
26, meaning catalytic radiative equilibrium). Any reasonable format for the list of
block numbers is acceptable as long as they are all on one line.

Tech Tips:
1). You will need to compile Template manually as the installation script will not
automatically install it on your system. Check with your System Administrator for the system-
specific steps needed to compile and install this tool into your utilities directory.

2). Template detects matching faces by comparing the maxima and minima in x, y, and z. If
two faces are found to satisfy the six possible comparisons to within the tolerance provided at
run time (default epsilon = 0.0001 distance units), and the face dimensions match, then a
match at all points of the face pair is likely, but the fraction of face cells for which this is true
is also calculated and printed in the last column of template.con. Values less than 1.0 in that
last column are a likely sign of gaps or overlaps in the grid.

3). Symmetry boundary conditions are considered only after matching block faces are
checked for first. A somewhat looser tolerance is employed, namely min (10 x epsilon,

Appendices

DPLR Code Version 4.01.1 User Manual 9-8 10/27/09

0.001), for measuring the distance of the three pairs of coordinate maxima/minima from zero.
These tests can still be fooled by (say) a flat plate in the z = 0 plane, or an almost-flat surface
at x = 0. False BC entries of 17, 18, or 19 (meaning symmetry plane in x, y, or z,
respectively) should be checked for under such circumstances.

4). Template errs in favor of Shuttle Orbiter grids for remaining unassigned block faces.
These grids are known to contain a single layer of blocks with index k in the radial direction.
A face not already assigned a flow-through BC (20) or symmetry BC (17-19) is marked as BC
26 if it is face 5 (k = 1, catalytic radiative equilibrium wall), else it is marked as BC 1 if it is
face 6 (k = nk, free stream). For non-Shuttle applications, different wall BCs may need to be
entered in place of BC 26.

Any remaining unassigned face is marked as BC 2 (specified inflow or supersonic outflow).
This choice is appropriate for local damage/repair grids that are outside any sonic bubble.
BC 2 should also be adequate for the supersonic outflow faces of ordinary grids, although
occasional anomalies have been observed in baseline Shuttle solutions, so substituting BC 3
for BC 2 is recommended for such known outflow faces.

9.2 Supported Input / Output File Formats

The DPLR Code Package Version 4.01.1 reads and/or creates the following six file
types:

• Grid files, defining the discretized computational geometry of the problem.
• Zonal Interface files, describing how the blocks in multi-block grids abut each

other in computational space.
• Restart (or cfd function) files, saved periodically by the CFD code to be used

to restart a problem and/or post-process the solution.
• Radiation files, enabling loose coupling between DPLR and flowfield

radiation analysis tools such as RADEQUIL, NEQAIR, and HARA.
• Boundary Condition files, specifying various types of pointwise boundary

conditions and/or TPS material maps.
• Data files, generated by POSTFLOW for use in post-processing and data

analysis of the solution.

For a more detailed discussion of each of the file types, see Chapter 6 in this User
Manual.

The above-listed file types can exist in different formats. File formats supported by
the DPLR Code Package are listed in the table below. Note that each supported
format is assigned a unique number and a suffix which is common across the entire
code package.

Appendices

DPLR Code Version 4.01.1 User Manual 9-9 10/27/09

Table 9.1 File Formats Supported in the DPLR Code Package

Format Description File Type Suffix

1 Unformatted Parallel grid pgrd
 restart psln
 BC pbcf
 radiation prdf

11 XDR Parallel grid pgrx
 restart pslx
 BC pbcx
 radiation prdx

21 ASCII Parallel grid pgra
 restart psla
 BC pbca
 radiation prda

2 Unformatted Plot3D grid gu
 flow qu

12 XDR Plot3D grid gx
 flow qx

22 ASCII Plot3D grid g
 flow q

32 Gzipped ASCII Plot3D grid gz
 flow qz

3 Unformatted Plot3D grid gu
 flow fu

13 XDR Plot3D grid gx
 flow fx

23 ASCII Plot3D grid g
 flow f

33 Gzipped ASCII Plot3D grid gz
 flow fz

5 Binary Tecplot Block plt

25 ASCII Tecplot Block dat

6 Binary Tecplot Point plt

26 ASCII Tecplot Point dat

Appendices

DPLR Code Version 4.01.1 User Manual 9-10 10/27/09

9.2.1 Format Numbers

The first digit, if any, of the file format number specifies the data-storage type as
follows:

0 Written as machine-specific unformatted files. This type of file should
be avoided if portability is desired, because an unformatted file created
by one machine type usually cannot be read by another.

1 Written in XDR format. XDR files are binary, written to be read on
any machine, and the recommended storage type for large files,
including grid and restart files. (See Tech Tip #1.)

2 Written as an ASCII file. ASCII files are much larger than binary files,
and should be avoided when possible. However, ASCII plot3d files are
frequently used for grid input because they are portable and can be
written by most commercial grid generation packages.

3 Written as a gzipped ASCII file. This format is currently used only for
output of plot3d data from POSTFLOW.

The second digit, if any, of the file format number indicates the type of file as
follows:

1 Parallel archival I/O file for use with DPLR. This is the preferred file
type for grid, restart, radiation, and boundary condition files that are to
be read by DPLR.

2 Plot3d grid or q-file.

3 Plot3d grid or function file. (See Tech Tip #2)

4 Parallel multi-file grid or restart file. (Note: This file type is no longer
supported by DPLR.)

5 TECPLOT block file.

6 TECPLOT point file. (See Tech Tip #3)

Tech Tips:
1). To read or write XDR files, the fxdr libraries must be installed on your computer and
 linked to DPLR during compilation. See Section 2.2 for more information.
2). Plot3d files cannot be read or written by DPLR2D or DPLR3D, but are frequently used
 to import data from or export data to other programs
3). TECPLOT data files are output by POSTFLOW for post-processing purposes, but cannot
 be read as input by any of the codes in this package. In order to create binary TECPLOT
 files, the TECPLOT I/O library must be properly installed and linked to DPLR. See
 Section 2.2 for more information.

Appendices

DPLR Code Version 4.01.1 User Manual 9-11 10/27/09

It is important to understand that DPLR2D and DPLR3D are separate codes, and even
though many common subroutines are shared, each code requires properly
dimensioned input. A common misconception is that DPLR2D reads a three-
dimensional grid file, with the third dimension set to 1 and all z-coordinates set to
zero. This is not the case. When you prepare a plot3d grid for solution by DPLR2D,
your grid must be in 2D format. If a three-dimensional grid is read as input to
FCONVERT with idim=2, the results will be unpredictable and probably not what
you intended.

9.3 Parallel Decomposition

This Appendix offers a detailed discussion, with several examples, of the parallel
decomposition process performed by FCONVERT on computational grids submitted
to the DPLR Code Package for processing.

DPLR is a distributed-memory parallel code, so all blocks in a computational grid are
computed simultaneously rather than sequentially. Multi-block information transfer
is handled through MPI data constructs, so simulations must be run on at least as
many processors as there are master blocks in the original computational grid.

Because running on more processors than master grid blocks is often advantageous in
terms of solution speed, large blocks can be split (decomposed) into smaller pieces to
increase computational efficiency and decrease turnaround time. This decomposition,
if required, is performed using FCONVERT.

Although the “ideal” number of processors to use for a given job is sometimes a
matter of personal preference, it is often a function of the total number of processors
that are available and the number that are necessary to achieve a reasonable load
balance. Once the desired number of processors to use during the run has been
selected, the input grid file must be decomposed into one block per processor. This is
accomplished by setting iaction=1 or 2 in the FCONVERT input deck.

9.3.1 Load Imbalance

One of the primary metrics by which the quality of a parallel decomposition is judged
is the amount of load imbalance that results. In FCONVERT, this load imbalance is
computed as a measure of the average amount of wasted CPU time, assuming that the
total CPU time is directly proportional to the number of grid points on a given
processor. The total load imbalance (Itot) is then given by:

€

Itot = Nmax − Nn()
n=1

nb

∑ / Nmax ⋅ nb()

Appendices

DPLR Code Version 4.01.1 User Manual 9-12 10/27/09

where nb is the total number of parallel blocks, Nn is the size of block n, and Nmax is
the size of the largest block. In practice, things are more complex than this. The type
of boundary condition on each face, the number of zonal interfaces, and the relative
speed of each processor all contribute to the amount of time spent on a given
decomposed block in DPLR. However, the load imbalance metric is sufficient to
provide a first-order estimate. The estimated total load imbalance is always reported
by FCONVERT whenever a grid file is processed.

9.3.2 Decomposition Strategies

When iaction=1, you manually specify how each block in the input file is to be
decomposed using the ibrk, jbrk, and kbrk decomposition factors. One set of
decomposition factors is required for each master block in the input file. A
decomposition factor of n implies that the block should be broken n times in that
direction. For example, a decomposition record of:

Decomposition information for each master block

ibrk jbrk kbrk

2 3 1

indicates that the original block should be split into six by breaking it into two equal
pieces in the i-direction and into three equal pieces in the j-direction. If the number of
computational cells in a given direction is not evenly divisible by the selected
decomposition factor, the remainder will be evenly distributed among the blocks.

Setting iaction=1 allows you to control the way that the problem is decomposed
for parallel execution, which can have significant advantages.

When iaction=2, you simply specifies the desired number of output blocks using
the nbreak flag and allow FCONVERT to determine a parallel decomposition
strategy that divides the original file into nbreak output blocks. The blocks will be
broken such that load balance is maximized. This means that FCONVERT will
attempt to make all blocks as close as possible to the same size. In addition,
FCONVERT will attempt to make the blocks as close to cubes as possible by
breaking first in the direction(s) with the most points. To do this, however,
FCONVERT requires a valid DPLR input deck to exist- one that can be used to
determine the locations of body surfaces in the grid file. It is a runtime error to set
iaction=2 unless a valid DPLR input deck has been specified as input.

For all decomposition strategies, it is important to minimize, and preferably eliminate,
breaking the grid in the body-normal direction because DPLR is, by default, a line
relaxation code that solves the Navier-Stokes equations through a series of block-

Appendices

DPLR Code Version 4.01.1 User Manual 9-13 10/27/09

tridiagonal matrix factorizations. This method converges most rapidly when the
problem has not been decomposed in the body-normal direction.

Example #1. Consider an input grid file that consists of two blocks. The plot3d header
record for this case is:

2

17 33 129

65 65 129

Block #1 consists of 65,536 grid cells (16 × 32 × 128), while block #2 consists of
524,288 cells (64 × 64 × 128). Assuming that iaction=2 and nbreak=7 and there
are no solid walls specified in the DPLR input deck, a portion of the descriptive
output for this run will be:

Input Block 1 size: il = 16; jl = 32; kl = 128 (65536 cells)

Input Block 2 size: il = 64; jl = 64; kl = 128 (524288 cells)

Largest block is:

 nb = 2; original block = 2

 il = 64; jl = 64; kl = 128

Read input interface file neptune.inter

Found 3 valid zonal interface blocks in 2 block grid file

Decomposing block 1 into 1: ibrk= 1 jbrk= 1 kbrk= 1

Decomposing block 2 into 6: ibrk= 2 jbrk= 1 kbrk= 3

 creating 7 total blocks

 7 Blocks; Total load imbalance = 4.32%

Output Block1 size: il = 16; jl = 32; kl = 128 (65536 cells)

Output Block 2 size: il = 32; jl = 64; kl = 43 (88064 cells)

Output Block 3 size: il = 32; jl = 64; kl = 43 (88064 cells)

Output Block 4 size: il = 32; jl = 64; kl = 43 (88064 cells)

Appendices

DPLR Code Version 4.01.1 User Manual 9-14 10/27/09

Output Block 5 size: il = 32; jl = 64; kl = 43 (88064 cells)

Output Block 6 size: il = 32; jl = 64; kl = 42 (86016 cells)

Output Block 7 size: il = 32; jl = 64; kl = 42 (86016 cells)

In this example, FCONVERT decomposed master block #2 into six nearly equal
pieces while leaving block #1 unaltered. The resulting load imbalance was 4.32%.

This is the most load-balanced solution for nbreak=7, but it may not be the most
desirable way to split the problem. For example, if the k-direction is body-normal for
this problem, it would be preferable to select a decomposition that does not break the
problem in the k-direction. This can be accomplished by setting iaction=2 and
specifying the correct boundary conditions in the DPLR input deck.

A portion of the FCONVERT output for this run will be:

Input Block 1 size: il = 16; jl = 32; kl = 128 (65536 cells)

Input Block 2 size: il = 64; jl = 64; kl = 128 (524288 cells)

Largest block is:

 nb = 2; original block = 2

 il = 64; jl = 64; kl = 128

 Read input interface file neptune.inter

 Found 3 valid zonal interface blocks in 2 block grid file

 Decomposing block 1 into 1: ibrk= 1 jbrk= 1 kbrk= 1

 Decomposing block 2 into 6: ibrk= 3 jbrk= 2 kbrk= 1

 creating 7 total blocks

 7 Blocks; Total load imbalance = 6.49%

Output Block 1 size: il = 16; jl = 32; kl = 128 (65536 cells)

Output Block 2 size: il = 22; jl = 32; kl = 128 (90112 cells)

Appendices

DPLR Code Version 4.01.1 User Manual 9-15 10/27/09

Output Block 3 size: il = 21; jl = 32; kl = 128 (86016 cells)

Output Block 4 size: il = 21; jl = 32; kl = 128 (86016 cells)

Output Block 5 size: il = 22; jl = 32; kl = 128 (90112 cells)

Output Block 6 size: il = 21; jl = 32; kl = 128 (86016 cells)

Output Block 7 size: il = 21; jl = 32; kl = 128 (86016 cells)

The load imbalance for this case is slightly larger (6.49% vs. 4.32%), but the
increased performance of the implicit algorithm would far outweigh the increase in
load imbalance. Alternatively, this outcome can be accomplished by setting
iaction=1 and using the block decomposition flags to specify the desired
decomposition. For this example, the following decomposition would give output
identical to that obtained by using iaction=2:

Decomposition information for each master block

ibrk jbrk kbrk

 1 1 1

 3 2 1

Note that this solution is not unique; there are several other possible decompositions
that would achieve the same result. The sample output for this case would be identical
to that shown in the previous example.

The choice of using iaction=1 or 2 is really dependent on the situation. For
example, iaction=1 can be used prior to generation of the DPLR input deck. In
addition, iaction=1 gives you more direct control over the decomposition
performed. Because it is preferable, for the sake of efficiency, to decompose the grid
so that the generation of additional zonal interfaces is minimized, using iaction=1
and manually specifying the decomposition strategy can help you meet this condition.

For example, in the previous test problem, a decomposition strategy of:

Decomposition information for each master block

ibrk jbrk kbrk

 1 1 1

 6 1 1

would result in the following output:

Decomposing block 1 into 1: ibrk= 1 jbrk= 1 kbrk= 1

Appendices

DPLR Code Version 4.01.1 User Manual 9-16 10/27/09

Decomposing block 2 into 6: ibrk= 6 jbrk= 1 kbrk= 1

 creating 7 total blocks

 7 Blocks; Total load imbalance = 6.49%

Output Block 1 size: il = 16; jl = 32; kl = 128 (65536 cells)

Output Block 2 size: il = 11; jl = 64; kl = 128 (90112 cells)

Output Block 3 size: il = 11; jl = 64; kl = 128 (90112 cells)

Output Block 4 size: il = 11; jl = 64; kl = 128 (90112 cells)

Output Block 5 size: il = 11; jl = 64; kl = 128 (90112 cells)

Output Block 6 size: il = 10; jl = 64; kl = 128 (81920 cells)

Output Block 7 size: il = 10; jl = 64; kl = 128 (81920 cells)

As you can see, this decomposition strategy results in the same load imbalance, but
offers potentially improved performance because fewer additional zonal boundaries
are created.

Finally, when iaction = 10, FCONVERT will generate an output file with the
same number of blocks as the input file; i.e. no further decomposition will be
performed. The same result could be achieved either by:

1) setting iaction=1 and all ibrk, jbrk, kbrk flags =1
 or
2) setting iaction=2 and nbreak equal to nborig

FCONVERT will automatically compute all additional face, edge, and corner zonal
interfaces created by the specified parallel decomposition. In addition, if the input
grid contains one or more zonal interfaces, these will be automatically decomposed
along with the grid file. This information will be written to the output grid file header
if one of the parallel formats is requested. You can request that the resulting zonal
interface file be output for informational purposes by setting ouint= 1, 11, or 12.

Decomposing a file in multiple directions can create a large number of output zonal
interfaces, particularly when edge and corner interfaces are considered. Because each
zonal interface represents a message that must be constructed and sent via MPI send
and receive calls each iteration during the CFD solution, it is generally a good idea to
keep decompositions as simple as possible.

Appendices

DPLR Code Version 4.01.1 User Manual 9-17 10/27/09

For example, if you want to run a single block 3D problem on eight processors, the
simplest decomposition would be to break the problem into eight blocks in a single
coordinate direction, which would generate 7 face interfaces and zero edge or corner
interfaces. An alternate strategy would be to break into 4 × 2 × 1 blocks, which would
generate 10 face interfaces and 6 edge interfaces, for a total of 16. The most complex
decomposition would be 2 × 2 × 2 blocks. This strategy would generate 12 face
interfaces, 12 edge interfaces, and 4 corner interfaces, for a total of 28. Although each
of these strategies are allowed, the first would generate the least message-passing
traffic during run-time, and would likely result in the most time-efficient solution.

9.3.3 Physical (Master) Blocks vs Virtual (Parllel) Blocks

The action taken by FCONVERT during a grid file decomposition depends on the
output file format you specify.

If you select a plot3d output format, the input file will be physically split into multiple
blocks and written as a multi-block file. If you select a parallel output file format, the
input file will be “virtually split” into a number of blocks for parallel processing, but
resultant file will retain information about the original physical block structure.

FCONVERT distinguishes between “virtual” blocks, which are generated purely to
facilitate parallel execution, and “physical” or “master” blocks, which are a
fundamental property of the input grid. Keep in mind, however, that the user
interfaces to DPLR2D, DPLR3D, and POSTFLOW deal only with master blocks, and
that “virtual” blocks are automatically converted to and from physical blocks as
required during program execution. Therefore, when setting up a problem to run in
DPLR, only the master block structure of the problem is important. If a two-block
grid is decomposed into nblk “virtual” blocks to run in parallel, the problem is set up
for DPLR as a two-block problem, regardless of the actual value of nblk. This means
that boundary conditions, numerical models, etc. are only specified for the two master
blocks. DPLR will automatically convert this information to the “virtual” values at
runtime. Similarly, when the solution is post-processed by POSTFLOW, it is treated
as a two-block problem, regardless of the actual number of processors that were used.
This strategy greatly simplifies the preparation, execution, and post-processing
overhead required for parallel jobs.

The output of FCONVERT provides information on the physical block structure, and
includes physical block sizes, which are required for setting up the DPLR input deck.
A portion of the output from FCONVERT for the sample problem of the previous
section is shown below:

Appendices

DPLR Code Version 4.01.1 User Manual 9-18 10/27/09

Summary (grid dimensions for CFD input deck):

 Hardwired to run on 7 processors

 Block 1; nx = 16; ny = 32; nz = 128

 Block 2; nx = 64; ny = 64; nz = 128

The summary information states that the problem has been decomposed (or
“hardwired”) for execution on seven processors, but there are only two physical
(master) blocks that must be considered during the problem setup. Using this strategy,
once a DPLR or POSTFLOW input deck has been created for a given problem, the
same input deck can be used regardless of actual the number of processors employed
in the solution. This means that you are not required to visualize or work with the
parallel decomposition of the problem except when running FCONVERT.

If you select a parallel archival output format for the decomposed file (ouform = 1,
11, 21), a single output file will be created. This type of file actually contains only
as many master blocks as specified in the original input grid file, but additional
information is written to the file header to tell DPLR how to perform the appropriate
decomposition at run-time. This “virtual” decomposition information is written only
to the grid file header. Therefore, parallel archival restart files never need to be
decomposed or recomposed. Once a parallel archival grid file has been created, it is
considered to be “hardwired” for a given number of processors. This will be reflected
in the output messages produced when FCONVERT is run. If you want to run or
restart the problem on a different number of processors, the grid file can simply be
decomposed again. FCONVERT will strip out the header information, decompose the
master blocks as desired, and write the new header information into the file. No other
input file type is altered in any way by changing the number of processors in the
simulation.

9.3.4 Testing for Load Balance

Although many processors may be available for a run, you should try to choose a
number that maximizes load balance in order to maximize the computation efficiency
of the simulation.

You can test the load balance for a series of possible decompositions with
FCONVERT. Set iaction=0 and nbreak to the maximum number of blocks
desired. FCONVERT will then loop over all possible output block numbers from the
number of input blocks to the value of nbreak, and output the most load balanced
way to decompose into that number of output blocks.

Appendices

DPLR Code Version 4.01.1 User Manual 9-19 10/27/09

Using the same example, if iaction=0 and nbreak=10, FCONVERT will generate
the following output:

 Decomposing block 1 into 1: ibrk= 1 jbrk= 1 kbrk= 1

 Decomposing block 2 into 1: ibrk= 1 jbrk= 1 kbrk= 1

 2 Blocks; Total load imbalance = 43.75%

 Decomposing block 1 into 1: ibrk= 1 jbrk= 1 kbrk= 1

 Decomposing block 2 into 2: ibrk= 1 jbrk= 1 kbrk= 2

 3 Blocks; Total load imbalance = 25.00%

 Decomposing block 1 into 1: ibrk= 1 jbrk= 1 kbrk= 1

 Decomposing block 2 into 3: ibrk= 1 jbrk= 1 kbrk= 3

 4 Blocks; Total load imbalance = 16.28%

 Decomposing block 1 into 1: ibrk= 1 jbrk= 1 kbrk= 1

 Decomposing block 2 into 4: ibrk= 2 jbrk= 1 kbrk= 2

 5 Blocks; Total load imbalance = 10.00%

 Decomposing block 1 into 1: ibrk= 1 jbrk= 1 kbrk= 1

 Decomposing block 2 into 5: ibrk= 1 jbrk= 1 kbrk= 5

 6 Blocks; Total load imbalance = 7.69%

 Decomposing block 1 into 1: ibrk= 1 jbrk= 1 kbrk= 1

 Decomposing block 2 into 6: ibrk= 2 jbrk= 1 kbrk= 3

 7 Blocks; Total load imbalance = 4.32%

 Decomposing block 1 into 1: ibrk= 1 jbrk= 1 kbrk= 1

 Decomposing block 2 into 7: ibrk= 1 jbrk= 1 kbrk= 7

 8 Blocks; Total load imbalance = 5.26%

 Decomposing block 1 into 1: ibrk= 1 jbrk= 1 kbrk= 1

 Decomposing block 2 into 8: ibrk= 2 jbrk= 2 kbrk= 2

 9 Blocks; Total load imbalance = 0.00%

Appendices

DPLR Code Version 4.01.1 User Manual 9-20 10/27/09

 Decomposing block 1 into 1: ibrk= 1 jbrk= 1 kbrk= 1

 Decomposing block 2 into 9: ibrk= 3 jbrk= 1 kbrk= 3

 10 Blocks; Total load imbalance = 9.99%

 Finished with Load Balance Check

From this output summary, you can see that a perfectly load balanced solution is
possible if the problem is decomposed to run on nine processors.

9.3.5 Single Block Input Files

In general, parallel decomposition must be performed by FCONVERT. However, in
the special case of a single block grid with no zonal interfaces, DPLR2D and
DPLR3D can perform parallel decomposition at runtime. In this case, the input grid
file can simply be converted to parallel archival format (iaction=10). The resulting
file can be run on any number of processors without further processing by
FCONVERT.

9.3.6 Parallel Recomposition

FCONVERT can also be used to “recompose” a grid file that was previously
decomposed by setting iaction=3 in the FCONVERT input deck.

This option can only be used with grid files because restart, boundary condition, and
radiation files are never decomposed in the first place.

In practice, this setting is rarely used because it is unnecessary to recompose parallel
archival files. As previously discussed, when the FCONVERT output file is written in
one of the parallel archival formats (ouform=1,11, or 21), any decomposition is
virtual. This means that the file merely contains header information instructing
DPLR2D or DPLR3D how to properly decompose the file at runtime, eliminating any
need to actively “recompose” the file. If iaction=3 is specified with an parallel
archival file as input, FCONVERT will only strip the virtual decomposition
information from the file header.

If you do set iaction=3, you will need to specify the number of blocks in the
recomposed file with the nborig flag. If the input file is in plot3d format, you must
also provide the input interface file (inint=1) containing information about how
the original grid or restart file was decomposed. Although FCONVERT will
recompose an input grid file, it does not recreate the zonal interface file for the

Appendices

DPLR Code Version 4.01.1 User Manual 9-21 10/27/09

recomposed problem. Therefore, be sure to save the original zonal interface file to
avoid the need to recreate it after the recompose is completed.

9.4 POSTFLOW Output Variables

A complete listing of all POSTFLOW output variables is provided in Section 5.2 of
this Users Manual. This appendix provides additional, detailed information about
some of these variables.

The output variables in POSTFLOW are selected via the ivarp integer array, where
each variable is assigned a unique integer quantity. These integers are a superset of
those defined in the Plot3d and GASP programs, and are expressed either as non-
dimensional quantities, or in SI units. (Note: DPLR does not support English units).

9.4.1 Grid-Related Variables

Path Length

 11 path length along grid lines in i-direction (si)
 12 path length along grid lines in j-direction (sj)
 13 path length along grid lines in k-direction (sk)

Path length is determined by computing the distance from grid point to grid point in
the mesh along the selected coordinate direction. For example, if ivarp=11,
POSTFLOW will compute the path length for each constant i line in the output
datasets. The path length is assumed to begin at zero for ijk = 1 and increases for
increasing index.

Body Normal Distance

 21 *body normal distance (dn)

The body normal distance at a surface is defined as the distance from the cell center
of the first interior cell to the face center on the surface. This is the distance used in
the first-order approximations of derivatives, as well as that used to define y+
(ivarp=581), and the cell Reynolds number (ivarp=59).

Deviation from Orthogonality

 22 *deviation from orthogonality [deg.] (dev)

Appendices

DPLR Code Version 4.01.1 User Manual 9-22 10/27/09

This is defined as the number of degrees the surface-normal grid lines deviate from
perfect orthogonality. For interp=1, this value represents a local average
interpolated to the face center. The primary use of this output variable is as a measure
of overall grid quality. (Note: Orthogonality is desired at all body surfaces, but is generally
unimportant at flow-through boundaries).

9.4.2 Mixture Transport Properties

Cell Reynolds Number

 59 cell Reynolds number (Re_c)

The cell Reynolds number is defined as:

where a is the sound speed, V is the local velocity magnitude, Δη is the body normal
distance (ivarp=21), and ν is the kinematic viscosity. The cell Reynolds number is
typically used as a way to judge the adequacy of the near-wall spacing in a boundary
layer. Rec < 5 is generally sufficient to ensure accurate heat transfer and skin friction.

9.4.3 Transport Properties

Lewis Numbers

 86 laminar Lewis number (Le)
 96 turbulent Lewis number (Le_t)

The Lewis number Le is defined as:

where ρ is the mixture density, D is the binary diffusion coefficient, Cp is the total
specific heat at constant pressure, and κ is the thermal conductivity.

Schmidt Numbers

 87 laminar Schmidt number (Sc)
 97 turbulent Schmidt number (Sc_t)

€

Rec =
(a+V)Δη

ν

€

Le = ρDCp /κ

Appendices

DPLR Code Version 4.01.1 User Manual 9-23 10/27/09

The Schmidt number Sc is defined as:

where µ is the mixture viscosity, ρ is the mixture density, and D is the binary
diffusion coefficient.

Prandtl Numbers

 88 laminar Prandtl number (Pr)
 98 turbulent Prandtl number (Pr_t)

The Prandtl number Pr is defined as:

where µ is the mixture viscosity, Cp is the total specific heat at constant pressure, and
κ is the thermal conductivity.

9.4.4 Mixture Flow Properties

Stagnation Quantities

 102 stagnation mixture density (r_o)
 112 stagnation pressure (p_o)
 122 stagnation temperature (T_o)

Stagnation quantities (density, pressure, and temperature) are computed assuming
isentropic relations, and thus are not valid for a flowfield with varying isentropic
exponent (γ). The stagnation quantities are defined as:

€

Sc =
µ
ρD

€

Pr = µCp /κ

€

ρo = ρS
1
γ−1

€

po = pS
γ
γ−1

Appendices

DPLR Code Version 4.01.1 User Manual 9-24 10/27/09

where S is the entropy, defined below.

Pressure

 111 dynamic pressure (Q)

The dynamic pressure Q is simply:

 114 pressure coefficient (C_p)

The pressure coefficient is defined as:

where Q∞ is the freestream dynamic pressure.

Temperature

 121 bulk temperature (T_b)

The bulk temperature is defined as in AIAA Paper No. 2001-2886:

Ionization

 180 degree of ionization (zeta)

€

To = TS

€

Q = ρV 2 / 2

€

(p − p∞) / Q∞

€

Tb =
V 2

2Cp

€

ζ = ne /nt

Appendices

DPLR Code Version 4.01.1 User Manual 9-25 10/27/09

9.4.5 Surface Properties

Heat Transfer

 512 heat transfer coefficient in mass flux units (Chm)

This is the heat transfer coefficient expressed in kg/m2•s for use with FIAT.

520 radiative equilibrium heat transfer (Qeq)

This is the surface heat transfer as computed using the radiative equilibrium wall
formation. In this expression, ε is the surface emissivity, σ is the Stefan-Boltzmann
constant, and Tw is the surface temperature. This variable is provided mainly as a
sanity check to ensure that the computed heat transfer agrees with the radiative
equilibrium value when a radiative equilibrium wall is specified.

€

Chm =
q

h∞ − hw()

€

qeq = εσTw
4

Appendices

DPLR Code Version 4.01.1 User Manual 9-26 10/27/09

9.5 Reference Terms

Lewis Number (Le)

Schmidt Number (Sc)

Turbulent Lewis Number (LeT)

Turbulent Schmidt Number (ScT)

Prandtl Number

Turbulent Prandtl Number

cell Reynolds Number

€

Le = ρDCp /κ

€

Sc =
µ
ρD

€

LeT = ρDTCp /κT

€

ScT =
µT
ρDT

€

Pr = µCp /κ

€

PrT = ρµT / κTCp()

€

Rec =
ρc
µ

w

Δη

REPORT DOCUMENTATION PAGE

8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSORING/MONITOR’S ACRONYM(S)

Form Approved
OMB No. 0704-0188

13. SUPPLEMENTARY NOTES

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

6. AUTHOR(S)

1. REPORT DATE (DD-MM-YYYY)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

2. REPORT TYPE 3. DATES COVERED (From - To)

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE (Include area code)

18. NUMBER
 OF
 PAGES

17. LIMITATION OF
 ABSTRACT

16. SECURITY CLASSIFICATION OF:

15. SUBJECT TERMS

14. ABSTRACT

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sourc-
es, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of
this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for information Operations
and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no
person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

12. DISTRIBUTION/AVAILABILITY STATEMENT

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

11. SPONSORING/MONITORING
 REPORT NUMBER

a. REPORT b. ABSTRACT c. THIS PAGE

Unclassified 273

Unclassified — Unlimited Distribution: Nonstandard
Subject Category: 02, 05, 34
Availability: NASA CASI (301) 621-0390

NASA/TM–2009-215388

27/10/2009

Ames Research Center, Moffett Field, CA 94035-1000

National Aeronautics and Space Administration
Washington, D. C. 20546-0001

Dr. Michael J. Wright

Dr. Michael J. Wright, Todd White, Nancy Mangini

Data-Parallel Line Relaxation (DPLR) code is a computational fluid dynamic (CFD) solver that was developed at
NASA Ames Research Center to help mission support teams generate high-value predictive solutions for hypersonic
flow field problems. The DPLR Code Package is an MPI-based, parallel, full three-dimensional Navier-Stokes CFD
solver with generalized models for finite-rate reaction kinetics, thermal and chemical non-equilibrium, accurate
high-temperature transport coefficients, and ionized flow physics incorporated into the code. DPLR also includes a
large selection of generalized realistic surface boundary conditions and links to enable loose coupling with external
thermal protection system (TPS) material response and shock layer radiation codes.

Hypersonic flow, Computational Fluid Dynamics, Simulations, Navier-Stokes, CFD solver, Structured grids

Point of Contact: Dr. Michael Wright, Ames Research Center, MS 230-2, Moffett Field, CA 94035-1000
 (650) 604-4210

Technical Memorandum

Unclassified Unclassified

NASA

 (650) 604-4210 Unclassified

A-090018

WBS 999574.01.02.01.01

Data Parallel Line Relaxation (DPLR) Code User Manual
Acadia - Version 4.01.1

	Outercover
	Innercover
	0.5Acknowledgements4.01.1b
	TitlePage4.01.1b
	0.75TOC4.01.1b
	1.0Overview4.01.1b
	2.0Installation Guide4.01.1b
	3.0Using FCONVERT4.01.1b
	4.0Using DPLR4.01.1b
	5.0Using POSTFLOW4.01.1b
	6.0IInput-Output Files4.01.1b
	7.0DPLR Workflow4.01.1b
	8.0Using Overset Grids4.01.1b
	9.0Appendices4.01.1b
	Form298

