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Preface 

NASA accomplishes its strategic goals through human and robotic exploration missions. Many 
of these missions require launching and landing or returning spacecraft with human or return 
samples through Earth’s and other planetary atmospheres. Spacecraft entering an atmosphere are 
subjected to extreme aerothermal loads. Protecting against these extreme loads is a critical 
element of spacecraft design. The safety and success of the planned mission is a prime concern 
for the Agency, and risk mitigation requires the knowledgeable use of thermal protection systems 
to successfully withstand the high-energy states imposed on the vehicle. Arc jets provide ground-
based testing for development and flight validation of re-entry vehicle thermal protection 
materials and are a critical capability and core competency of NASA. 

The Agency’s primary hypersonic thermal testing capability resides at the Ames Research Center 
and the Johnson Space Center and was developed and built in the 1960s and 1970s. This 
capability was critical to the success of Apollo, Shuttle, Pioneer, Galileo, Mars Pathfinder, and 
Orion. But the capability and the infrastructure are beyond their design lives. The complexes 
urgently need strategic attention and investment to meet the future needs of the Agency.  

The Office of Chief Engineer (OCE) chartered the Arc Jet Evaluation Working Group (AJEWG), 
a team of experienced individuals from across the Nation, to capture perspectives and 
requirements from the arc jet user community and from the community that operates and 
maintains this capability and capacity. This report offers the AJEWG’s findings and conclusions 
that are intended to inform the discussion surrounding potential strategic technical and 
investment strategies. The AJEWG was directed to employ a 30-year Agency-level view so that 
near-term issues did not cloud the findings and conclusions and did not dominate or limit any of 
the strategic options.  

The OCE would like to thank the members of the user community who gave presentations, 
interviews, responded to questions, and offered their vision of the future. The OCE thanks the 
facility managers and personnel who hosted the AJEWG at their Center, conducted tours of their 
arc jet complexes, and gave presentations, answered questions, and offered their vision of the 
future. The OCE also extends its appreciation to the AJEWG for their time and effort in 
developing this report: Anthony Calomino, Lead, GRC; Walt Bruce, LaRC; Peter Gage, Neerim 
Corp.; Dennis Horn, AEDC (Retired); Mike Mastaler, HQ; Don Rigali, DOE (Retired); Judee 
Robey, HQ; Linda Voss, Dell-Perot; Jerry Wahlberg, LaRC and NC State (Retired); and Calvin 
Williams, HQ. 
 

 

 
Mike Ryschkewitsch 

May 4, 2010 
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Executive Summary 

The Arc Jet Evaluation Working Group (AJEWG) was chartered by the NASA Office of the 
Chief Engineer to provide an independent technical evaluation of NASA arc jet testing capability 
considering existing test complexes and the need to support planned and future NASA mission 
requirements. Future mission classes considered include human return from low Earth orbit, 
human return from beyond low Earth orbit, both human and robotic exploration of Mars, and 
deep space robotic exploration and Earth return. Arc jet testing support for all mission phases, 
from precursor technology maturation through sustaining engineering of operational systems, 
was to be included in the evaluation. The AJEWG considered the availability and use of arc jet 
test facilities, focusing on the Johnson Space Center, the Ames Research Center, the Arnold 
Engineering Development Center, and the Boeing Large Core Arc Tunnel, and generated 
findings and conclusions to inform long-term investment strategies for NASA. The AJEWG 
considered use of foreign facilities unacceptable due to restrictions imposed by International 
Traffic in Arms Regulations, security, and lack of control of facility access. The Nation could not 
preserve its leadership in the development and modeling of thermal protection materials if it 
depends on the arc jet testing facilities of a foreign country. The AJEWG findings and 
conclusions are derived from a variety of resources, including a review of maintenance plans, 
site visits, reference documents, and invited presentations from the user community. 

The AJEWG determined that proposed NASA missions over the next 30 years will require arc 
jet capabilities beyond what exists today. Based on evaluation of available information, 
described in Section 6.0 of the report, the AJEWG concludes that a new build offers functional 
advantages over upgrading existing aging complexes without appreciable cost penalty when 
considering a 30-year investment. Furthermore, no current facility, including those at Arnold 
Engineering Development Center and the Large Core Arc Tunnel, can deliver the heating rates, 
pressures, and shear levels at the scale and duration needed for cost-effective, weight-efficient, 
and reliable design of thermal protection systems for safe return from Mars or near-Earth objects.  

The AJEWG determined that NASA has a critical and strategic need for arc jet ground 
test capability to meet its unique mission set, and must make its own investment to support 
future needs. 
The NASA arc jet complexes at Johnson and Ames are aging and major infrastructure 
investment decisions must be made soon. The condition of the equipment and infrastructure that 
comprise and support these complexes are typical of research and test systems constructed 30 to 
40 years ago. Maintenance and recapitalization have been erratic due to fluctuating project and 
complex maintenance funding levels, resulting in a mix of old and new equipment. Both 
complexes have identified a near-term need for boiler upgrades; however, both boilers have been 
recently inspected and certified safe to operate and will meet emissions requirements for the next 
5 years. Based on a review of the existing infrastructure, discussions with complex managers, 
and the availability metrics, the AJWEG expects that both the Ames and Johnson arc jet 
complexes are capable of sustaining safe operations for a 5-year period, which provides NASA 
with a critical opportunity to institute appropriate action to establish an arc jet complex to meet 
NASA’s 30-year needs. Although the older equipment has been adequately maintained for safe 
operation, the real and increasing risk of a major system failure and extended complex down 
time highlights the need for immediate action.  
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Within five years, NASA must be building a single arc jet testing complex with a robust 
infrastructure and capability to support thermal protection system certification for large-
mass Mars entry and safe return to Earth.  

NASA must start immediately to gain advocacy and establish funding and design plans for the 
test complex infrastructure and perform the technology development needed for advanced 
capability. A design team comprised of NASA, DOD, and industry arc jet experts should be 
convened and tasked to complete preliminary design review for the test complex within 12 
months. The team should identify designs that optimize test efficiency, enhance instrumentation 
access, and improve diagnostic capability for test models. The design team should consider a 
number of possible sites and assess current and expected future restrictions on power, water, 
noise, pollution, and availability of suitable personnel. To optimize operational robustness, the 
team should also consider the potential for natural disasters that could threaten extended 
downtime. A detailed cost analysis for the construction and 40-year operation of the complex for 
all site locations considered should be a primary factor for a final build decision. Once a new 
capability is established, NASA needs to commit to continuous and consistent institutionalized 
funding to avoid the adverse effects of erratic program funding for maintenance and upgrades 
and to maximize value to the Agency. 

A focused activity to define complex infrastructure requirements, establish technology 
enhancements and design plans, and acquire financial support and construction approval 
should start immediately and be scheduled to support building within the next 5 years. 
Operations at existing complexes should be sustained, until a final investment decision has been 
made and funds obligated, to support current missions and the development of advanced 
capability for the new build. Mothballing either complex is effectively a decision to close that 
complex. Sustaining operation at both complexes offers NASA an opportunity to use existing 
facilities to develop the arc jet technology needed to meet the future capability by exploiting 
expected short-term reductions in arc jet test demand. During this period, no major infrastructure 
investment should be made that is not necessary for safe operation. The AJEWG agrees with a 
cooperative management structure proposed by Johnson and Ames for the two existing 
complexes, as discussed in Section 5.0. The AJEWG noted that current operations staff is a 
highly valuable NASA resource. They possess unique knowledge and skills that are integral to 
successful operation and NASA should maximize the opportunity to retain and transition this 
staff to the new complex. However, also discussed in Section 5.0, the AJEWG concluded that 
current staff levels at both NASA complexes could be lower. To reduce operation costs, an 
independent assessment of minimum staffing levels required for safe and effective operation 
should be completed at both the Ames and Johnson complexes and appropriate reductions 
instituted within a year.  

NASA should maintain testing capability at both the Johnson and Ames arc jet complexes 
for the time period required to begin building the new complex. NASA should reduce 
current staff levels at Johnson and Ames and manage a scheduled phase-out plan that 
offers an efficient transition to test operation at the new complex. 
The AJEWG considers these immediate actions to be positive steps that will transition NASA 
from having a high-risk reliance on the existing, aged arc jet test infrastructure and capability to 
a single robust complex with improved and cost-effective capability that meets future critical 
testing needs for NASA and the Nation for the next 30 years. 
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1.0  Introduction 

The Arc Jet Evaluation Working Group (AJEWG) was chartered to provide engineering support 
to the NASA Chief Engineer, Mike Ryschkewitsch, in evaluating the availability and use of 
hypersonic thermal arc jet test facilities to meet NASA’s planned and future mission 
requirements over the next 30 years. NASA has a sustained mission to develop and certify entry 
systems technology for these mission categories: 

 LEO return 

 Mars entry  

 Earth return from beyond LEO  

 Exploration of Venus and outer planets 

 Titan 

In addition, the Nation has a sustained interest in long-duration hypersonic flight and air-
breathing space access, including the activities of the National Partnership for Aeronautical 
Testing (NPAT) and the Hypersonic Propulsion Integrated Testing Team (HPITT). Congress 
mandated that DOD and NASA work together on hypersonics with the Joint Technology Office 
on Hypersonics (JTOH).1

The AJEWG was to provide findings to inform possible long-term investment strategy 
alternatives for NASA’s arc jet capability.  

  

1.1 Scope 
The AJEWG was asked to consider both NASA and non-NASA arc jet hypersonic thermal test 
facilities to meet NASA mission requirements. The AJEWG looked at existing facilities and 
evaluated the capabilities of facilities capable of supporting large-scale thermal protection 
system (TPS) development and certification. Smaller research and development arc jets and arc 
jets used for materials screening at the NASA Langley Research Center (LaRC), the Arc Heated 
Scramjet Test Facility (AHSTF), and the Hypersonic Material Environmental Test System 
(HyMETS) were not considered viable possibilities. The AJEWG considered it unrealistic to rely 
on foreign facilities like Scirocco in Italy to support NASA’s leadership in development and 
modeling of TPS materials. Aside from issues of logistics and control of schedule, restrictions 
imposed by the International Traffic in Arms Regulations (ITAR) and security considerations 
make use of the complex untenable. 

1.2 Background 
Arc jets facilities are designed to simulate conditions for space vehicles entering through a 
planetary atmosphere. They provide ground-based testing for re-entry vehicle thermal protection 
materials, by electrically heating air or other test gases to a flight-like enthalpy. This high-energy 

                                                      
1 The John Warner National Defense Authorization Act for Fiscal Year 2007, P.L. 109-364, Section 218, directed 

the Secretary of Defense to establish within the Office of the Secretary of Defense the JTOH. The JTOH is to 
coordinate with the programs on hypersonics of the National Aeronautics and Space Administration and is 
required to report to the Congressional Defense Committees a roadmap for the hypersonics programs of the 
Department of Defense every two years. The first roadmap came out in February 2008. 



Evaluation of Arc Jet Facilities Report 
 

 10 

gas is expanded through a nozzle at high velocity into a vacuum test chamber where a test article 
or articles are exposed to the heat rate, pressure, and shear that simulate the conditions of a given 
flight trajectory. 

The Ames Research Center (ARC) and the Johnson Space Center (JSC) facilities were brought 
online in the mid-1960s for development of thermal protection material and mission support. The 
JSC facilities were funded through the Space Transportation System (STS) Program (U.S. Space 
Shuttle program) until 2002, but the amount of sustaining engineering testing at that time was 
significantly decreased, and the JSC arc jets were designated to be mothballed. Following the 
Columbia accident, both JSC and ARC facilities were heavily utilized in the investigation and in 
the subsequent Return to Flight (RTF) activities. The Columbia Accident Investigation Board 
(CAIB) recommendations included development of a TPS repair capability. The arc jets played a 
major role in demonstrating the effectiveness of proposed repairs, including tests of “the full-
scale repair components at maximum heating for the full duration of the flight trajectory.” [ARC, 
Basis of Need] (References are listed in Appendix C: References.) 

1.3 Evaluation Approach 
The Office of the Chief Engineer (OCE) asked the AJEWG to identify and document 
requirements for NASA missions and aeronautics research that would necessitate the use of arc 
jet facilities that perform hypersonic thermal testing and to evaluate these requirements against 
the performance capability and throughput capacities of existing facilities.  

To accomplish the objective, the AJEWG conducted site visits at both JSC and ARC and listened 
to presentations on the facilities and from users. (See Appendix D: Study Information.) The 
working group also reviewed previous arc jet evaluations, relevant reference documents, current 
maintenance plans, and written justifications and plans for the proposed upgrade to the Lunar 
Environment Arc Jet Facility (LEAF).  

During the site visits, interviews were also conducted with key technical leads working all stages 
of the TPS life cycle, from entry system precursor technologies, through flight vehicle 
development, to sustaining engineering of operational vehicles. On site, the working group 
observed and assessed existing arc jet complex support infrastructure, facility hardware, test 
diagnostics, workforce, operational efficiency, maintenance schedules, and upgrade 
requirements.  

Arc jet operations at the Arnold Engineering Development Center (AEDC) and Boeing Large 
Core Arc Tunnel (LCAT) were reviewed by interviewing key operators from both complexes. A 
visual comparison of the capabilities and trajectories covered by these different facilities is made 
in Section 4.0, Current Capabilities.  

The AJEWG also assessed requirements for future arc jet testing capability and capacity by 
interviewing current and potential users of arc jet services from the NASA Exploration Systems, 
Space Operations, Science, and Aeronautics Mission Directorates; the Air Force; and SpaceX 
and commercial organizations contracted with NASA for entry systems. 

The amount of testing accomplished, or throughput; planned maintenance; and facility upgrades 
were considered. The findings and conclusions of this analysis are captured in Section 5.0 of this 
report. The way forward for a possible investment strategy for NASA’s hypersonic thermal test 
facility capability is considered in Section 6.0. 
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The AJEWG members were selected from among national experts in arc jet technology and entry 
technology to provide an unbiased perspective and a focused, independent evaluation to inform 
NASA’s long-term investment strategy toward arc jet capability. (See Appendix E: Team Bios.) 

1.4 Current Changing Climate for Funding and Requirements 
The assignment of this evaluation report occurred at a time of flux in Agency mission 
requirements and funding. The context for this report includes the recent establishment of the 
Facilities Program Board (FPB), whose charter is to provide a comprehensive Agency facility 
strategic direction. (“Facilities” is used here to indicate Agency buildings, assets, and other 
infrastructure. The arc jet community uses “complex” and “facility” interchangeably, but this 
document attempts to consistently use “complex” to refer to the arc jets and their supportive 
infrastructure and “facility” to refer to an arc jet tunnel.) The FPB established an Agency facility 
strategy to reduce the proportion of facilities within the Agency that are older than 40 years and 
beyond their design life. Despite such program planning challenges as the Constellation 
redirection and retirement of the U.S. Space Shuttle, the AJEWG concluded that NASA¹s arc jet 
capability serves a persistent strategic need for the Agency. 

1.5 Document Organization 
This report lays out the engineering uses of arc jets in Section 2.0. Section 3.0 describes the 
requirements of different mission categories. The current state of the main national arc jet 
complexes is described in Section 4.0, along with the gaps in arc jet technology that should be 
addressed.  

The analysis of the throughput and a comparison of the workforce at different arc jet complexes 
is captured in Section 5.0. Section 6.0 explores investment options for the Agency, focusing on 
future capability and capacity that would meet the needs for a safe return from Mars. Findings 
and conclusions appear at the end of each section and are collected in the final Section 7.0 of the 
report. 
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2.0  Engineering Uses and Accomplishments of Arc Jets 

Spacecraft entering into a planet’s atmosphere at high velocity are subjected to extreme 
aerothermal loads. Protecting against these extreme loads is a critical element of spacecraft 
design. With the possible exception of very limited locations on Shuttle, entry vehicle thermal 
protection failure is single point and catastrophic to mission success. Human-rating requirements 
for space systems generally specify that systems should be fault tolerant to catastrophic events 
[NPR 8705]. Fault tolerance design avoids failure through redundancy or other compensation. 
However, vehicle TPS is often exempted from this requirement because redundancy is not 
possible. The risk is instead controlled through defined standards for increased design margin. 
For robotic missions, mission assurance requirements will drive similar approaches to TPS for 
increased margin. The environments that arc jets can simulate allow material engineers and 
spacecraft designers to: 

• Design, develop, qualify, and certify spacecraft thermal protection systems (TPS), 
including the heat shield, backshell, and seal design; 

• Screen and develop new thermal protection materials; 

• Certify vehicles for flight and establish performance margins for the TPS design during 
entry, descent, and landing (EDL); 

• Re-qualify materials that have new manufacturing facilities, processes, vendors, or 
constituent materials; 

• Perform sustaining engineering throughout the TPS mission life, including advancing and 
improving the TPS; 

• Test, analyze, and perform trades to support decisions on safe return or repair alternatives 
to on-orbit anomalies in the TPS; and 

• Support the investigation of TPS failures or mishaps. 
For more than 40 years, arc jet testing has been the primary basis for characterizing TPS in 
support of material development and response model validation. Every NASA atmospheric entry 
mission has relied on arc jet testing for TPS development. Arc jet facilities provide the only 
ground-based means of simulating entry heating rates in a reacting flow environment for flight-
relevant durations, as shown in the Figure 2.1 below. Although shock tunnels can more 
accurately simulate the aerothermal environment, they do so for too short a period to permit 
accurate assessment of the material response to that environment. Exposure durations 
approximating those expected during flight are required to screen and qualify thermal protection 
materials. Screening typically subjects material samples to flight-relevant heat fluxes and 
pressures, but rarely addresses all aspects of the load environment that might contribute to 
material failure. In the Apollo era, for example, when arc jet power levels did not exceed 20 
MW, stagnation testing of small models was performed, but shear testing of large models was 
not attempted. 
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Figure 2.1. Performance Comparison of Various Ground-based Simulation Facilities  

[Curry, Past Experience Using Arc Jet Testing for Human Spacecraft TPS] 

 

Thermal protection failure modes are typically of two types: bond-line over temperature due to 
under-predicted heat loads or over-predicted material response, or catastrophic overheating due 
to mechanical failure [Steltzner, Mars Exploration Program Use Profile]. Bond-line temperature 
can generally be margined by increasing material thickness, at the expense of increased mass. 
Arc jet testing provides data for detailed material response models that can reduce uncertainty 
and the magnitude of thickness margins. Arc jets can also uncover mechanical failure modes 
including erosion, spallation, and loss of liquid layer due to shear or failure around a heat shield 
penetration. Heat shield penetration failures are difficult to identify, characterize, and control, but 
arc jet testing can help to expose subsystem feature failure modes early in the design.  

In the recent Constellation TPS Advanced Development Project, a formal margins policy, which 
is summarized in Figure 2.2 below, was generated to support estimation of subsystem reliability, 
but it addresses only a bond-line over temperature failure mode. Arc jet testing was also 
conducted to provide qualitative information on other failure modes, including local burn 
through from damage, flow within a porous low-density ablator material, and flow ingestion due 
to seal failure. 
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Figure 2.2. Design margin policy for protecting against bond-line over temperature. 

[Wright, Anticipated Arc Jet Usage] 

2.1 Material Response Modeling 
The design and qualification of thermal protection materials for entry vehicles and probes 
requires consideration of complex thermal and aerodynamic loads, which are strongly affected 
by the chemical state of the atmospheric gases and their interaction with the vehicle surface. The 
primary driving need for NASA to have arc jet test capability is to support the development of 
thermal protection materials, and the qualification of those materials for flight, by providing the 
best possible ground test simulation of the flight environment. Extensive arc jet tests have 
supported the development of all thermal protection materials used by NASA. Concurrent with 
material development, numerous arc jet tests were needed to anchor response models, which are 
used to assess material behavior and establish design margins. The development of thermal 
protection materials and response models will be persistent strategic needs for NASA well into 
the future. Arc jets provide essential ground test support for these needs.  

The selection of appropriate TPS material is driven by mission environment and thermal 
management needs of a vehicle. Material selection is typically governed by entry conditions for 
peak heat flux, stagnation pressure, and shear force; whereas material thickness is dictated by the 
integrated heat load and bond-line temperature capability. For modeling purposes, the total 
calculated heat flux must include augmented heating from surface catalytic reactions, roughness 
effects, turbulent flow, and shock layer radiation. Thermal protection materials basically fall into 
either a single-use or multi-use category. Single-use materials are typically ablators, which 
accommodate high-entry heat load conditions, 100 to 30,000 W/cm2, through phase change, 
mass loss, and char radiation. Multi-use materials are typically refractory materials that manage 
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more moderate heating conditions, 10 to 100 W/cm2, by radiating heat back into a flow field with 
limited chemical reaction or mass loss.   

For single-use materials, modeling ablation is extremely complex because the process often 
involves pyrolysis of organic constituents, in-depth production of volatile gases, and oxidation-
reduction of carbon and silicon. Therefore, ablation behavior is strongly affected by material 
constituents, in-depth microstructure, and surface interaction with the entry flow [Laub et al., 
Past Experience: A Different Perspective]. The complexities of phase change at the pyrolysis 
zone, diffusion of gases through a char layer, and gas ejection into the flow boundary layer 
present significant challenges to state-of-the-art TPS design methodology. Current design models 
that are used to characterize ablators for heat shields rely on phenomenological calibration with a 
database of arc jet test results. Although no ground-based thermal test can simulate actual flight 
conditions, the high-temperature reacting flow within an arc jet is recognized as the best 
capability for characterizing ablator response and calibrating design models. 

A current limitation with ablation modeling is the often important design requirement to 
characterize failure thresholds. Unfortunately, the rigorous experiments needed to define those 
thresholds and identify critical failure mechanisms are rarely performed. As a result, defining 
design “margin” is quite arbitrary since the conditions leading to failure are not known 
[Venkatapathy et al., Capabilities Needed]. Improved understanding of the physical processes 
underlying ablation will enable a greater understanding of the margin between safe operation and 
failure. More accurate models combined with a fundamental understanding of ablator failure 
physics may be the only means of reducing heat shield mass without sacrificing operational 
reliability. Accomplishing this end will require carefully controlled arc jet experiments. 

In contrast, with ablators, the failure thresholds for multi-use materials are typically well known, 
due in large part to the fact that heating loads are moderate and material property changes are 
minor after successive mission exposures. Although far simpler than ablator materials, arc jet 
testing is still critical for characterizing multi-use materials and calibrating design models. 
Multiple exposures are needed to support life cycle analyses, which rely on known and well- 
characterized failure thresholds. Multi-use materials are tested to establish a failure threshold and 
the heat shield is then designed to operate with a safe margin from that threshold. This design 
approach played a strong role in the CAIB failure reconstruction effort and the subsequent RTF 
activities. Based on CAIB recommendations, extensive arc jet tests were performed to assess the 
thermal protection system’s ability to sustain flight debris damage and safely return to Earth. 

2.2 Computational Fluid Dynamics Modeling 
Computational Fluid Dynamics (CFD) is used routinely in TPS design. Reacting flow codes, 
such as Data-Parallel Line Relaxation (DPLR) and Laura, are used to predict environments 
around the vehicle throughout entry. The predicted thermal, pressure, and shear loads are input to 
material response codes, such as Fan/Inlet Acoustic Technology (FIAT), Cryogenic Moisture 
Apparatus (CMA), and Structural and Thermal Analysis Branch (STAB), to calculate the 
thickness of material required to keep the underlying vehicle structure at acceptable 
temperatures. These same CFD codes can be applied to simulate the flow in an arc jet facility. 
Good correlation between simulated and measured conditions in the arc jets generates confidence 
in the predictive power of the CFD codes and strengthens the traceability for flight simulation. 
Furthermore, success in modeling the flow in these facilities may extend their role beyond data 
generation for material characterization and into aerothermodynamic flow testing. 
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Since CFD does not address material response (which is modeled separately), it is unrealistic to 
imagine that CFD can replace ground testing for TPS design. Instead, CFD can be used in two 
ways to improve the material response information that is generated in arc jet tests: 

• Reduce uncertainty in the environment to which the model is exposed; 

• Predict conditions for a range of arc jet power and mass flow settings, to assist in 
designing a test series that subjects the material to conditions that exercise all failure 
modes 

The current state of the art in facility simulation does not model the arc heater directly, but 
assumes that it provides high-enthalpy gas into a plenum, and this slug of gas is expanded 
through a convergent-divergent nozzle into the test section. This way, the computational process 
is no different than one would employ for hypersonic wind tunnels, although the thermochemical 
modeling of the gas is considerably more complex. Arc-heated flow fields are computed and 
calibrated against calorimetric and pitot measurements, and optical measurements (when 
available). Apart from providing details of the flow fields and flow structures, the important 
results of the simulations are the nozzle centerline total enthalpy (a key parameter used in 
computing a material’s thermal response), shear stress, and hot-wall heat flux, all three of which 
are not measured directly in arc jet tests. By reducing the uncertainty in these parameters, the 
CFD supports more precise modeling of material response sensitivity to these quantities. 
The contributions of CFD can be enhanced through greater use of flow diagnostics in the arc jet 
facilities, both in the plenum and the test section. Techniques such as optical emission 
spectroscopy and laser-induced fluorescence (LIF) provide knowledge of the thermochemical 
state of the gas/gas mixture and produce valuable information on flow non-uniformities and 
asymmetries that are currently not modeled. Measurement of thermal losses in the core will 
characterize the validity of the current assumption that the core is adiabatic: if measurements 
indicate significant losses, the assumption will need to be modified. 
Apart from characterizing the flow in a particular test, CFD can be used to design models and 
test conditions that produce desired heating, pressure, and shear at the model surface. An early 
example of successful three-dimensional flow modeling [Prabhu, Modeling as an Alternative] is 
illustrated in Figure 2.3 below. A nose tip model at angle of attack had serious flow interference 
at the base of the model. Through a series of simulations for a range of sting and model shapes, 
CFD provided insight into a geometry change that fixed the interference issue. 

It is anticipated that CFD will be used more routinely in the future to design models that 
maximize the flight relevance of conditions produced in an arc jet facility of a given capability.  
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Figure 2.3. CFD was used to identify source of interference  
and to identify a shape change that addresses the problem 

[Prabhu, Modeling as an Alternative] 

2.3  Maximizing Value of Arc Jet Testing 
TPS design is typically regarded as trading subsystem reliability against mass. This is a 
reasonable perspective when failure mechanisms are well understood, and the required margin is 
driven by the level of uncertainty, both in the applied load and the material response. 
Instrumentation and flow diagnostic schemes that measure in-situ arc jet conditions can drive 
down uncertainty in the applied load. Techniques that provide a more detailed view of material 
response, including species identification downstream of the test article, video of the model 
surface that indicates time-accurate ablation behavior, and interior instrumentation of the test 
article can provide physical insight to drive improvements in the material and the response 
model.  

Several flow diagnostic tools have been available for two decades, and low-level research 
activities have been conducted for much of that period, but the diagnostics have not been 
integrated into standard arc jet test practices. This situation appears to be largely driven by the 
lack of access that researchers have had to the arc jet facilities, due to a lack of funding, and to 
higher prioritization being given to tests that directly support mission development and 
operations. Diagnostics have not been sufficiently mature to be adopted by individual missions. 
Strategic management of arc jet facilities as agency assets can reprioritize instrumentation 
development to increase the value of arc jet testing for all missions. 

Where failure mechanisms are not fully characterized, additional mass may not improve 
reliability. A failure that quickly removes material after it is initiated, such as shear-induced 
erosion, or one which bypasses the bulk material, such as failure of gap fillers, must be addressed 
by altering the design concept rather than by simply increasing thickness. A comprehensive 
margin policy must address all failure modes, which requires testing that establishes performance 
bounds for all modes. Such testing has not been routinely conducted by missions, which are 
primarily concerned with performance at, or slightly above, the conditions predicted for their 
specific mission trajectories. The scope of screening tests can be expanded and the level of 
instrumentation can be increased, to identify and understand failure mechanisms. Comprehensive 
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failure investigation can be conducted as part of a material development activity. As with 
instrumentation and facility improvements, such testing is best managed at the agency level, to 
establish a suite of fully characterized materials that are available to all missions.  

2.4 Summary 
Finding 2.1: Arc jet testing has proven to be a core competency and required capability of 
NASA.  

Finding 2.2: Every NASA atmospheric entry mission has relied on arc jet testing for TPS 
development. 

Finding 2.3: Arc jet facilities provide the only ground-based means of simulating entry heating 
rates in a reacting flow environment for flight-relevant durations. 

Finding 2.4: Ablator design policy currently applies large margins to cover uncertainty in 
applied loads and material response. Improvements in arc jet diagnostics and test article 
instrumentation can reduce uncertainties and hence reduce margins. 

Conclusion 2.1: Existing ablator design policy is incomplete, because some failure modes are 
not fully understood, so their contribution to system reliability is not quantified. More rigorous 
examination of material failure modes will enable more defensible mission assurance 
assessment. Characterization of failure modes is better managed as a material development 
activity rather than being conducted for individual missions.  

Conclusion 2.2: Currently available diagnostic capabilities and instrumentation techniques 
should be infused into NASA arc jet standard practice. This infusion is best managed as an 
Agency strategic investment rather than as a programmatic responsibility. 
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3.0  Mission/Future Requirements/National Needs 

The thermal protection needs for different mission classes are strongly affected by the entry 
velocities and atmospheric properties that prevail for each class. The mission parameters that 
drive arc jet capability are summarized in Table 3.1 below and discussed in more detail in the 
following subsections. 

The acceptable level of risk and the certification strategy for each mission type will drive the 
amount of testing that is required, and hence, the arc jet capacity requirements for the Agency. 

Table 3.1. Parameters  
[Constructed with data from Munk, Future Missions; 

 Venkatapathy et al., Outer Planet Missions] 

Characteristics LEO Return Mars entry Earth return 
from beyond 
LEO (comet) 

Exploration 
of gas giants 
(Saturn) 

Titan 

Pressure 85 kPa 25 kPa 170 kPa 300 kPa 10 kPa 
Heat Flux      
    Convective 400 W/cm2 500 W/cm2 3000 W/cm2 4500 W/cm2 60 W/cm2 

    Radiative N/A 100 W/cm2 7500 W/cm2 100 W/cm2 40 W/cm2 
Shear 200 Pa 250 Pa 500 Pa   100 Pa 
Flow State      
    Turbulent Nice to have Yes Yes Nice to have Nice to 

have 
    Laminar Yes Yes Yes Yes Yes 
Enthalpy 25MJ/kg 30MJ/kg 100 MJ/kg  15MJ/kg 
Gas 
Constituents 

Air CO2 Air H2/He N2/CH4 

Model Size 50 cm Large enough 
to test system 
features and 
closeouts 

Large enough 
to test system 
features and 
closeouts 

10 cm 10 cm 

 

3.1 Return from Low Earth Orbit 
Capabilities of existing NASA arc jet facilities are well matched to LEO return mission 
requirements. Figure 3.1 shows that typical trajectories for lifting bodies entering the atmosphere 
at about 7 km/s lie well within the range of conditions that can be simulated in these facilities. 
Existing facilities have also been used throughout the life cycle of crew transportation vehicles, 
and are still used for real-time support of each Shuttle mission (testing was conducted in support 
of STS 117 and 118 to guide decision makers on the need for TPS repair prior to re-entry). 

The amount of testing that will be required for LEO return is highly uncertain, because human 
rating requirements (HRR) for commercial crew transport and cargo are not well-defined. The 
2009 report from the NASA Aerospace Safety Advisory Panel (ASAP) states: 

“It is the Panel’s position that no COTS manufacturer is currently HRR qualified, 
despite some claims and beliefs to the contrary. Questions that must be answered 
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are: What is the process for certifying that potential COTS vehicles are airworthy 
and capable of carrying astronauts into space safely? How is compliance assured 
over the life of the activity? The same questions would apply to any potential 
international orbital transportation systems.” 

In response to the Panel’s report, NASA agreed “to perform additional research to support 
development of the HRR implementation handbook.”2

If the HRR practice from previous programs is applied for commercial crew vehicles, the amount 
of testing will be significant and will continue through the operational phase of the life cycle. 
NASA Administrator Bolden suggests that NASA will “support … the commercial spaceflight 
industry to enable hundreds, even thousands of people to visit or live in LEO.”

  

3

 

 Certainly, arc jet 
test capability will be required for such operations. Certification guidelines must be established 
before the required test capacity can be accurately predicted. 

Figure 3.1. Existing arc jets provide adequate capability for LEO return vehicles 
[Smith, AEDC Arc Jet Facility Capabilities] 

 
In addition to NASA mission needs, the Air Force Research Laboratory (AFRL) has identified 
an ongoing need for testing in NASA facilities [Bowman, Arc Jet Testing Perspective]. In recent 
years, they have had 3 or 4 weeks at ARC for tests of hypersonic glide and cruise vehicles. 
Although these are not strictly orbital entry vehicles, they operate in an altitude and velocity 
regime that is better matched to NASA arc jet test capabilities than to the high pressure facilities 
at AEDC. AFRL anticipates a similar need in the next decade, with the possibility of moderate 
increases. 

                                                      
2 HRR Handbook described in NASA’s response to ASAP recommendation 2008-04-03. 
3 Bolden comments on budget proposal for 2011. 
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3.2 Mars Entry 
Entry velocity at Mars is relatively modest, with a maximum of 7.5 km/s for a direct trajectory. 
The challenge is to decelerate sufficiently quickly in the thin Martian atmosphere, which is about 
1% of the density of Earth’s atmosphere, to permit parachute deployment at a safe altitude for 
terminal descent. In order to generate adequate drag during hypersonic entry, a rigid aeroshell 
must have a large cone angle which has the adverse effect of increasing the heating rate and 
turbulent shear stress on the leeward sections of the heat shield. 

There have been six successful U.S. landings on Mars, beginning in 1976 with the successful 
deployment of Viking 1 and 2. The Viking mission, and the EDL technology developed for it, 
established the backbone for all U.S. Mars missions to date. All U.S. Mars missions have utilized 
a spherically blunted 70-degree half-angle cone for the forebody and Super Lightweight Ablator 
(SLA)-561V ablator as the heat shield material. The SLA-561V material has had extensive arc 
jet testing that, together with the experience gained from successful flights, has qualified it for 
flight in the thin carbon dioxide atmosphere of Mars. 

The Mars Science Laboratory (MSL) mission, currently planned to land in 2012, is the largest 
and heaviest vehicle yet designed for Mars entry. The mission also has the highest entry velocity 
of 7.5 km/s, and requires a large-diameter aeroshell for drag. The combination of high-entry 
velocity, large-diameter aeroshell, and lift ratio is expected to produce conditions where, for the 
first time, a Mars entry capsule had to be designed for a completely turbulent heat pulse with 
significant levels of shear stress. Arc jet tests conducted on SLA-561V to assess its capability to 
sustain conditions predicted for MSL revealed a critical failure mode in which the protective 
surface layer is swept away by shear loads. Arc jet testing was essential for characterizing this 
material limitation and additional thickness would not margin against failure. Although SLA-
561V had been used successfully on several apparently similar previous missions, its limitation 
under turbulent shear required a material change from SLA-561 to the Phenolic Impregnated 
Carbon Ablator (PICA) material for the MSL mission. The change in thermal protection material 
required significantly more arc jet tests to qualify a new ablator material for Mars, including 
additional tests to examine the effects of the CO2 atmosphere on ablation rates 

To date, no viable Mars EDL architecture has been put forward that can safely place more than 2 
metric tons at the higher surface elevations in close proximity to scientifically interesting terrain. 
The development of new EDL systems and technologies must begin before human-scale 
missions to the surface of Mars can be seriously considered. The Entry Descent Landing Systems 
Analysis (EDL-SA) group recently completed a study to define architecture requirements for 
delivering 40 metric tons, as will be needed for a crewed Mars mission. The study concluded that 
both an aerocapture and subsequent entry stage will be required, and that two basic systems, a 
mid lift-to-drag rigid aeroshell and a Hypersonic Inflatable Atmospheric Decelerator (HIAD), 
have the potential to land the required mass.  

A high lift-to-drag rigid aeroshell vehicle will have a higher ballistic coefficient than the 70-
degree sphere cone used to date. At the scale required to deliver large masses to the surface, 
predicted heating rates are close to 600 W/cm2, with about 20% of the total heating being 
radiation from the shock layer. This heat rate is much higher than any previous experience at 
Mars and will require the development of new thermal protection materials and an 
aerothermodynamic database, for which a large number of arc jet tests will be required. In 
addition to the high heat pulse associated with aerocapture, thermal protection materials will also 
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endure an extended cold soak while on orbit before the entry stage is commenced. Thermal 
protection concepts are proposed to handle the new requirement for dual heat pulse capability, 
and arc jet tests will be critically important for developing and qualifying those concepts with the 
required materials for an aerocapture application in the CO2 atmosphere of Mars. 

Deployable decelerators for hypersonic entry are an emerging technology envisioned to provide 
very large drag area at high altitudes. Just before atmospheric entry, the HIAD is deployed with a 
flexible TPS cover. The EDL-SA study predicts peak heating rates could be as high as 115 
W/cm2 during the aerocapture stage for a 23-meter diameter HIAD, including a predicted 
radiative heating level of 40 W/cm2. The current demonstrated capability for a suitable HAID 
flexible TPS is less than 30 W/cm2. Research development efforts funded under the NASA 
Fundamental Aeronautics Program are pursuing technologies that may extend performance 
capability to greater than 100 W/cm2, but arc jet testing support will be a critical assessment tool 
for capturing the effects of catalysis, chemistry, and flow dynamics. In an effort to reduce 
uncertainty, thermal performance within a CO2 environment should be completed to assess the 
effects of higher oxygen concentrations than Earth. 

3.3 Earth Return from Beyond LEO 
Entry into Earth’s atmosphere from beyond orbit involves velocities of 11 km/s or higher. 
Conversion of the kinetic energy—which is more than double that for entry from LEO at 7 
km/s—to heat involves much higher heating rates. For large, blunt vehicles, the radiative 
component from the detached shock wave is a significant fraction of the total heating. Figure 3.2 
compares the heat flux and shear stress for Lunar Direct Return (LDR) and Mars Direct Return 
(MDR) with the levels required for LEO return [Reuther presentation of Hash]. Clearly the 
conditions to be simulated for entry from beyond LEO are far more severe. Also, since a large 
fraction of the heat flux is radiative, a suitable test facility must produce high levels of both 
radiative and convective heating to reduce performance uncertainties. Furthermore, radiation 
absorption by ablation products is an important component of the ablator response so that the 
radiative heat flux must have representative spectral distributions. Figure 3.3 indicates that 
enthalpy levels for Mars return are double the levels achievable in existing arc jets. Hence, 
significant advances in test facility design, beyond the capability of a LEAF-type facility, will be 
required. 
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Figure 3.2. Heat flux and shear levels for MDR, LDR and LEO return trajectories  

[Hash, Capabilities and Lunar Return Certification Requirements] 

 

 
Figure 3.3. Enthalpy levels for MDR trajectory are double the capability of existing facilities 

[Wright, Anticipated Arc Jet Usage] 
 

Although the entry conditions for return from beyond LEO exceed the capabilities of existing 
facilities, it does not follow immediately that such missions cannot be undertaken by NASA 
without upgraded facilities. The Apollo program used multiple uncrewed flight tests of the full-
scale flight vehicle to certify the heat shield for crewed operations. The Orion Project intended a 
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combination of enhanced ground facilities, with the proposed LEAF complex, and flight test to 
certify the heat shield. The Galileo probe entered the Jovian atmosphere successfully, although 
the Giant Planet Facility, now defunct, did not generate total heating levels equivalent to those 
experienced in the mission. Nevertheless, serious consideration of Earth return missions will 
require significant arc jet capability augmentation, to provide combined convective-radiative 
heating at elevated heating rates. 

Table 3.2. Representative Earth Entry Conditions for Various Missions 
[Created using data from Munk, Future Missions] 

Mission/Destination  Entry 
Velocity, 
km/s  

Peak 
Convective 
Heating, 
W/cm2  

Peak 
Radiative 
Heating, 
W/cm2  

% 
Radiative 
Heating of 
Total 
Heating  

Peak 
Stagnation 
Pressure 
Estimate, Pa  

Peak Heating 
Stagnation 
Pressure 
Estimate, Pa  

Comet  ~14-16  2000-3000  3000-
7500  

70%  30kPa-
300kPa  

30kPa-
180kPa  

Asteroid  ~11.5  1250  350  22%  4kPa-
150kPa  

4kPa-95kPa  

Moon  ~10-11  700-1000  50-150  15%  4kPa-
140kPa 

4kPa-85kPa 

Mars (Science) 

Mars (Human) 

~11-12 

~11-12 

1300 

3000 

600 

1400  

30% 

70%  

170 kPa 

  

100kPa 

  

       

Stardust*  12.8  1200  130  10%   27kPa 

Genesis*  11.0  700  30  4%    

 

3.4 Exploration of Venus and Outer Planets 
Future exploration missions to Venus and the Outer Planets that require atmospheric entry will 
place a demanding challenge on the TPS to assure success, with the most demanding 
requirements being for the Gas Giants. Entry probes circumvent current limitations of remote 
sensing the inner depths of the atmosphere. To be successful, entry probes must be designed to 
tolerate the most demanding entry conditions for peak heat rate, total heat load, and dynamic 
pressure. Enabling future entry probe missions to the Gas Giants will require improvements in 
both aerothermodynamic modeling and TPS design. Due to extremely high entry velocities, giant 
planet probes require the most robust thermal protection materials. 
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The Galileo probe, which was launched with its orbiter in 1989 and entered the Jovian 
atmosphere in December 1995, was exposed to what is regarded as the most extreme conditions 
for a TPS material to date. Almost half of the Galileo probe mass of 335 kg was dedicated to the 
heat shield (152 kg). The probe forebody was a 45-degree angle blunt cone configuration and 
entered the atmosphere at slightly more than 47 km/sec. In terms of recession tolerance under 
extreme heating rates and pressure, carbon phenolic, developed by the DOD for ballistic missile 
entry more than 40 years ago, is still considered to be the most robust ablator today. The 
combination of entry speed and dense Jovian atmosphere was estimated to yield a combined 
convective and radiative heating rate as high as 35,000 W/cm2, and a significant portion of peak 
heating was due to radiant heating from the bow shock. As was predicted by CFD analyses, heat 
shield TPS performance flight data relayed from the Galileo probe to the orbiter demonstrated 
high recession rates, and more than half the mass of ablator heat shield was removed during the 
180-second heat pulse. Given the flight experience of Galileo, if the mission were done again, 
heat shield mass margins would probably grow, leaving less mass for science.  

Both the Galileo and Pioneer Venus probes used FM-5055 carbon phenolic for the heat shield 
material. If possible, it would be prudent to employ the same TPS material for future missions 
that would encounter severe entry heating environments. Unfortunately, there is a very limited 
supply of the Avtex precursor rayon needed to make FM-5055 carbon phenolic. Since this 
material has a strong flight legacy with extensive support through ground-based arc jet tests, it is 
the only material capable of meeting the failure probability requirements for a Mars sample 
return to Earth. Unless alternative carbon phenolic materials for the legacy FM-5055 can be 
qualified for such severe environments, a Gas Giant probe mission will require development and 
qualification of a new TPS material.  

Following completion of the Galileo mission, the Giant Planets Facility at ARC used to qualify 
the FM-5055 material for flight was decommissioned. As a result, the United States does not 
currently have any arc jet test capability that can be used to simulate the entry conditions relevant 
to giant planet entry probes. 

3.5 Exploration of Titan 
Entry conditions at Titan are relatively benign. Entry velocity is only 6–6.5 km/s, with maximum 
heating rate of about 100 W/cm2 (up to 50% radiative) and stagnation pressures only about 0.1 
atmospheres. Existing arc jet facilities should be adequate for proposed missions to this 
destination.  

The Huygens probe, developed by the European Space Agency, used a tiled heat shield. It was 
tested in a plasma wind tunnel at the University of Stuttgart, both in a simulated Titan 
environment (77% N2, 20% Ar, 3% CH4) and in a pure nitrogen environment. After the mission 
was launched, new models for the atmosphere and adjustments to the planned trajectory 
indicated that heating could exceed the design levels, with a larger radiative contribution. NASA 
undertook a review of the heat shield, to determine whether the design was adequate and whether 
modifications to the entry trajectory might improve heat shield margins. Review activities 
included radiation testing, arc jet testing, and material response modeling. Ultimately, design 
adequacy was confirmed, but this was an example of the value of arc jet testing, even during 
mission operations. 
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3.6 Material Technology Advancement 
Flight projects typically select thermal protection materials that have a high Technical Readiness 
Level (TRL), and cannot afford to invest in material development. Mass-efficient TPS solutions 
are not available for many of the mission opportunities in the next 30 years and material 
technology development will be required. Current research projects are employing a functional 
design approach for materials development. Innovative materials concepts, which involve graded 
densities, new polymer chemistries, and dispersed additives to improve insulation and radiation 
properties, are being considered. Since these concepts are new, arc jet testing will be essential for 
generating insight into material response across a range of mission-relevant environments. As 
material development proceeds to higher TRLs, advanced thermal protection technologies will 
reflect a clearer potential benefit as a vehicle subsystem. 

Traditionally, low-TRL materials have been subjected to simple screening tests, in which 
developmental samples are exposed to flight-relevant environments with binary “pass-fail” 
performance criteria. More than 8000 arc jet tests were performed in the decade leading to 
Apollo flights, with a large percentage concentrated in the early development phase. It is 
estimated that modern simulation capabilities can help to reduce that total to around 2000, as 
shown in Figure 3.4, but flight-relevant testing will remain critical. 

 
Figure 3.4. Proposed testing requirements for qualification of an ablative TPS 

[Wright, Anticipated Arc Jet Usage] 
 

The efficient use of simple, less costly thermal tests combined with more scientific 
understanding can be used to screen candidates in this manner prior to arc jet testing. New arc jet 
facilities that provide more precise control and knowledge of the test conditions, and that have 
enhanced diagnostics to analyze gas species will increase the insight that can be derived from 
testing early in the development cycle. Instrumentation that records time-accurate surface 
behavior, recession rates, and species concentrations downstream of the test article are needed to 
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promote understanding of material response and more accurate prediction models. Deeper 
appreciation of functional performance and failure modes will define the potential of novel 
materials for mission applications. 

In recent decades, new material development has competed for arc jet access with mission-
critical subsystem development and sustaining engineering. Without the time-critical delivery 
requirements of the competing work, material development tests are commonly rescheduled, 
which complicates planning and milestone performance for these efforts. In a new complex, 
dedicated facilities should be made available for low-TRL material development activities. 

3.6 Summary 
Finding 3.1: Arc jet testing will be needed even for LEO return missions, for which materials 
already exist and operational experience is in hand. Existing test capability is adequate for this 
mission type. Capacity requirements to support LEO return are dependent on certification 
philosophy. 

Finding 3.2: NASA and DOD share a mutual reliance on arc jet test capability. Air Force 
strategic planning relies on the availability of NASA arc jets for testing of hypersonic cruise 
vehicles. AEDC supports high-shear test conditions that are relevant to NASA. 

Finding 3.3: Greater arc jet capability will be required for missions that NASA intends to fly 
within 30 years. Enthalpy, combined convective-radiative heating, test gas, shear, pressure, 
turbulence, and model size are among facility features to be addressed. 

Finding 3.4: Arc jet facilities that provide more precise control and knowledge of the test 
conditions, and that have enhanced diagnostics to analyze gas species will benefit the maturation 
of low-TRL thermal protection concepts and materials technologies. 

Finding 3.5: The available TPS choices for flight consideration are not optimal for many 
missions, and the TPS choices could be increased with improved accessibility and lower cost to 
use arc jets to develop low TRL concepts.  
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4.0  Current Capabilities and Limitations 

This section describes basic arc jet operation (Section 4.1) and then compares the performance 
capabilities of arc jet complexes that can support larger scale TPS development and certification. 
Additional description of the arc jet complexes can be found in Appendix F. Not evaluated here 
are small research and development arc jets and arc jet facilities that are not used for TPS 
material testing such as the arc facilities at the Langley Research Center, AHSTF, and HyMETS. 
In addition, foreign (non-US) facilities were not considered as viable alternatives as a primary 
testing source for many reasons, including ITAR restrictions, control of access, control of 
schedule, and logistics. 

Four arc jet complexes that can support TPS development and certification are: 
1.  Ames Research Center  Arc Jet Complex 

a. Interaction Heating Facility (IHF) 
b. Aerodynamic Heating Facility (AHF) 
c. Panel Test Facility (PTF) [includes the Truncated-PTF (TPTF)] 
d. 2” x 9” Turbulent Flow Duct (TFD) 

2.  Johnson Space Center  Atmospheric Re-entry Materials and Structures Evaluation Facility 
(ARMSEF) 

a. Test Position 1 (TP-1) 
b. Test Position 2 (TP-2) 

3. Arnold Engineering Development Center  Arc Jet Complex 
a. High Enthalpy Ablation Test Unit H1 (HEAT-H1) 
b. HEAT-H2 
c. HEAT-H3 

4. Boeing Large Core Arc Tunnel Arc Jet Facility (St. Louis) 
 

Comparisons will be made for the various types of testing techniques in the individual arc jet 
facilities, specifically, free-jet stagnation testing, free-jet shear testing, and panel testing. For 
each of these three types of testing, comparisons will be shown for test model surface heat flux 
versus surface pressure. In addition, for stagnation testing, a comparison will be shown for 
centerline enthalpy versus pressure, and for shear testing, a comparison will be shown for heat 
flux versus shear force. 

Although the vacuum system, high pressure gas system, and cooling water systems are important 
for determining the complex capability, the power supply size will typically limit the maximum 
capability of a facility in terms of flow-field size, enthalpy, heat flux, and run time. Therefore, 
only the power supply capabilities at the various complexes will be compared here. 

All of the facility performance data and mission trajectories presented in the figures below were 
obtained from Howard, Summary of Current NASA Facility Maps; Venkatapathy, Capabilities 
Needed for Future Venus and Outer Planet Missions; Wright, Anticipated Arc Jet Usage; Raiche, 
NASA Ames Arc Jet Complex Overview; Kardell, Boeing LCAT Facility Capability; Smith, 
AEDC Arc Jet Facility Capabilities; Ares, Arc-Heated Test Facility Investment; Shepard and 
Carlson, Upgrading of NASA-Ames High-Energy Hypersonic Facilities; NASA SP-8014, Entry 
Thermal Protection. 
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4.1 Basic Arc jet Operation 
Arc jets are one part of NASA’s hypersonic thermal testing capability and are used to provide 
critical data for the research and development of TPS materials and techniques; to qualify, 
certify, and validate the suitability of TPS materials and processes for flight; and to support TPS 
damage assessment and the verification of repair techniques. The basic operation of an arc jet, 
depicted in Figure 4.1, involves using a high-power electric arc to heat a test gas to very high 
temperature and then expanding and accelerating this heated test gas through a nozzle and onto a 
stationary test model or calibration probe located in a vacuum environment. This high-energy 
flow of ionized gases simulates the surface pressure, convective heating, and shear force 
conditions associated with hypersonic flight, and the vacuum environment allows the high-
altitude conditions to be established and maintained. 
 

 
Figure 4.1. Arc jet schematic  

[Raiche, ARC Overview] 

Several systems are required for an arc jet, as shown in Figure 4.2. The test medium is air, a 
specialty gas, or a combination of gases, which require pressurized storage and delivery systems. 
A high-voltage, high-current electrical distribution system is necessary to generate the arc. The 
arc heater must be actively cooled to protect against the high-temperature conditions, and this is 
accomplished through a cooling water system. The vacuum in the test chamber is established and 
maintained through the use of a steam ejector system or mechanical pumps. The steam ejector 
system uses a boiler to generate the steam. Some facilities have pollution control systems which 
require capture and condensing of the exhaust products from the ejector system. The test article 
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is inserted into and retracted from the test stream through a model support system. All of these 
tunnel systems are operated through a facility control system. Test chamber conditions and 
model reactions are captured and processed through a data acquisition system that collects and 
stores the raw data and then reduces it to usable information. 
 

 
Figure 4.2. Arc jet facility components  

[Raiche, ARC Overview] 

4.2 Simulation Regime 
The overall arc jet complex performance is shown in Figure 4.3 as a function of simulated 
altitude and velocity for stagnation-type testing. Several system entry trajectories are also shown 
on the plot for the Shuttle (similar to Crew Exploration Vehicle (CEV) and International Space 
Station (ISS) return), the Apollo (similar to CEV Lunar return), a Mars return, a far solar system 
probe return, and an Intercontinental Ballistic Missile (ICBM). In addition, the peak heating 
point for each mission trajectory is shown. Notice that the present facility envelopes do an 
adequate job of covering a LEO entry (Shuttle return) and almost capture the Apollo Lunar 
return peak heating point; however, they are inadequate for simulating the peak heating regions 
for Mars and far solar system returns. The present facilities are also inadequate for simulating 
other planet entry peak heating points, such as Saturn and Jupiter. 
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Figure 4.3. Comparison of NASA, AEDC, and Boeing arc jet facility  

performance with several nominal Earth return trajectories. 

The ARC, JSC, and LCAT simulation envelopes are at the higher altitudes, which capture the 
major portion of the Shuttle and CEV trajectories, while the AEDC facilities are primarily in the 
lower altitude regime, suitable for DOD weapon trajectory simulation, and capture the maximum 
heating point of an ICBM entry. However, the AEDC H2 facility does have a region of interest 
for NASA missions: it captures a portion of the CEV (Apollo), Mars return, and far solar system 
return trajectories that are generally associated with higher pressure and shear conditions.  

Notice that the ARC facilities’ combined simulation envelope is larger and encompasses most of 
the JSC simulation envelope. Also notice that the LCAT facility has a significant overlap with 
the NASA facilities and the AEDC H2 facility. The AEDC H2 facility captures only a small 
portion of the simulation envelope that is relevant to NASA missions; therefore, most of the 
discussion in the following sections will focus primarily on comparing the capabilities of the 
three complexes that are of most interest: ARC, JSC, and Boeing LCAT. In addition, the H1 and 
H3 facilities at AEDC do not have any regime that is of interest to NASA missions, and these 
two facilities will not be considered further. 

In the sections below, the performance capabilities of each complex will be compared for three 
different types of testing: stagnation, shear, and panel. 

Stagnation-type testing generally uses a circular model with a flat face, rounded face (ISO-Q), or 
hemispherical shape. In addition, stagnation-type testing can be performed on special features 
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such as pressure ports in TPS, nose tips, or leading edges. The model is usually positioned in the 
free-jet downstream of the nozzle so that it experiences stagnation flow on the region of interest. 
Facilities that generally perform stagnation testing are TP-2, IHF, AHF, LCAT, and H2. 

Shear testing generally uses wedge type models that are injected into the free-jet flow 
downstream of the nozzle exit. The test samples are usually flat material panels that can be fixed 
to the wedge surface. The wedge angle of the model holder is tailored to provide a specific 
heating rate, pressure, and shear force on the test sample surface. Facilities that generally 
perform shear testing are the same as the facilities that perform stagnation-type testing: TP-2, 
IHF, AHF, LCAT, and H2. 

Panel testing generally involves larger models than either stagnation or shear testing and 
generally involves testing of special features in the TPS, such as gaps or seams between TPS 
blocks or tiles or protuberances on the external mold line. There are two basic types of panel test 
facilities. One type uses a channel flow where the test article makes up one wall of the channel. It 
is usually difficult or impossible to have visual access to the sample during the test in a channel-
type facility. In addition, the test sample has to be relatively flat to conform to the channel 
profile; therefore, these facilities are not generally used to test outer mold line protuberances. 
Facilities that perform panel testing using a channel flow are TP-1 and the TFD. 

The second type of panel testing facility generally uses a semi-elliptic nozzle to expand the flow 
as wide as possible to cover a larger test surface, and so the nozzle has a flat lower surface. The 
test article is attached to the lower, flat surface at the exit of the semi-elliptic nozzle and can be 
pitched into the flow. This type of panel facility has good optical access during the test, can test 
protuberance-type of features, and can change pitch, even during the run to provide a larger 
range of test conditions. Facilities that perform this type of testing are the PTF and IHF. 

4.3 Stagnation Testing 
Stagnation performance testing envelopes are shown in Figure 4.4 for a 10-cm (~4-in.) 
hemisphere for the IHF, AHF, TP-2, and LCAT in terms of cold wall heat flux on the model 
surface and model surface wall pressure (stagnation pressure). Note that a 10-cm hemisphere size 
is used only as a comparison between facilities. One of the LCAT nozzles can only support a 
8.9-cm (3.5-in.) diameter model; and therefore, a portion of the LCAT envelope, shown in 
Figure 4.4, cannot support a model as large as 10 cm. Figure 4.5 shows stagnation performance 
in terms of centerline enthalpy and model wall pressure. Similar to the overall comparison 
envelopes shown in Figure 4.3, the ARC facilities, IHF and AHF, encompass most of the JSC 
TP-2 performance envelope and a significant portion of the LCAT envelope. Two trajectories are 
shown in the two figures below for reference: a Shuttle return (ISS return) and an Apollo return 
(Lunar return). In addition, the peak heating conditions are also shown in Figure 4.4 for a Saturn 
aerocapture and Saturn hyperbolic Entry. Present arc jet facilities are inadequate for simulating 
Saturn and other Gas Giant entries. 

In general, the NASA facilities and the AEDC facility can test larger models than the Boeing 
facility because they have a family of larger nozzles. However, flow-field size for a given 
condition is determined by arc heater power. Therefore, if the power delivered to the test gas is 
higher, the flow field can be expanded to a larger size for a specific test condition, assuming 
larger nozzles are available. 
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Figure 4.4. Stagnation point heat flux vs. stagnation pressure for a 10-cm hemisphere 
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Figure 4.5. Stagnation facility comparison,  

centerline enthalpy vs. wall pressure for 10-cm hemisphere. 

4.4 Shear Testing 
Free-jet shear testing is primarily performed using a wedge model. The wedge angle can be 
varied to acquire the desired heat flux, pressure, and shear on the test article. Figure 4.6 and 
Figure 4.7 show comparisons of shear testing among various facilities. Notice that the NASA 
and Boeing facilities have a considerable overlap, while the AEDC facility can obtain higher 
pressures and shear forces typically required for weapons systems testing. The TP-2 facility is 
not shown in these figures, but is expected to have an envelope slightly smaller than the IHF 
facility. 

Free-jet shear testing differs from panel testing in the area of test conditions and sample sizes. 
The test conditions, pressure, heat flux, and shear are higher for free-jet shear testing than for 
panel-type facilities; however, the sample sizes are typically smaller. Notice that the sample sizes 
shown in figures 4.6 and 4.7 are on the order of 4 inches by 4 inches where panel samples are 
much larger. The TPTF, although technically a panel test facility, is included with the shear test 
facility envelopes in the figures below, because it has sample sizes and test conditions 
comparable to the free-jet facilities. 
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Figure 4.6. Shear test facility comparison, cold wall heat flux vs. wall pressure 
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Figure 4.7. Shear test facility comparison, cold wall heat flux vs. shear force. 
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compared with three trajectories: ISS direct return, Lunar direct return, and Mars direct return. 
All three of these are ballistic trajectories with full margins applied. Notice that the facilities 
adequately cover an ISS return, but are not adequate for simulating a Lunar or Mars return. 

The MSL test program used arc jet facilities at JSC, ARC, AEDC, and Boeing to perform shear 
testing. None of the facilities could adequately match all of the required testing regimes of 
interest; however, among all of the facilities, a sufficient coverage of the conditions was 
accomplished to evaluate the TPS under appropriate shearing conditions. 
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Figure 4.8. Shear test facility capability compared with several ballistic trajectories  

(trajectories shown with full margins). 

4.5 Panel Testing 
Four facilities in NASA are specifically configured for panel testing. They are the JSC TP-1 and 
ARC TFD, which are both channel flow facilities, and the IHF and PTF, which are configured 
with semi-elliptic nozzles and test plates, which can be pitched into the flow. Figure 4.9 and 
Figure 4.10 show the performance capability of the four facilities in terms of heat flux versus 
pressure. Figure 4.10 is the same as Figure 4.9 with the addition of the TFD. Not shown is the 
new 4-inch by 4-inch test capability in the TP-1 facility, which should have higher heat flux and 
pressure similar to the TPTF shown in figures 4.6 and 4.7. 
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Figure 4.9. Panel test capability showing heat flux vs. pressure. 

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6

Co
ld

 W
al

l H
ea

t F
lu

x 
(W

/c
m

2 )

Wall Pressure (kPa)

Panel Test Facilities - Heat Flux vs. Wall Pressure

IHF 24-in x 24-in

PTF 14-in x 14-in

TP-1 12-in x 12-in

TP-1 24-in x 24-in

IHF, 24-in x 24-in
TP-1 12-in x 12-in

PTF, 14-in x 14-in

TP-1 24-in x 24-in



Evaluation of Arc Jet Facilities Report 
 

 39 

 
Figure 4.10. Panel test capability showing heat flux vs. pressure with addition of the TFD. 

4.6 Power Supply 
The larger of the two power supplies at ARC, which is rated at 60 MW continuous operation, can 
also operate at 75 MW for 30 minutes and 150 MW for 15 seconds. However, the power supply 
is presently operating under reduced capacity because of a fire which destroyed one of the six 
rectifier modules. This reduction in capability does not affect performance of the IHF facility, as 
it runs at power levels below the maximum capability. The JSC power supply is rated at 10 MW 
continuous operation and can operate at 12 MW for 15 minutes. The AEDC power supply is 
rated at 60 MW continuous operation and has operated at 77 MW for approximately one minute. 
The LCAT facility has a 12 MW power supply. 

The ARC and AEDC power supplies are both 60 MW continuous output-rated power supplies; 
however, the ARC power supply is configured to operate at higher current and lower voltage 
(which is suitable for low pressure flow environments), while the AEDC power supply operates 
at higher voltage and lower current (which are suitable for high pressure operations). The 
different configurations of the ARC and the AEDC power supplies is significant if consideration 
is given in the future for installing a new arc heater capability at AEDC to operate in the range of 
interest for NASA missions. The AEDC power supply cannot be reconfigured to operate at low 
pressure conditions (high current and lower voltage) and, therefore, a new power supply would 
need to be procured if a NASA-type heater were to be operated at AEDC. The JSC and LCAT 
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facilities are both much lower in power output. This will be a consideration if upgrading an 
existing facility or installing a new facility in an existing complex is considered. 

4.7 Summary 
Finding 4.1: The simulation regimes of the present facilities are sufficient for simulating low 
Earth orbit entries and certain regimes for Lunar return. However, these facilities are inadequate 
to fully evaluate the TPS for a Mars or deep space Earth return or certain planet entries such as 
the Gas Giants. 

Finding 4.2: Existing NASA facilities have capability in terms of model size and performance 
that is not duplicated by DOD or commercial facilities. 

Finding 4.3: An inspection of the performance envelopes shows that the JSC capability is 
basically a subset of the ARC combined capability. 

Finding 4.4: Incremental improvements in arc heaters will not deliver the higher test capability 
needed for more ambitious NASA exploration missions to Gas Giants and human return from 
Mars. 

Finding 4.5:  The AEDC power supply cannot operate at low voltage and high current, which is 
required to power a NASA-type arc heater which operates at low pressure. Therefore, if AEDC 
is considered as a potential site for operating NASA-type arc heaters, a new power supply will 
need to be procured. 

Conclusion 4.1: NASA must bear the responsibility of designing and developing facilities with 
improved capability in order to successfully support future NASA missions. 

Conclusion 4.2: A focused technology development effort is required to establish the arc jet 
testing capability required by NASA for future missions. 
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5.0  Arc Jet Capacity 

Section 5.1, Workforce, compares the workforces at ARC, JSC, and AEDC arc jet complexes. 
Section 5.2, Throughput, evaluates the operations at the ARC, JSC, AEDC, and LCAT facilities, 
the throughput, the customer base, and types of testing performed by these customers. The 
proposed LEAF facility is considered in the context of capability gaps for mission requirements 
in Section 5.2. Section 5.3 considers the condition of the arc jet infrastructure. Section 5.4 
evaluates mothballing existing facilities. Section 5.5 identifies options for increasing throughput. 

5.1 Workforce 
Arc jet facilities require a workforce with unique skills and qualifications. Both the ARC and 
JSC arc jet test facilities use segmented arc heaters, which are considered to be state of the art. 
The operation and maintenance of segmented arc heaters at both facilities is complex and 
requires a staff with special knowledge and skills. Detailed attention must be given to the 
assembly of the segments, insulators, tie rods, water, and air hoses to insure safe and reliable 
operation. The high pressure air and cooling water supply systems are relatively standard at both 
facilities, but the water must be de-ionized to reduce electrical conductivity and scaling within 
the heater.  

Arc jet power supplies operate at very high AC voltages and currents that must be rectified to 
provide necessary DC current and that require special current controls to maintain stable arc 
operation. A reliable operation of high power electrical systems requires special attention to 
maintenance, repair, test, and safety procedures.  

Both the ARC and JSC arc jet facilities operate with dedicated boiler and steam systems to 
generate the vacuum pressures needed for simulating entry conditions. The steam vacuum 
systems for arc jet facilities must be well maintained to ensure safe and efficient operation. These 
facilities also produce gas flows with extremely high temperatures and heat transfer rates, which 
require special knowledge of handling hot gas flow to prevent facility damage. Unique high-
temperature instrumentation is necessary for test model measurements, and this includes non-
intrusive instrumentation often needed to characterize the flow field. 

Arc jet operation personnel must be knowledgeable about the special procedures and precautions 
required to ensure both personnel and plant safety. Safe operation of these systems and 
subsystems requires a staff with special qualifications and training. Extensive training and 
experience is necessary to be qualified for performing required tasks. The special skills and 
knowledge required have been gained through years of operational experience, teaming, and 
continuity of training. Continuity for training new facility personnel is necessary for successful 
operation. 

Simply relocating existing personnel is not always possible, and the availability of workforce 
should be considered when choosing a site for a new construction facility.  

While a workforce with special skills is necessary, the staff need not be large. Both ARC and 
JSC have the appearance of excess staffing at both facilities. Since operational infrastructure 
support systems (power, steam, coolant water, and gas supply) are common to all test units, an 
operating crew of 15 to 20 people should be sufficient staffing for a single shift operation. The 
primary responsibility of this test operations crew is to support the day-to-day test programs in 
the arc jet facility. 
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Other activities associated with an arc jet facility, but which are not part of the daily operations, 
would include arc jet technology and development, hardware design, fabrication services, plant 
maintenance and repairs, minor facility modifications, procurement, safety, configuration 
management, and quality assurance. The personnel who perform these tasks may or may not be 
dedicated to the arc jet facility. Preferably, some of the more closely related activities such as arc 
technology and facility design would be staffed by full-time dedicated personnel. Other arc jet 
facility support of a less technical nature may be accomplished by personnel who also support 
other Center test facilities. The cost of these services may be shared, thus reducing the overall 
budget required for these services.  

The ARC arc jet staff is composed of 20 test operations personnel for day-to-day activities, 
which include model preparation, arc heater and test cell readiness, pre-operational set up, test, 
and post-operational efforts. Of these 20 people, 5 are civil service employees and 15 are 
contractor employees. This level of staffing is reasonable for a single-shift operation. There are 
33 personnel providing operational support. This support includes engineering (design, drafting, 
documentation, project support, and quality assurance), maintenance and repair (plant 
maintenance and fabrication services), and administrative services (safety, configuration 
management, procurement, and contract support). Resources could be saved by allowing 
administrative and maintenance personnel to share their time with other Center facilities. This 
would allow these personnel to charge to arc jet facility projects only when they are provide 
direct support. At other times, these personnel would be available for other Center tasks and 
should charge to these tasks. An independent review of the entire arc jet operation can reduce 
staffing levels by up to 30%. 

The JSC staff has 3 civil service employees and 33 contractor employees in a two-shift 
operation. The contractor staff is evenly divided between engineers and technicians. The JSC arc 
jet facility is presently booked full time with Space Shuttle testing. Once the Shuttle tests have 
ended, the JSC arc jet facility should return to a single-shift operation. This would allow the 
contractor staff to be reduced by about one-third [Madden, JSC Arc Jet]. 

The operations workforce at AEDC consists of 20 personnel plus 2 engineers supporting the arc 
facility technology development projects. In addition, high-pressure air and the mechanical 
vacuum source are provided through AEDC’s central base support. 

5.2 Throughput 
5.2.1 Ames Research Center 
The ARC arc jet complex comprises four tunnels: the 20 MW AHF, the 60 MW IHF, the 20 MW 
PTF, and the 12 MW TFD. The ARC arc jet complex has a staff of 53; and for workforce 
planning, uses a single-shift operation 40 weeks per year, or 160 available calendar days. 
Multiple facilities can operate on the same calendar day, which gives the facility manager 
flexibility in scheduling and accomplishing revenue-generating Occupancy Days (OD). ARC 
targets 220 ODs per year for operations and 2 facility runs per OD. Thus, a single calendar day 
can generate more than one OD, and approximately 50% of the operational days for the AHF and 
IHF yield two or more runs per day. 

Test operations are conducted Monday through Thursday for nine hours each day. The first 
Friday of the two-week schedule is reserved for maintenance, and the second Friday is utilized 
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for alternative work schedules. For high-occupancy periods, extended shifts and weekend 
maintenance are used.  

For the last five fiscal years, ARC’s throughput was as shown in Table 5.1. 
 

Table 5.1. Throughput for ARC Arc Jet Complex 
[Raiche, ARC Overview] 

 
Data for test models, calibration probes, and Occupancy Days (OD) is tabulated per fiscal year (FY) 

The table captures the variability in annual hypersonic thermal testing requirements. The AHF 
and IHF are the most utilized of the four facilities, and these two facilities are approximately 
equally active and account for over 90% of the test models and calibration probes through the 
five-year period. Approximately 40% of the testing is for models and 60% is for calibration 
probes. The number of calibration probes was unusually high during this period because of the 
Orion Project’s need to establish new operating conditions in the facility. To provide a look at 
recent users, FY08 and FY09 utilization was approximately 80% NASA (4% Aeronautics 
Research Mission Directorate (ARMD); 6% Space Operations Mission Directorate (SOMD); 
20% Science Mission Directorate (SMD); and 50% Exploration Sciences Mission Directorate 
(ESMD)); 12% other U.S. Government; and 6% from the commercial sector.  This distribution is 
graphically represented in Figure 5.1.  

 

 
Figure 5.1. ARC arc jet complex customer base 

Not captured in Figure 5.1 is the significant increase in the commercial sector percentage from 
FY08 to FY09. 

Test Calibration Charged Actual
Year Models Probes OD OD Models Probes Models Probes Models Probes Models Probes
FY05 555 460 175 215 220 289 335 170 0 1 0 0
FY06 292 434 135 205 43 144 219 261 26 23 4 6
FY07 404 748 218 265 209 445 125 223 68 25 2 55
FY08 423 786 171 242 223 437 194 332 0 9 6 8
FY09 404 435 143 206 139 214 171 197 94 24 0 0

Totals 2078 2863 842 1133 834 1529 1044 1183 188 82 12 69
Averages 416 573 168 227 167 306 209 237 38 16 2 14

AHF IHF PTF TFD

Commercial

Other US Government

NASA ARMD

NASA SOMD

NASA SMD

NASA ESMD
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5.2.2 Johnson Space Center 
The ARMSEF comprises the channel nozzle TP-1 and the conical nozzle TP-2; both are 10 MW 
facilities. The ARMSEF has a staff of 36 personnel working two shifts, 5 days a work week. The 
staff operates both the ARMSEF and the separate Radiant Heat Transfer Facility (RHTF). The 
simultaneous operation of TP-1 and TP-2 is not possible because of electrical power and 
workforce constraints. It is possible to operate either TP-1 or TP-2 and RHTF at the same time, 
though, but this is not done due to workforce constraints.  

For the last four calendar years, JSC’s throughput was as shown in Table 5.2: 
 

Table 5.2. Throughput for JSC Arc Jet Complex 
[Del Papa, ARMSEF and Madden, JSC] 

 

 
Data for test models and calibration probes is tabulated per calendar year 

 

The TP-2 is used more than TP-1 and accounts for 85% of the models and probes tested through 
the four-year period. This is due to the prime customer being the Shuttle Program, and panel 
testing of tiles has been more critical than stagnation testing to Shuttle-related activities. 
Approximately 65% of the testing is for models and 35% is for calibration probes. The ARMSEF 
is overwhelmingly dedicated to the Shuttle and Constellation Programs. 

5.2.3 Air Force Arnold Engineering Development Center  
The arc jet complex at AEDC comprises three tunnels: the 30- MW H1 segmented arc heater, the 
42 MW H2 arc-heated wind tunnel, and the 70 MW H3 arc heater.  

The AEDC complex has a staff of 20 plus additional personnel for support systems. Test 
operations are conducted through a single shift, 40 hours per week, and 50 weeks per year. 
AEDC utilizes overtime as needed to maintain schedule, and annual overtime requirements do 
not exceed 10-15% of the standard shift work hours. AEDC accomplishes 60-90 runs in a typical 
year, which equates to 300-400 test articles per year (each run involves 4-7 test articles). Eighty 
percent of the runs are test articles and 20% are calibration probes. Approximately 80% of the 
runs are for reimbursable customer runs, 15% are for technology development, and 5% are for 
facility checkout and validation. The arc jet complex at AEDC supports the Air Force, Army, 
Navy, the Defense Advanced Research Projects Agency (DARPA), the Missile Defense Agency, 
and NASA (SMD and ESMD). 

Test Calibration
Year Tests Models Probes Models Probes Models Probes
2006 229 143 86 35 11 108 75
2007 158 94 64 29 5 65 59
2008 192 141 51 19 5 123 46
2009 187 128 59 8 8 120 51

Totals 766 506 260 91 29 416 231
Averages 192 127 65 23 7 104 58

TP-1 TP-2
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5.2.4 Boeing Large Core Arc Tunnel 
The 5 MW Boeing LCAT is a limited-operations facility with a test staff of four, plus additional 
personnel who provide maintenance and operational support. The arc jet facility is available 
during normal working hours. The number of tests Boeing accomplishes each year is a highly 
variable number ranging from 50 to 1000, and approximately 65% of the testing is for models 
and 35% is for calibration probes. The facility occupancy is cyclical, but typically ranges from 
about 25% to 100% with an average availability of about 50%. When not engaged with arc jet 
testing, the facility staff supports other projects. Boeing projects account for 20-30% of the 
facility occupancy. The facility also supports NASA, the Air Force Research Lab, and small 
business innovation research contractors. 

5.2.5 Testing Costs 
Comparing costs and throughput provides insight into the cost of testing at the ARC, JSC, 
AEDC, and LCAT facilities.  Table 5.3 [deleted from public version of report] contains 
information on annual operations and maintenance costs and average throughput used to 
calculate an average cost per test at these four complexes. This cost is not what a customer will 
pay; rather, it is the average cost the combined funders (the owning organization, any 
subsidizers, and all customers) pay per test. To provide a more consistent comparison with ARC 
and JSC, the “Annual Cost” and “Associated Personnel” numbers for AEDC and LCAT are 
adjusted to capture the additional personnel that provide engineering, maintenance, and 
operational support. It is not surprising that the average cost per test at the Boeing LCAT is 
lower than at the Government facilities. Worth noting is the value used for the number of tests 
(200) at LCAT is conservative, based on Boeing's description of the tests varying from 50 
(described as “very lean”) to 1000 (“busy”). If a higher number for tests were used, it would 
decrease the cost per test at LCAT.  

5.2.6 Lunar Environment Arc Jet Facility  
The Orion Project team undertook the TPS Advanced Development Project Analysis of 
Alternatives (AoA) Study to determine the most cost-effective means to meet the CEV heat 
shield certification needs. Their solution was the Lunar Environment Arc Jet Facility (LEAF) 
Project, a new arc heater with radiant lamp augmentation added to the NASA Ames arc jet 
complex.  

To certify the heat shield for lunar direct return entry velocity, a ground test program must 
demonstrate the TPS material and system performance and validate thermal response models 
across a range of flight-like aerothermal conditions. General CEV Lunar return certification 
needs include 300 W/cm2 radiant heating capability combined with 400 W/cm2 of convective 
heating, shear test capability at heat flux levels greater than 350 W/cm2, turbulent heating 
capability, and relevant system responses from panel and integrated system test articles for 
features on the order of 30 cm.  

The LEAF Project was established to develop a combined electric arc jet-heated blow down 
wind tunnel and radiant heating system capable of simulating much of the aerothermal 
environment that Orion would experience during returns into the Earth’s atmosphere. The 
general requirements were high radiant and convective heating rates over large stagnation and 
panel test specimens and combined high heating, high shear, high enthalpy, and low pressure 
environments. The design included  a 75 MW segmented arc heater with conical and semi-
elliptical nozzles for stagnation and wedge testing, an independent radiant light source for 
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coupled convective-radiant heating, and installation in a vacant test bay connected to the existing 
power, vacuum, air, and water infrastructure to minimize initial costs.  

LEAF is a technical capability enhancement funded by the Constellation Program with technical 
requirements determined by and specific to the Orion Project. In the opinion of the AJEWG, the 
LEAF Project raises two important issues for the Agency. The project analysis indicated that an 
arc jet capability greater than that which currently exists is needed to meet the requirements of 
the CEV. And the LEAF Project also illustrates a piecemeal approach to meeting program 
requirements that does not serve the Agency. Programs are empowered to construct capability 
without regard to total facility life cycle support, cost, and the impact of that capability on the 
institution. The narrow focus on Orion requirements for the LEAF facility also allowed no cost 
latitude for enhancements that could address requirements from other missions. The Preliminary 
Design Review (PDR) was held in September 2009, the Critical Design Review (CDR) is 
scheduled for June 2012, and LEAF is scheduled to be operational in October 2015.  

5.3 Infrastructure Condition 
The condition of the equipment and infrastructure that comprise and support the ARC arc jet 
complex and the JSC ARMSEF is typical of research systems that were installed in the 1960s 
and 1970s and have experienced uneven maintenance and recapitalization funding. It is a mix of 
new, old but maintained, and end-of-life equipment with data acquisition and facility automated 
control systems ranging between state of the art and (not so recently) obsolete. As will be seen, 
several systems and components in the ARC and JSC complexes are at or beyond their nominal 
service life. But this is typical for Government technical facilities; these systems and components 
are not considered to be in critical condition. The revitalization plans proposed are justified by 
reliability improvements and meeting expected regulatory constraints and are not by risks to 
basic operation. It should be noted that there is no commercial supplier base for integrated arc jet 
service solutions, and that arc jet requirements are unique, they involve high energy, and the 
tolerance for mistakes is low.  

5.3.1 Ames Research Center 
The deferred maintenance for the arc jet complex is ~$67 million, and the overall health and 
estimated life expectancy of the ARC arc jet complex is shown in Table 5.4. 
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Table 5.4. ARC Arc Jet Complex Subsystem Summary 
[Raiche, ARC Overview]  

 

 
Several systems and components in the table are near or at their nominal service life. This is 
typical for Government technical facilities; these systems and components are not considered to 
be in critical condition. This analysis was endorsed by ARC in the March 18, 2010, presentation 
to the AJEWG.  

ARC tracks unplanned downtime, and this measure can provide a basis from which facility 
condition can be inferred. In FY08, ARC experienced 684 hours of unplanned downtime in the 
AHF and IHF, which translated into an availability of 85% and 82%, respectively. For the first 
quarter of FY09, the numbers for the AHF and IHF were 36 hours of combined unplanned 
downtime and an availability (how often the facility is operational when planned) of 90%. 

ARC has developed an investment strategy for the arc jet complex, and the objective for the 
strategy is to achieve an availability of 95%+. This plan identifies: (a) investments to reduce 
deferred maintenance and maintain operational capability; (b) future infrastructure refurbishment 
which emphasizes maintainability and robustness; (c) designs to improve energy and resource 
efficiency; and (d) compliance with all current air and water environmental regulations. This 
plan integrates a recent facility condition assessment, which identified $5.4 million in reliability 
and safety issues that need to be addressed quickly and another $15 million that should be 
addressed within 4 years. These reliability and safety recommendations focus on the preservation 
of existing operational capability, and not on design changes to significantly improve reliability 
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or to provide an upgrade to technical capability. In addition, capital investment projects 
identified to address issues with large systems and increase systems capability are as follows: 

• Replace Steam Vacuum System (SVS) Boiler. The current boiler was fabricated in 1946 
and installed in 1961, is obsolete, has low efficiency, and will not meet expected future 
NOx emissions regulations. The ARC boiler is currently operating in compliance with 
Bay Area air quality limits of 30 ppm for NOx emissions, but these emission limits are 
expected to be lowered to 5 ppm in 2012, which might require a negotiated waiver to 
maintain operations at current performance levels. However, an Air Quality District 
regulation states that boilers operated at less than 10% of their annualized maximum 
power are exempt from this emission requirement, and the maximum annualized power 
usage for the ARC boiler has been 7%. This implies that ARC will have no problem with 
this regulation unless their current capacity increases by more than 30%. If the Air 
Quality District changes this exemption or if a negotiated waiver cannot be obtained for 
the expected lower NOx level limit, the ARC arc jet complex will have to cease 
operations. Although the ARC boiler is old, it was inspected in 2009 and found to be in 
sufficient condition to operate for an additional ten years.  

• 150 MW Power Supply. Health monitoring of the power supply has detected initial 
component breakdown for these long-lead items.  

• IHF Flow Controls, Test Chamber, Diffuser, and Gate Valve. Increasing heating and flow 
rates, non-optimized condition and configuration feedback, and longer run durations are 
causing failures in undersized components. 

• AHF and PTF Diffusers and Heat Exchangers. To address vacuum and water leaks from 
corroded and fatigued components and seismic regulations. 

• SVS Plenum, Piping, and Tanks Seismic Upgrades. To address potential personnel 
injury, vacuum and water leaks, and structural failures from aged plenums, pipes, and 
water tanks during earthquakes and seismic regulations. 

5.3.2 Johnson Space Center 
The current age and estimated life expectancy and remaining service for the subsystems that 
support the ARMSEF are shown in Table 5.5. 
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Table 5.5. JSC Arc Jet Complex Subsystem Summary 
[Riccio, JSC Experimental Heat Transfer and Upgrade Status] 

 

 
 
Several systems and components in the summary are at or beyond their nominal service life. This 
is typical for Government technical facilities; these systems and components are not considered 
to be in critical condition. This analysis was endorsed by JSC in the March 18, 2010, 
presentation to the AJEWG.  

JSC tracks unplanned downtime, and this measure can provide a basis from which facility 
condition can be inferred. In 2006, 2007, 2008, and 2009, JSC experienced approximately 11 
weeks, 0 weeks, 4 weeks, and 0 weeks, respectively, of unplanned downtime. This equates to an 
average availability of 90% over the four-year period.  

JSC has developed a plan to revitalize the ARMSEF, and systems upgrades and estimated costs 
are shown in Table 5.6. 
 

Table 5.6. JSC Arc Jet Complex System Upgrades 
[Riccio, JSC Experimental Heat Transfer and Upgrade Status] 

 

 
 

JSC’s investment strategy for the ARMSEF also identifies several areas of concern, and these are 
as follows: 

Subsystem Component
Life 

Expectancy
Current 

Age
Remaining 

Service
Steam Generation Boiler 20 20 0

Heat Rejection Cooling Tower 15 1 14
Heat Rejection Pond 20 2 18

Arc Heater Coolant Pump 20 0 20
Test Gas Storage & Delivery Digital Valves 20 20 0
Test Gas Storage & Delivery LN2 20 30 -10
Test Gas Storage & Delivery GN2, GO2 20 2 18
Data Acquisition & Control Modcomp 15 30 -15
Data Acquisition & Control ABB/ASEA 15 6 9

Model Control Insertion 20 30 -10
Power Conditioning Load Bank 30 5 25
Power Conditioning Transformer 30 1 29
Power Conditioning Rectifier 30 43 -13

Vacuum Ejector 20 20 0

ARMSEF Upgrades Purpose/Improvement Area Cost ($K)
Steam Ejector Tune-up Reliability & Performance 350
Parallel Digital Valves Reliability & Performance 200
Data System Modernization Reliability 500
Test Position 2 Multi Arm Model Throughput 250
High Capacity Steam Ejector New Capability, Reliability 1800
Test Position 1 Real Time Channel View New Capability 100
Test Position 3 Design & Fabrication New Capability, Model Throughput 1000
Mars CO2 Test Gas System New Capability 800
Rectifier Component Modernization Improved Capability, Reliability 1000
Test Position 1 Plug & Play Models New Capability, Model Throughput 250
Coolant System Redundant Pump Leg Reliability 500

Total ARMSEF Upgrades 6750
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• Vacuum and Ejector System. Many components are aged and this system is in need of 
complete overhaul. The redesign will include increased capability to permit a higher mass 
flow rate.  

• Boiler System. The boiler causes frequent outages and downtime for the facility, and the 
harsh operating cycles lead to an ongoing risk. A direct boiler replacement has been 
designed, and a Pre-Phase A design for an alternate system to provide steam from Building 
24 has been completed. Although the JSC steam boiler is currently operating at the end of its 
20-year design life, the boiler was inspected and certified in January 2010 and is in sufficient 
condition to operate for another 7 to 10 years. 

• Diffuser System. The diffuser system is aged, and a failure puts the facility at risk for long 
downtime. A replacement is required, but is difficult to implement without an extended 
downtime.  

5.3.3 Air Force Arnold Engineering Development Center 
The Air Force developed an investment strategy to address revitalization needs and to increase 
technical capability. These investments will close the current gap between AEDC and NASA arc 
jet capability. Included in this plan are the following: 

• H2/H3 Stilling and Mixing Chamber. Design and fabricate a stilling and mixing chamber 
and housing compatible with both the H2 and H3 heater stacks to provide additional total 
temperature control at lower enthalpy with mixing air, and to provide improved flow 
enthalpy profiles. 

• H2 Diffuser Replacement. Replace the existing 1960s-vintage diffuser to provide higher 
thermal efficiency and capacity. 

• H2 Model Positioner System (MPS) Axial Controls Upgrade. Replace the 1980s-vintage 
MPS axial controls. 

• Mid-Pressure Arc Heater. Replace the existing Huels heater in the H2 arc tunnel with a 
high-performance, segmented arc heater utilizing the demonstrated technology of the 
operational H3 heater to provide improved simulations for many DOD hypersonics test 
points, with higher enthalpy, efficiency, and cleaner flow. Upgrades to existing facility 
power supply and cooling water systems will be required to support the higher-
performance, segmented arc heater for longer run times. As shown in Figure 5.2 below, 
the implementation of this investment (the light blue dotted area) will expand AEDC’s 
arc jet performance to fill much of the pressure/enthalpy gap between the Air Force’s and 
NASA’s current capabilities.  
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Figure 5.2. AEDC proposed upgrade to mid-pressure arc heater 

[Smith, AEDC Arc Jet Facility Capabilities] 

5.4 Mothballing the Existing Arc Jet Complexes at ARC and JSC 
Discussions with arc jet operators at ARC, JSC, and LCAT made it clear that mothballing a 
facility for more than three years effectively equates to closing that facility. Costly infrastructure, 
especially boilers and steam vacuum system, deteriorates rapidly when it is not operated. 

Mothballing generally removes 85% of the annual cost to operate and maintain a facility, but 
requires an initial investment for the basic preservation of the systems and equipment that might 
later be reactivated. Mothballing requires an annual investment to provide safety and fire 
protection for the complex and a minimal level of equipment and system maintenance and 
operation. If a mothballed facility is reactivated, a subsequent investment in maintenance, repair, 
revitalization, and staff training will also be required before the re-energized equipment and 
systems can become recertified for operation. 

Mothballing of both complexes for more than 3 years is essentially the same as closing the 
facilities. The estimated cost for mothballing the existing arc jet complexes over a 30-year period 
is located in a table of cost comparisons in Appendix G: Investment Options, although it is 
unlikely that NASA would continue to mothball a facility for that long. JSC evaluated the 
possibility of mothballing and reactivating their arc jet complex, and their estimates are several 
million to mothball and several million to reactivate. They also estimated that reactivation will 
take 18 to 24 months and will be driven by the loss and replacement of critical skills and the 
training required. 
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5.5 Throughput Efficiencies 
Existing NASA arc jet throughput can be increased in multiple ways. The implementation of the 
investment strategies developed by ARC and JSC will improve the reliability and the availability 
of the tunnels and supporting systems and will enable the tunnels to be test ready more often. 
Adding a second shift at the ARC arc jet complex and utilizing extended shifts and overtime at 
both Centers would help manage a variable work load. (Note: This is not being advocated by the 
AJEWG, but is considered an option to maintain testing schedules and increase capacity.)  

An option that can increase throughput with existing workforce and work schedules is to replace 
a single-model insertion system with an insertion system capable of holding multiple models so 
that, for example, a five-model insertion system could hold one calibration probe and four test 
articles. This type of arrangement could increase throughput by simply increasing the number of 
items that can be cycled through the test stream and by decreasing the number of calibration 
probes required for the test articles and the test stream.  

Another option to increase throughput is via a more efficient method to prepare, mount, and 
check out calibration probes and test articles before they are introduced into the tunnel test bay. 
The installation of a “plug and play” system that has a model/probe assembly room with 
instrumentation and cooling water system checkout capability adjacent to the test bays will 
improve the movement of test articles from delivery box to final test data. A significant 
improvement to this option is through the addition of a chamber or room attached to the test 
chamber where a second or third assembly stand of multiple-model insertion systems could be 
ready to “plug in” to replace the assembly coming out of the chamber. This chamber/room could 
be pumped down to match the test chamber pressure for remote insertion and removal of the test 
model assembly or vented to atmospheric pressure to facilitate model changes while the arc jet 
continues to operate. The adjacent chamber/room could contain two or three multiple-model 
assemblies that would allow many repeat runs at a set condition or allow minor changes in test 
conditions without de-energizing the arc jet. This would minimize or eliminate the recalibration 
that is often required when trying to match a previous set point or when interpolating data 
between runs that had similar set points, and would allow many more test models to be run for 
any given arc jet operation.  

An additional area of improvement is redesigning the arc heaters for maintainability to provide a 
more stable arc operation, reduce the amount of time and effort required to replace electrodes, 
and to allow the easier diagnosis and repair of water leaks.  

All of these options will improve the throughput efficiency. However, NASA should carefully 
assess future testing requirements and the costs associated with meeting these requirements 
before implementing any improvements designed to increase throughput.  

5.6 Summary 
Finding 5.1: Facilities need to retain operational status, as mothballing an arc jet complex 
beyond 3 years is tantamount to closure because of the degraded nature of the supporting 
infrastructure. 

Finding 5.2: There are opportunities for improving capacity at both complexes.  

Finding 5.3: Staffing levels at both NASA complexes appear to be high. 
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Conclusion 5.1: Experienced personnel with specialized arc jet training and skills are valuable 
and irreplaceable. Arc jet facilities must maintain a skilled workforce for safe and reliable 
operation.  

Conclusion 5.2: A more thoughtful approach to building new arc jet capability should consider 
the larger, long-term Agency mission requirements, as presented in Section 3.0 of this report; 
integrate the full institutional cost, capability, sustainment, and life cycle into Agency strategic 
planning; and consider the difference between what is known about arc jet technology and the 
knowledge needed to advance the state of the art to design an arc jet facility for future capability. 

Conclusion 5.3: In an effort to reduce costs, an independent assessment of roles and 
responsibilities at both the Ames and Johnson complexes should be completed and staffing levels 
reduced by up to 30%. 
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6.0  Conclusions and Plan Forward for NASA Investment in Arc Jet Facilities 

NASA needs to invest in an arc jet complex that can support certification of missions that deliver 
crew to the Martian surface and return them safely to Earth, as well as sample return missions 
from beyond LEO. These missions remain the long-term centerpiece of NASA’s exploration 
vision. The AJEWG considered numerous possible options for NASA’s investment, which are 
discussed in Appendix G: Investment Options. The AJEWG concluded that the required test 
conditions are beyond the capability of any existing facility, so new construction is required. In 
fact, the required combination of convective and radiative heating rate is beyond current state of 
the art, so technology development is required for the arc heaters themselves. Although the 
details of the heaters are not defined, there is enough information to define the infrastructure 
required to support the tests, and to begin to design it. 

6.1 Required Capability 
The AJEWG asked the user community to identify features that should be included in a new arc 
jet complex. Their responses are summarized in Table 6.1. The test specifications for safe return 
from Mars indicate that 3,000 W/cm2 of convective heating and 1,400 W/cm2 of radiative 
heating applied to a 6-inch stagnation model at 40 kPa pressure would provide excellent 
simulation of anticipated conditions. This is a reasonable starting point for sizing facility 
infrastructure. Heating and shear levels that can be applied to wedges and panels of similar scale 
should also be considered. Earth return of small science payloads at very high velocity and entry 
to Jupiter require very high heating rates, both convective and radiative, but relatively small 
models are acceptable and larger deviations from nominal conditions may be accepted for 
robotic missions. If the arc jet complex infrastructure is sized for crewed Mars return, science 
missions to other destinations will need to test in non-optimal environments, but they will be 
much more relevant than anything that can be done in existing facilities. 

Arc heaters that can deliver these heating levels at these scales do not exist today. A technology 
program is required to develop new capabilities. Important elements of technology development 
are discussed Section 6.3. Even without knowing the details of the arc heaters that will need to 
be housed in the complex, much of the infrastructure design can begin immediately and complex 
construction can begin before the new heaters are fully designed. 

In 2007, an AOA study was conducted by Ares Corporation to evaluate options for arc jet 
support for certification of Orion at Lunar return conditions for the LEAF project. A similar 
study is recommended for Mars Direct Return certification requirements. Since certification 
requirements for this mission are not yet defined, a parallel effort should be conducted to lay out 
a certification and mission assurance roadmap for all missions to be supported by arc jet testing. 
Elements of the proposed roadmap are discussed briefly in Section 6.4. Even before a 
comprehensive study is performed, we can state that a power supply of at least 100 MW will be 
needed, which is substantially larger than the supplies at existing complexes. 

A single arc facility will not support all mission types. Arc jet complex infrastructure should 
have multiple bays to accommodate different arc heaters. There should be at least one bay 
dedicated to arc test technology development and low-TRL material evaluation, so that these 
activities can be continuously pursued in parallel with mission support testing. A minimum of 
four bays will be required, and six bays would be preferred. 
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Table 6.1 Future Arc Jet Needs: Summary of Responses from End Users 
 Test Conditions Model Size Test 

Gas-
es 

Combined 
Convective 
Radiative 
Heating 

Control of 
Flow 

Conditions 

Knowledge of 
Test 

Conditions 

Instrumen
tation 

Cost, Access, 
Throughput 

Operations 

Com-
mercial 
LEO 

Thermally similar 
to current facilities 

~ 10 cm dia x 40 
cm long 

          Cost and access 
wise, improved 
access and cost 
structure to ease 
barriers to testing 
and material 
development 
iteration 

Test prep and 
instrumentation area 
and check-out 
independent of the 
facility to facilitate 
quick, accurate and 
efficient testing and 
use of the facility. 

ISPT 
(Munk) 

At least the 
existing capability 
(PTF through IHF) 

Increased sample 
size is a nice-to-
have; significant 
scale-up is not 
necessary (but 
we may have 
come to that 
conclusion based 
on facility 
limitations) 

Alter
nate 
gases 

Combined 
environments 

Improve quality 
(repeatability of 
test conditions) 

Improve test 
condition 
knowledge, 
especially shear 

Improve 
instrumenta
tion 

Improve cost and 
throughput 

  

Orion 
(Dur-
rant) 

Flexibility and 
control of heat rate, 
enthalpy, pressure, 
shear and boundary  
layer thickness 

Larger model 
size (20" x 20" 
panel for OML 
features). 
Adequate 
accommodation 
of curved panels. 

  Yes More 
automated test 
condition 
settings 

Better flow 
monitoring 
capabilities 

Improved 
instrumenta
tion 

Improved test 
throughput: 
improved model 
installation 
approaches, more 
models per run 

  

Don 
Curry 

Restore capability 
for lunar and 
planetary missions 

      Improve 
uniformity, 
reduce 
contamination 

        

Orion 
(Bous-
log) 

Expanded test 
envelop 

Panel models 18" 
x 18" to 30" x 
30" ; Stagnation 
models 4" - 10" 
diameter; Wedge 
models 5" to 12" 
square 

New 
gas 
mix-
tures 

Run 
temperature and 
pressure 
profiles 
simultaneously. 
Radiant heater 
zones for 

Match time-
dependent 
heating profile 
for mission 
trajectory 

Different arc 
heater designs 
to compare 
differences in 
nominally 
identical 
conditions. 

    Facilitate nozzle 
changes, plenum 
changes, arc heater 
modifications 
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 Test Conditions Model Size Test 
Gas-

es 

Combined 
Convective 
Radiative 
Heating 

Control of 
Flow 

Conditions 

Knowledge of 
Test 

Conditions 

Instrumen
tation 

Cost, Access, 
Throughput 

Operations 

thermal 
gradient effects. 

Heat flux and 
pressure probes, 
flow chemistry. 

Mars 
Entry 
(Steltz-
ner) 

0-3,000 W/cm2 
convective + 1-
3,000 W/ cm2 
radiative, 1-1,000 
Pa shear, 0-20 atm 

  CO2 
"nice 
to 
have" 

0-3000 W/cm2 
convective + 1-
3000 W/cm2 
radiative 

          

HIADS 
(Cheat-
wood) 

        More uniform 
freestream (PTF 
has swirl) 

Better 
characterization 
of freestream 

  Increase 
throughput 

Better adherence to 
facility schedule via 
more reliable 
facilities 

          Ability to dial 
in flux and 
surface pressure 
to match 
desired profile 

        

Gas 
Giants 
(Ven-
kata-
pathy) 

Up to 20,000 
W/cm2 convective, 
40,000 W/cm2 
radiative (Jupiter). 
Up to 8,000 W/cm2 
convective, 5,000 
W/cm2 radiative 
other gas giants 

2-4" stagnation; 
turbulent flow at 
moderate 
conditions on 
large samples 

Air, 
CO2, 
H2/ 
He 

10,000 W/cm2 
convective, 
10,000 W/cm2 
radiative 

Turbulent flow Improved 
knowledge of 
test 
environment 

  If the cost/run 
formula is 
modified, we will 
see increased use 
and reduced risk 
(or better mass) 

  

ETDP -
Wright 

Earth return: 1,500 
W/cm2 convective, 
2,200 W/cm2 

radiative, 40 kPa 
pressure, 450 Pa 
shear, 100 MJ/kg 
enthalpy 

Turbulent flow 
on larger models 
at flight-relevant 
conditions. 
Models >6" with 
high heat rate, 
pressure, shear 

CO2, 
Air 

Yes Trajectory-
based testing 

Integrated 
analysis/testing 
services to 
maximize 
understanding 
of results 

  Cost/sample no 
more than current, 
throughput at least 
matching current 
complexes 

Clean separation 
between research 
and production 
facilities (R&D 
needs currently 
sacrificed for 
sustaining 
engineering testing) 

 



Evaluation of Arc Jet Facilities Report 
 

 57 

Support for different test gases is needed, although individual bays do not need to be plumbed 
for all gases. Pure air, pure nitrogen, and mixtures of oxygen, nitrogen and argon should all be 
provided. Large-scale testing in CO2 at moderate combined heating rates and small-scale testing 
in H2/He at very high heating rates should be supported. 

Several respondents stressed the importance of test profiles that mimic the variation of heating 
and pressure throughout an entry trajectory. The complex infrastructure should support variation 
of power and pressure throughout a test entry. 

Beyond the requirements for mission-relevant test conditions, responses in Table 6.1 consistently 
note the importance of having better knowledge of the conditions to which the model is exposed. 
New test boxes must be designed with adequate optical access for flow diagnostics and particle 
identification. They should also support thermal and pressure surveys of the core flow. 

Respondents further noted that cost per test-article exposure is an important metric. Several 
indicated they would perform more tests if throughput were increased. In recent years, 60% of 
exposures at ARC and 40% of exposures at JSC have been calibration probes. The most effective 
way to improve throughput is to increase the number of stings. The proposed design for LEAF 
included six model arms, with two additional arms for calorimeter and pitot probe. A similar 
configuration is appropriate for new tunnels.  

6.2 Options for New Capability 
Options for providing upgraded capability include: 

• Add a new arc jet facility to an existing complex 

• Build a new arc jet complex with one arc jet facility to augment existing capability 

• Build a new arc jet complex with multiple arc jet facilities to augment and replace 
existing capability 

The LEAF AoA compared the first two of these options. It concluded that the preferred option 
for delivering Lunar return capability was the first option, to add a new arc heater to an existing 
complex (ARC’s), but noted in passing that construction of a new complex would be required for 
Mars return capability. That conclusion should be reviewed in a new study focused on Mars 
return requirements, but it is driven primarily by the combination of model size and heating rate 
requirements: existing arc tunnels cannot deliver sufficiently heated gas to models of the 
required scale. Furthermore, some compromises related to power supply, test box layout, 
diffuser, and steam generation were made to accommodate LEAF at ARC. Schedule was a 
driver, because an extra year of construction for a new complex did not permit adequate ground 
testing prior to Orion test flights. With more schedule latitude, such compromises should be 
revisited in a new study. 

When new construction is evaluated, several sites should be considered as viable options. The 
location should be chosen to ensure ready access to plentiful and cheap power and water, low 
impact on air and water quality, convenient access for qualified personnel and test customers, 
and minimal intrusion of operations into the surrounding communities. A site that has other 
major test complexes provides greatest flexibility for sharing support personnel when test 
demand is low, thereby mitigating annual operating costs. It is expected that NASA would 
consider both ARC and JSC, but other sites, such as AEDC, might be considered if they clearly 



Evaluation of Arc Jet Facilities Report 
 

 58 

offer advantages in these criteria. Although existing arc jets at AEDC do not support NASA 
mission profiles, the Air Force is interested in extending their capability into a range of 
conditions that more closely approach NASA needs. However, sharing infrastructure would 
require collaboration across agencies for strategic planning and management and to ensure 
adequate accessibility. 

New construction provides the best opportunity to deliver state-of-the-art technical capability 
with efficient infrastructure and operations. These efficiencies can deliver a life-cycle value that 
is competitive with the upgrade of existing facilities. New construction will also allow NASA to 
eliminate the deferred maintenance accumulated in existing complexes and will help reduce the 
overall average facility age and improve overall facility condition.  

The estimate of the 30-year cost for new construction of an arc jet complex comprises the initial 
investment, the annual operations and maintenance, and the periodic refurbishment necessary to 
keep a complex viable and recapitalized. Two cost estimates were developed for the initial 
investment to build a new construction arc jet complex that included the LEAF capability and 
three other tunnels that would duplicate the existing capability at ARC. The first was developed 
by the ARES Corporation and was included in the original LEAF AoA. The second estimate was 
for the same capability identified in the AoA but was performed by facilities engineering 
personnel at ARC. The estimates were based on a narrow focus on Orion requirements, however, 
which did not consider the cost of enhancements that could address requirements from other 
missions. A tunnel to support higher-energy requirements would cost more. Since the 
requirements for a new tunnel have yet to be determined, the 30-year cost estimate is provided as 
a range of the costs that would likely be involved. The initial investments identified are the basis 
for this estimate, but are considered to be the lower bounds of the range, and a 50% premium on 
the escalated ARC estimate is used to determine a reasonable higher bound.  

Regional differences in construction costs would also be a factor in the estimate for the initial 
investment required, and these differences are captured in Table 6.2 below. This data is from the 
Engineering New-Record, 20-City National Index, and regional differences for several cities are 
captured in the Construction Cost Index (CCI) and then normalized to construction in San 
Francisco (the CCI Factor). The CCI uses local prices for general construction materials, such as 
concrete, lumber, and structural steel and local union wages. However, it does not account for 
specialized equipment, such as boilers, steam ejectors, and high-power electrical distribution 
components, since the cost of this type of equipment does not have a regional bias and 
differences in installed cost are primarily due to transportation factors. From the CCI Factor 
column, general construction materials and labor costs in Dallas and Birmingham (AEDC) are 
40% lower than in San Francisco and Cleveland. This 40% difference will be reduced when 
high-cost, specialized equipment is included in a construction cost estimate, and a reasonable 
difference for total construction costs is 25%.    
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Table 6.2. Regional Construction Cost Index 

 
Data from Engineering News-Record, 20-City National Index 
Construction Cost Index (CCI) as of March 2010 
CCI Factor relative to San Francisco 

 

The second component of the 30-year estimate is the annual cost for operations and maintenance, 
and there are also regional differences for labor costs. Half of the current ARC arc jet complex 
annual operation and maintenance costs is labor (12% for civil servants and 37% for 
contractors). This annual number provides a basis for the cost of operations and maintenance in a 
new complex, since the upstream and downstream infrastructure will still be shared, and the 
simultaneous operation of multiple tunnels is unlikely. A range is used for a new complex at 
ARC to reflect the implementation of Conclusion 5.3 and to allow for the possibility the new 
complex will require more resources to operate and maintain, and this range is escalated at 2% 
per year for inflation. The cost of labor will also reflect regional differences, and two data 
sources exist to determine regional discounts for NASA locations. The first is the data NASA 
accumulates for its workforce and reports on nasapeople.nasa.gov. Average annual salary data 
can be found by linking through The NASA Workforce Profile to Workforce Measures, and 
average salaries at ARC are 12% higher than at JSC. The second source is presentations provided 
during the Center visits. Each presentation contained current contractor labor costs, and a 
comparison of these costs reveals that the average salary at ARC is 4% higher. A reasonable 
estimate of the regional discount at JSC for the combined workforce is 5%. This regional 
difference is more pronounced for AEDC. The AJEWG contacted the AEDC procurement office 
to identify the labor rate associated with the Aerospace Testing Alliance contract the Air Force 
uses to operate and maintain their wind tunnels and testing capability. The Air Force pays an 
average contractor labor rate that is 22% lower than NASA pays at the ARC arc jet complex. A 
reasonable estimate of the regional discount for a workforce at AEDC is 20%. 

The last component of the 30-year estimate is the cost to revitalize and recapitalize the complex. 
The facility presentation from ARC includes the projects accomplished since 1990 and an 
investment strategy intended to refurbish, upgrade, or replace capability (revitalization) and 
infrastructure (recapitalization). These items form the basis for the ARC revitalization and 
recapitalization estimate. Accounting for procurement of specialized equipment and for the labor 
required for installation and activation, the effective regional discount at JSC and AEDC for 
revitalization and recapitalization is estimated to be 20%. Such a discount would probably not be 
fully realized in a new build, but it points to potentially significant cost differences by location. 

All of these estimated costs are captured in Table 6.3 [deleted in public version of report] and are 
graphed in Figure 6.1. These data indicate regional labor differences are worthy of consideration 
in the selection of location for a new complex.  
 

City CCI CCI Factor
Baltimore 6011 0.62
Birmingham 5720 0.59
Cleveland 9989 1.03
Dallas 5339 0.55
Los Angeles 9770 1.00
New Orleans 4935 0.51
San Francisco 9728 1.00
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6.3 Considerations for Upgrading to Future Capability 
The first option in this section, add a new arc jet facility to an existing complex, assumed 
utilizing the existing complex as is. While building augmented capability that takes advantage of 
existing infrastructure was reasonable to consider at the ARC arc jet complex, the AJEWG did 
not consider this option to be technically reasonable at JSC. Making ARC healthy would involve 
refurbishing and repairing the arc jet systems and components. To bring JSC to an equivalent 
technical capability to ARC’s would require replacing most of the complex, including the arc 
heaters, water systems, vacuum systems, and power supply and adding tunnels. It would be 
possible to make JSC’s existing complex healthy, but upgrading the capability would be 
equivalent to a new build. So for JSC, the equivalent to “Make ARC healthy, build a new tunnel 
at ARC” would be “Make JSC healthy, build a new complex at JSC.” There were no existing 
estimates to use for this option, so it was extrapolated from the data available to the AJEWG.  

 

 

 
Figure 6.1. Estimated 30-year cost of options 

 

The cost analysis predicts that both options where existing NASA arc jet complexes are made 
healthy and upgraded with new capability to meet the 30-year future requirements would be 
more expensive than building a new complex at that Center, and neither is considered a good 
investment strategy.  

The estimates of the 30-year costs of the options indicate that trying to take advantage of existing 
capability will be the most expensive of the options. Also, over the 30-year period of interest, 
investment differences between locations for new construction are significant enough to be a 
factor in the location decision. 
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6.4 Technology Development Requirements 
To provide the performance capability needed for a future arc jet complex, a significant 
investment in arc heater technology will be required. There are sizable gaps between the current 
state of the art in arc heater performance and that required for missions beyond LEO. Also, arc 
technology is needed to provide a better understanding of the arc jet flow field. Some of the 
issues and possible ways to address them are presented below. 

6.3.1 Understanding the Arc Jet Flow Field 
There have been long-standing differences in the results obtained from testing the same materials 
in the ARC and the JSC arc jet facilities. It is important to know which facility produces the flow 
field that more closely approximates the true entry environment and to understand the source of 
the differences. Possible causes for the difference in material response are the incomplete mixing 
of O2 and N2 at JSC, the addition of argon at ARC, or the difference in enthalpy and pressure 
profiles between the two facilities. To resolve this issue, a number of activities are proposed: 

1. Perform a “round robin” series of tests at ARC, JSC, and Boeing LCAT using the same 
test material, flow-field conditions, and configuration. This will permit a comparison of 
the effects of simulated air (JSC), air with a small percentage of argon (ARC), and pure 
air (LCAT). 

2. After the test series above, JSC should reconfigure either their TP-1 or TP-2 arc heater by 
adding a ring electrode at the cathode and operate this heater first with pure air and then 
on air with argon added in the same ratio as that used at ARC, and compare the results.  

3. Compare arc heater configurations, enthalpy and pressure profiles, and test conditions 
(pressure, heat flux, and Mach number) between the two facilities. 

 

For simulation of entry into the atmosphere of other planets, arc jet operation will be required 
with other test gases such as CO2, He/H2, and N2. Again, the TP-1 or TP-2 arc heater at JSC 
would be ideal for this development to learn how to operate with these test gases and to obtain 
arc reliability and performance data. JSC personnel should draw upon the ARC experience with 
He/H2 from the previous operation of the Giant Planet Facility and upon Marshall Space Flight 
Center’s ongoing experience with a 1 MW He/H2 heater. 

Development of improved flow-field instrumentation is critical to the understanding of material 
test results. This includes both intrusive and nonintrusive measurements. Nonintrusive 
diagnostics are particularly important because the flow field is left undisturbed. The challenge 
has always been to obtain meaningful measurements in an unsteady, high temperature, luminous, 
ionized flow produced by arc heaters. The development and use of these advanced instruments is 
critical to a better understanding of the arc jet flow. 

6.3.2 Closing the Simulation Gap for Future Missions 
For missions beyond LEO, the gap is significant between present day arc jet facility capabilities 
and those required for future missions (see Section 4). Major advances beyond current state of 
the art in arc heater performance and facility capability are needed. Several avenues for arc 
facility technology and development are suggested below: 

1. Arc Heater Performance Improvement: The segmented arc heater design is considered 
mature. It has been incrementally improved over the past 50 years in both performance 
(enthalpy) and reliability. However, additional minor improvements are still possible and 
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should be pursued. Development of improved cooling techniques for the electrodes and 
segments will allow hardware survival at higher wall heat flux and higher arc current, 
which will produce higher enthalpy. However, no more than a 10% to 20% increase in 
performance can be expected from improved component cooling. 

 
2. Arc Jet Flow Field Augmentation:  

a. Many of the missions to Mars and beyond will experience significant radiative 
heating, in addition to the high convective heating that arc jets can provide. 
Augmentation of the flow field with an external radiation source will be required. 
Arc lamps with beams focused on the test model surface provide one possible 
method for radiant heating. Laser beams provide an alternative way to provide 
substantial radiative heating, but the effect of a single wave length source would 
need to be investigated and understood. ARC personnel are already studying 
radiation augmentation methods as part of the planning process for the LEAF arc 
heater.  

b. Another method of adding energy to the flow is through magneto hydrodynamics 
(MHD). This method has the advantage of accelerating the flow velocity directly 
in the supersonic region of the nozzle without adding significant heat. In 
principle, the MHD method is sound. In the past, significant hardware problems 
(wall arcing) and non-symmetric flow field acceleration have resulted in limited 
operational success. 

 
3. Non-Standard Test Techniques: One test technique that has been demonstrated is to 

allow the arc discharge to pass through the nozzle and attach downstream, either to the 
downstream face of the nozzle (ARC concept used on the Giant Planet Facility) or at the 
base of the model sting (Boeing concept). This technique can increase both the 
convective and radiative heating simultaneously, since the arc temperature is 10,000 to 
12,000 degrees Kelvin and the arc is either near or surrounding the model. This technique 
may be suitable only for light gases, but should be studied for air and other gases as well, 
because of its potential for providing significantly higher heat flux on the test model.  

 
4. Non-Standard Arc Heater Configurations: One method used in the past to build larger 

(higher power) arc heated facilities was to manifold the flow from several arc heaters 
together. In one concept, either four or five arc heaters are located at 90 degrees to each 
other with the flow from each combined and discharged through a single nozzle. Another 
arc heater configuration has incorporated an anode on one end and a cathode on the other 
end in a transverse direction to the flow exiting from the nozzle in the center. LaRC 
previously developed this type of “double-ended” arc heater. However, while these 
devices provide a means to scale to larger sizes, they do not produce higher performance 
(enthalpy). 

 
6.3.3 Sustained Arc Technology Program Required 
To better understand the arc jet flow field and to provide the enabling technologies to narrow the 
gap in arc facility performance, a dedicated arc jet development effort is required. NASA should 
provide continuous funding over the next 5-10 years to advance the arc jet simulation capability 
and develop the enhanced performance necessary to produce the next generation of arc heaters. 
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ARC and JSC should jointly manage the technology development effort with a common purpose 
and goal. The actual development tests can be performed at either or both complexes to 
maximize the progress toward improving arc jet flow field performance and understanding.     

6.5 Certification and Mission Assurance Roadmap 
The level of ground testing for proposed missions depends on NASA’s risk posture, commitment 
to flight testing, and the level of confidence in numerical simulation of the entry physics and 
material chemistry. In the past, these issues have been treated differently by individual missions 
and have sometimes been addressed only qualitatively. Recent programs, including Orion and 
COTS, have specified mission reliability requirements, and allocations have flowed down to 
TPS. Verifying compliance with these allocations is proving to be extremely challenging. If 
planetary protection requirements for return to Earth from Mars continue to impose 1:1,000,000 
failure probability for entry, descent, and landing, as specified for Mars Sample Return, it is not 
clear that even the most rigorous ground test campaign can retire the mission risk.  

NASA needs urgently to review certification requirements and mission reliability allocations for 
TPS. To meet the technology development schedule, this effort should be completed in the next 
year and integrated into the capability requirements to ensure they are consistent with 
certification needs. Recent work on certification strategy for Orion and current work on human 
rating requirements for commercial crew transportation should be generalized into a common 
framework for assuring TPS reliability for all missions. Required levels of reliability may differ 
among missions, and choice of verification approach may also vary, but the methodology should 
be consistent. The certification approach should address the contributions of analysis, ground 
test, and flight test toward understanding material and subsystem behavior.  

Several respondents to the AJEWG survey on arc jet needs stressed the value of flight data that 
provides traceability for ground test and analysis. The optimal arc jet complex must be defined in 
the context of the complete TPS development and design process. As an example, the cost of the 
proposed LEAF facility is about 20% of the estimated cost of a single subscale flight test 
dedicated to retiring TPS risks for Orion (LEX flight test project) [McDonald, LEX Study Team 
Report]). It might not replace the flight test, but the flight test project manager indicated that it 
would help him to sign the Certificate of Flight Test Readiness and it would augment the value 
of the flight test by providing a much larger data set for comparison and correlation. Technology 
programs can balance investment among ground facilities, analysis methodology improvements, 
and engineering instrumentation on missions and dedicated flight tests.  

Optimal use of an arc jet complex must include low-TRL development work with direct support 
of missions. Much of the effort required to qualify materials can be managed through material 
and subsystem development programs, rather than being borne by individual missions. NASA 
should develop a family of qualified materials for a range of entry environments, to be adopted 
and carried to certification by individual missions. 

6.6 Transition and Institutional Management 
The skills and knowledge of the technicians, engineers, and managers at existing arc jet 
complexes will be needed to develop the next level of arc jet capability and, subsequently, to 
operate the new complex. Provision will need to be made to maintain safe operations while 
drawing down or transferring workforce to support the new build. A break in continuity, which 
could result from the immediate threats to maintenance and operation (M&O) funding for 
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Johnson, could create an unnecessary loss in personnel that would compromise the introduction 
of new arc jet capability. 

Existing infrastructure and arc heaters must also be managed efficiently through the period of 
transition. The agency has benefited from strong cooperation between the two NASA complexes 
in recent years. This positive relationship should be encouraged and supported. The arc jet 
managers at ARC and JSC proposed to the AJEWG that their complexes should be managed 
cooperatively as one Agency portfolio. They indicated that the requirement for individual facility 
robustness could be relaxed by leveraging the capacity of the two complexes. They suggested 
deferring all proposed refurbishments until calendar year 2016. This proposal fits well with the 
AJEWG conclusions and timeline describing the transition of the facilities’ technology in the 
following section. The AJEWG supports this creative solution to stabilizing near-term arc jet 
operations. 

Common management of agency arc jets will apply a common cost basis for testing. Until now, 
separate complexes have been funded by different organizations within NASA, so they have had 
distinct cost recovery practices. Furthermore, customers collocated with the facilities have 
benefited from convenient access and low-cost test opportunities. More equitable access to the 
test complex for all customers could engage a larger community and would foster additional 
innovative TPS solutions. Facility operators and customers all recognize that full-cost recovery 
decreases utilization and stifles low-TRL material development. On the other hand, suggestions 
that users should not be responsible for any of the facility cost would reduce incentive to 
rigorously plan and execute their test programs. NASA needs to generate a cost recovery 
structure that maximizes the strategic benefit of the arc jets. 

NASA’s funding and governance of this critical institutional technical capability has been 
inadequate. The current list of deferred maintenance provides evidence that the lack of reliable 
and sustained funding has contributed to deterioration of arc jet systems. Revitalization activities 
have often been funded by individual projects or missions, so that capability has been focused on 
specific needs rather than being optimized for maximum value to the agency. To ensure 
sustainable and efficient operation of a new arc jet capability, NASA needs to commit to 
continuous and consistent institutionalized funding and resource management.  

6.7 Development Schedule 
The AJEWG concludes that the Agency should immediately begin efforts leading to the 
construction of a new arc jet complex, and the notional schedule shown in Table 6.4 identifies 
the top-level activities that will lead to this new complex becoming operational. The 
requirements definition necessary for the infrastructure design should begin immediately. The 
project milestones include a PDR in 12 months, a CDR 12 months later, construction ground- 
breaking 12 months beyond that, and the new complex becoming operational 5 years from now.  

In parallel with the infrastructure build is the technology development required for a new arc jet 
complex. This technology development will focus on the radiative capability associated with 
high-energy entry conditions and how this level of external radiative heating will be generated 
and focused on a test model; extend the state of the art in arc jet heater operation at continuous, 
high power levels through improved cooling methods and nonstandard configurations and test 
techniques; and improve the flow field capability required for condition validation, data 
acquisition, and test sample certification through alternate cathode configurations, alternate test 
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gases and gas combinations, intrusive and non-intrusive instrumentation, and increasing enthalpy 
through the use of magneto hydrodynamics. 

Also shown in Table 6.4 is the transition of the existing ARC and JSC arc jet complexes through 
the infrastructure build. The last Shuttle program launch, STS-133, is scheduled for September 
2010, and the JSC complex should transition to one-shift operations immediately after this 
launch. JSC should also transition into support for the technology development required for the 
new complex, and should plan for an orderly phase-out after the completion of the technology 
development efforts. ARC should reduce their operations by December 2010 to a capacity 
required by the Agency. Operations at the ARC complex should continue through construction of 
the new complex to provide a capability to address issues associated with integrated systems 
testing, but the phase-out of the ARC complex should coincide with the new arc jet complex 
becoming operational.  

Table 6.4. Notional Schedule for Transition to New Arc Jet Capability 

 
 

6.8 Summary 
Finding 6.1: The return on investment of rehabilitating and upgrading existing complexes, or 
building a new complex, would be positive. Although arc jet test cost is significant, it is a 
necessary cost for achieving many of NASA’s proposed missions. The total cost of construction 
is on the same order as one or two subscale flight tests. 

Finding 6.2: Arc jet users are cost sensitive, especially commercial customers. They will do 
more testing if the cost per test is reduced. 

Finding 6.3: NASA must have skilled and knowledgeable personnel to develop and operate the 
next generation of arc heaters.  

Finding 6.4: NASA funding and governance of critical institutional technical capability is 
inadequate. Arc jets have had intermittent funding over several decades, and preventative 
maintenance has suffered. Strategic Capabilities Assets Program (SCAP) funding to Ames 

Task Name Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Comment
Infrastructure Build
   Requirements definition Begin immediately
   Preliminary Design Review ◊ September 2011
   Critical Design Review ◊ September 2012
   Break ground ◊ September 2013
   Construction
   Arc Jet complex operational ◊ September 2015

Technology Development
   Radiative capability
   Arc heater capability
   Flow field capability
   Implementation

Transition of Existing Complexes
   STS-133 ◊ September 2010
   JSC to one-shift operation ◊ December 2010
   JSC technology development
   JSC phase out
   ARC restructuring ◊ December 2010
   ARC operations and technology development

   ARC phase out

FY10 FY11 FY12 FY13 FY14 FY15
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Research Center has allowed them to work down a backlog of deferred maintenance, resulting in 
improved availability. JSC has benefited from Shuttle and Constellation program funding, which 
is expected to go away in 2010. 

Conclusion 6.1: NASA needs to make a serious investment in arc jet infrastructure. Investment 
in the range of $200-500 million in addition to continuing operating costs will be needed in the 
next 10 years. Resource requirements will be diligently challenged and will limit future technical 
options. 

Conclusion 6.2: Decisions on transition to a new complex need to consider retention and 
sustainment of highly-qualified staff. Recent cooperation between ARC and JSC has had positive 
benefits for the Agency and that relationship should be fostered and supported during the 
transition. 

Conclusion 6.3: Cooperative management of JSC and ARC complexes is recommended while a 
new complex is being developed.  

 



Evaluation of Arc Jet Facilities Report 
 

 67 

7.0  Findings and Conclusions 

Finding 2.1: Arc jet testing has proven to be a core competency and required capability of 
NASA.  

Finding 2.2: Every NASA atmospheric entry mission has relied on arc jet testing for TPS 
development. 

Finding 2.3: Arc jet facilities provide the only ground-based means of simulating entry heating 
rates in a reacting flow environment for flight-relevant durations. 

Finding 2.4: Ablator design policy currently applies large margins to cover uncertainty in 
applied loads and material response. Improvements in arc jet diagnostics and test article 
instrumentation can reduce uncertainties and hence reduce margins 

Conclusion 2.1: Existing ablator design policy is incomplete, because some failure modes are 
not fully understood, so their contribution to system reliability is not quantified. More rigorous 
examination of material failure modes will enable more defensible mission assurance 
assessment. Characterization of failure modes is better managed as a material development 
activity rather than being conducted for individual missions.  

Conclusion 2.2: Currently available diagnostic capabilities and instrumentation techniques 
should be infused into NASA arc jet standard practice. This infusion is best managed as an 
Agency strategic investment rather than as a programmatic responsibility. 

Finding 3.1: Arc jet testing will be needed even for LEO return missions, for which materials 
already exist and operational experience is in hand. Existing test capability is adequate for this 
mission type. Capacity requirements to support LEO return are dependent on certification 
philosophy. 

Finding 3.2: NASA and DOD share a mutual reliance on arc jet test capability. Air Force 
strategic planning relies on the availability of NASA arc jets for testing of hypersonic cruise 
vehicles. AEDC supports high-shear test conditions that are relevant to NASA. 

Finding 3.3: Greater arc jet capability will be required for missions that NASA intends to fly 
within 30 years. Enthalpy, combined convective-radiative heating, test gas, shear, pressure, 
turbulence, and model size are among facility features to be addressed. 

Finding 3.4: Arc jet facilities that provide more precise control and knowledge of the test 
conditions, and that have enhanced diagnostics to analyze gas species will benefit the maturation 
of low-TRL thermal protection concepts and materials technologies. 

Finding 3.5: The available TPS choices for flight consideration are not optimal for many 
missions, and the TPS choices could be increased with improved accessibility and lower cost to 
use arc jets to develop low TRL concepts. 

Finding 4.1: The simulation regimes of the present facilities are sufficient for simulating low 
Earth orbit entries and certain regimes for Lunar return. However, these facilities are inadequate 
to fully evaluate the TPS for a Mars or deep space Earth return or certain planet entries such as 
the Gas Giants. 

Finding 4.2: Existing NASA facilities have capability in terms of model size and performance 
that is not duplicated by DOD or commercial facilities. 
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Finding 4.3: An inspection of the performance envelopes shows that the JSC capability is 
basically a subset of the ARC combined capability. 

Finding 4.4: Incremental improvements in arc heaters will not deliver the higher test capability 
needed for more ambitious NASA exploration missions to Gas Giants and human return from 
Mars. 

Finding 4.5:  The AEDC power supply cannot operate at low voltage and high current, which is 
required to power a NASA-type arc heater which operates at low pressure. Therefore, if AEDC 
is considered as a potential site for operating NASA-type arc heaters, a new power supply will 
need to be procured. 

Conclusion 4.1: NASA must bear the responsibility of designing and developing facilities with 
improved capability in order to successfully support future NASA missions. 

Conclusion 4.2: A focused technology development effort is required to establish the arc jet 
testing capability required by NASA for future missions. 

Finding 5.1: Facilities need to retain operational status, as mothballing an arc jet complex 
beyond 3 years is tantamount to closure because of the degraded nature of the supporting 
infrastructure. 

Finding 5.2: There are opportunities for improving capacity at both complexes.  

Finding 5.3: Staffing levels at both NASA complexes appear to be high. 

Conclusion 5.1: Experienced personnel with specialized arc jet training and skills are valuable 
and irreplaceable. Arc jet facilities must maintain a skilled workforce for safe and reliable 
operation.  

Conclusion 5.2: A more thoughtful approach to building new arc jet capability should consider 
the larger, long-term Agency mission requirements, as presented in Section 3.0 of this report; 
integrate the full institutional cost, capability, sustainment, and life cycle into Agency strategic 
planning; and consider the difference between what is known about arc jet technology and the 
knowledge needed to advance the state of the art to design an arc jet facility for future capability. 

Conclusion 5.3: In an effort to reduce costs, an independent assessment of roles and 
responsibilities at both the Ames and Johnson complexes should be completed and staffing levels 
reduced by up to 30%. 

Finding 6.1: The return on investment of rehabilitating and upgrading existing complexes, or 
building a new complex, would be positive. Although arc jet test cost is significant, it is a 
necessary cost for achieving many of NASA’s proposed missions. The total cost of construction 
is on the same order as one or two subscale flight tests. 

Finding 6.2: Arc jet users are cost sensitive, especially commercial customers. They will do 
more testing if the cost per test is reduced. 

Finding 6.3: NASA must have skilled and knowledgeable personnel to develop and operate the 
next generation of arc heaters.  

Finding 6.4: NASA funding and governance of critical institutional technical capability is 
inadequate. Arc jets have had intermittent funding over several decades, and preventative 
maintenance has suffered. Strategic Capabilities Assets Program (SCAP) funding to Ames 
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Research Center has allowed them to work down a backlog of deferred maintenance, resulting in 
improved availability. JSC has benefited from Shuttle and Constellation program funding, which 
is expected to go away in 2010. 

Conclusion 6.1: NASA needs to make a serious investment in arc jet infrastructure. Investment 
in the range of $200-500 million in addition to continuing operating costs will be needed in the 
next 10 years. Resource requirements will be diligently challenged and will limit future technical 
options. 

Conclusion 6.2: Decisions on transition to a new complex need to consider retention and 
sustainment of highly-qualified staff. Recent cooperation between ARC and JSC has had positive 
benefits for the Agency and that relationship should be fostered and supported during the 
transition. 

Conclusion 6.3: Cooperative management of JSC and ARC complexes is recommended while a 
new complex is being developed. 
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Appendix A: Acronyms 

AEDC  Arnold Engineering Development Center 

AFRL  Air Force Research Laboratory 

AHF  Aerodynamic Heating Facility 

AHSTF Arc Heated Scramjet Test Facility 

AJEWG Arc Jet Evaluation Working Group  

AoA  Analysis of Alternatives 

ARC  Ames Research Center 

ARMD Aeronautics Research Mission Directorate 

ARMSEF Atmospheric Re-entry Materials and Structures Evaluation Facility 

ASAP  Aerospace Safety Advisory Panel 

ATP Aeronautics Test Program 

CAD  Computer Aided Design 

CAIB  Columbia Accident Investigation Board 

CCI  Construction Cost Index 

CDI  Critical Design Review 

CEV  Crew Exploration Vehicle  

CFD  Computational Fluid Dynamics 

COTS  Commercial Orbital Transportation Services 

CMA  Cryogenic Moisture Apparatus 

DARPA Defense Advanced Research Projects Agency 

DOD  Department of Defense 

DPLR  Date-Parallel Line Relaxation 

EDL  Entry, Descent, and Landing 

EDL-SA Entry, Descent, and Landing – Systems Analysis 

ESMD  Exploration Systems Mission Directorate 

FIAT  Fan/Inlet Acoustic Technology 

HEAT-H1 High Enthalpy Ablation Test Unit H1 

HEAT-H2 High Enthalpy Ablation Test Unit H2 

HEAT-H3 High Enthalpy Ablation Test Unit H3 

HIAD  Hypersonic Inflatable Atmospheric Decelerator 

HPITT  Hypersonic Propulsion Integrated Testing Team 
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HRR  Human Rating Requirements 

HyMETS Hypersonic Material Environmental Test System 

ICBM  Intercontinental Ballistic Missile 

IHF  Interaction Heating Facility 

ISS  International Space Station 

ITAR  International Traffic in Arms Regulation 

JSC  Johnson Space Center 

JTOH  Joint Technology Office on Hypersonics 

LaRC  Langley Research Center 

LAURA can’t find on NASA Web site 

LCAT  (Boeing) Large Core Arc Tunnel 

L/D  Lift to Drag ratio 

LEAF  Lunar Environment Arc Jet Facility 

LEO  Low Earth Orbit 

LDR  Lunar Direct Return 

LIF  Laser-Induced Fluorescence 

MDR  Mars Direct Return 

MHD  Magneto Hydrodynamics 

MOLA  Mars Orbiter Laser Altimeter 

MSL  Mars Science Laboratory 

NASA  National Aeronautics and Space Agency 

NOx  Nitrogen Oxide 

NPAT  National Partnership for Aeronautical Testing 

OCE  Office of the Chief Engineer 

OD  Occupancy Days 

PDR  Preliminary Design Review 

PICA  Phenolic Impregnated Carbon Ablator 

PTF  Panel Test Facility 

RHTF  Radiant Heat Transfer Facility 

RCC  Reinforced Carbon Carbon 

RTF  Return to Flight 

SLA Super Lightweight Ablator  

SMD  Science Mission Directorate 
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SOMD  Space Operations Mission Directorate 

STAB  Structural and Technical Analysis Board 

STS  Space Transportation System (Program) 

SVS  Steam Vacuum System 

TFD  Turbulent Flow Duct 

TRL  Technical Readiness Level 

TPS  Thermal Protection System 

TPTF  Truncated Panel Test Facility 
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Appendix B: Glossary 

Availability: the planned uptime of a facility or asset; the definition of availability is generally 
the sum of planned uptime (operational schedule and planned downtime) divided by the sum of 
planned uptime plus unplanned downtime. 

Capability: the set of test conditions that can be achieved at an individual facility or an entire 
complex or complexes. 

Capacity: full throughput utilization of a facility or complex, a property of a complex and 
associated staff. 

Complex: a location with one or more facilities that includes the supportive infrastructure 
(power, boilers) plus the arc jet(s).  

Facilities Maintenance: The recurring day-to-day work required to preserve real properties 
(land, buildings, structures, utility systems, collateral equipment, and other permanent 
improvements) in such a condition that they may be used for their designated purpose over an 
intended service life. It includes the cost of labor, materials, and parts. Maintenance minimizes or 
corrects wear and tear, forestalling major repairs. 

Facility: an arc jet tunnel.  

Greenfield: new construction of a complex. 

Maintenance: the recurring actions, funded through an annual and planned budget, necessary to 
keep equipment and systems operational.  Includes routine care, preventive maintenance (or 
predictive maintenance), trouble calls, and repair. [NPR 8831.1E]  

Operations: the recurring actions, funded through an annual and planned budget, necessary to 
exercise equipment and systems for some pre-determined purpose.  For the Arc Jets, "operations" 
involves simultaneously running the equipment and systems required to create the thermal 
simulation environment necessary to capture data on the performance of a calibration probed or 
test model under those test conditions. 

Recapitalization: the renewal and modernization of infrastructure to ensure its ability to meet 
current and future program and institutional requirements.  Recapitalization projects typically are 
large (costs and schedule) and are designed to last 20-30 years.  
Revitalization: the renewal and modernization of research equipment and systems to ensure its 
ability to meet current and future program requirements.  Revitalization projects typically are 
small to medium (costs and schedule) and are designed to last 3-10 years. 
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Ph.D. from Duke University in 1978.  

 
Arc Jet Evaluation Team 
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(650) 646-2897 (office) 
(650) 269-9328 (cell) 
pgage@neerimcorp.com 
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Thermostructural Analysis Team Lead for NASA's Advanced Development Project for Orion 
heat shield. He also supported NASA's Simulation-Assisted Risk Assessment (SARA) project 
on Ares 1 Abort Effectiveness. Previously, Dr Gage worked on-site at NASA Ames, where he 
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Chief of the Space Systems Division there, he planned and directed the Division’s support of 
current and planned NASA missions and emphasized the aerothermodynamics of advanced 
space vehicles, space energy systems, the development of computer-aided analysis techniques, 
and systems analyses of spacecraft for future missions. In 1979, Dr. Walberg was selected to 
participate in the NASA Executive Development Program at NASA Headquarters. In this role, 
he was responsible for overall long-range planning for space transportation technology, and he 
served as Deputy Chairman for the F.Y. 1981 OAST Space Technology Assessment. As Head 
of the Thermodynamics and Combustion Section, the Gas Radiation Section, and the 
Aerothermodynamics Branch at Langley, Dr. Walberg was responsible for directing a broad-
based program of theoretical and experimental research on high-temperature gas dynamics and 
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ablation. He played a lead role in the analysis and testing of the Apollo heat shield. He led a 
team that developed some of the first rigorous analyses of radiatively-coupled flow fields, and 
he supported the Viking, Pioneer Venus, and Galileo Probe missions. 

From 1970 to 1987, Dr. Walberg served as Chairman of the Re-entry Sub-Panel of the 
Interagency Nuclear Safety Review Panel. In this capacity, he played a key role in the nuclear 
safety reviews for all U.S. missions that involved the use of nuclear power sources in Earth 
orbit and beyond, directed the reviews of all re-entry analyses, and participated in the 
development of the Safety Evaluation Reports for the Pioneer, Viking, LES, Voyager, and 
Galileo missions. 

 

Arc Jet Evaluation Technical Experts  

• Walter (Walt) Bruce 
Langley Research Center; NASA Engineering and Safety Center 

(757) 864-7024 (office) 
(757) 871-0377 (cell) 
walter.e.bruce@nasa.gov 

 

Mr. Walter (Walt) Bruce is a Senior Thermal Engineer in the Langley Research Center’s 
Systems Engineering Directorate. Walt has extensive experience with hypersonic thermal 
testing including test planning for the Flexible Thermal Protection System Project in the Ames 
Panel Test Facility. He was the arc jet test lead for the Mars Science Laboratory Entry, Descent 
and Landing Instrumentation (MEDLI) Project, where he tested 156 models in the Boeing 
LCAT Facility; and the technical lead for the Falcon leading edge material arc jet test in the 
AEDC H2 Facility. He served on the MSL Heat Shield Tiger Team and was the arc jet test lead 
for the Hyper-X (X-43A) nose leading edge, where he tested two models in the AEDC H2 
Facility. He was also the arc jet test lead for the Shuttle leading edge patch repair, where he 
tested 85 models in the Boeing LCAT Facility and 22 models in the ARC IHF. 

Prior to this, Walt worked at AEDC in the arc jet facilities, where he performed arc heater 
technology and development testing and managed the development of the AEDC H3 arc heater 
facility, a large, high-pressure, segmented arc heater. He also performed technology testing in 
the Aerospatiale multi-arc heater JP-200 facility and the High Pressure (HP) arc facility in 
Bordeaux, France. 

Walt received his B.S. in Mechanical Engineering from North Carolina State University in 
1983 and his M.S. in Mechanical Engineering from North Carolina State University in 1985. 

 

• Dr. Anthony Calomino, Lead 
Glenn Research Center  
(216) 433-3311 (office) 
(216) 513-0489 (cell) 
anthony.m.calomino@nasa.gov 
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Dr. Anthony Calomino spent 20 years as a research engineer within the Mechanics and Life 
Prediction Branch at the Glenn Research Center. Dr. Calomino’s primary research interests and 
experience have been in damage analysis and materials behavior modeling for high 
temperature aerospace materials, including refractory materials and composites used in 
commercial, military, and space applications. He worked with the Columbia Accident 
Investigation Board and Return to Flight investigating the mechanical behavior of the 
composite leading edge. For the last four years, Dr. Calomino has served as Hypersonics 
Materials and Structures Lead Engineer within the Fundamental Aeronautics Program’s 
Hypersonics Project under the Aeronautics Research Mission Directorate.  

Dr. Calomino received his B.S. in Structural Engineering from the University of Colorado at 
Boulder, completed an M.S. in Engineering Mechanics at Case Western Reserve University in 
Cleveland, and was awarded a Ph.D. in Materials Science from Northwestern University in 
Evanston.  

 

• Michael (Mike) D. Mastaler, Working Group Technical Representative 
ARMD Aeronautics Test Program; NASA HQ  
(202) 358-1105  (office) 
(202) 236-0437  (cell)  
michael.d.mastaler@nasa.gov 

 

For the last 20 months, Michael (Mike) Mastaler has worked as the HQ Liaison for the 
Aeronautics Research Mission Directorate’s Aeronautics Test Program (ATP). He is a 
permanent employee of the Langley Research Center on detail to NASA HQ. In this position, 
he is responsible for all ATP-related activities at HQ and for facilities-related activities for 
ARMD. 

Prior to that, Mike was the Deputy Director for Business Management, Center Operations 
Directorate, where he was responsible for the management of $120 million per year budget 
associated with wind tunnel operations, facility capital investments and sustainment, and the 
day-to-day operation of the Langley Research Center. Mike has 26 years of experience with 
NASA and has served as a process and fluid systems engineer, Project Manager, and as the 
head of process engineering, mechanical engineering and design, and resources management 
groups.  

Mike earned a B.S. in Mechanical Engineering from Old Dominion University in 1983, an 
M.S. in Mechanical Engineering from Old Dominion University in 1989, and an MBA from 
the College of William and Mary in 2001. 

 

• Judith (Judee) Robey 
Program Analysis and Evaluation 
NASA HQ 
(202) 358-0823 (office) 
(443) 875-8913 (cell) 
judith.l.robey@nasa.gov 
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Judith Robey is currently a study manager in the Program Analysis and Evaluation Office and 
manager of the Agency Mission Planning Manifest. Ms. Robey worked for 16 years on the 
International Space Station Program (ISS). This included defining requirements for Destiny 
and International Laboratories for Physical Science research. Additionally, she was the 
program manager for the development of research instruments for several Spacelab missions 
and the fluids, combustion and materials science racks currently on the ISS. She also 
conducted negotiations and agreements with international partners on cooperative ISS research. 
Prior to this Ms. Robey worked for 6 years as a research scientist at the Jet Propulsion 
Laboratory. Ms. Robey received her degree in physics at the University of California, Los 
Angeles. 

 

• Calvin Williams 
Facilities Engineering and Real Property Division 
NASA HQ 
(202) 358-2322 (office) 
(301) 442-2380 (cell) 
calvin.williams@nasa.gov 

 

Calvin Williams is the Chief of the Planning and Real Estate Branch in the Facilities 
Engineering and Real Property Division, where he manages the Agency’s real property 
portfolio and Agency master planning efforts. He has recently assumed the responsibility to 
manage the Strategic Capabilities Asset Program Branch in addition to his other 
responsibilities. 

Mr. Williams joined NASA in 2002, where he served as the Code OJX’s Lead Program 
Manager for Code R (Aeronautics) Centers. His responsibilities included managing the 
Construction of Facilities projects at NASA’s Venters. He also served as the Sustainable 
Design Champion at NASA Headquarters, leading the Agency’s efforts in sustainable designs 
and certifications under the U.S. Green Building Council’s Leadership in Energy and 
Environmental Designs program. 

Before coming to NASA, Mr. Williams worked for the National Institutes of Health (NIH) in 
Bethesda, Maryland for 12 years. He held several positions, including program manager, 
business manager, and management representative for ISO 9001 in the Design, Construction, 
and Alterations Branch. Mr. Williams managed both technical and administrative staff in 
support of design and construction activities at the NIH. As the Design Project Director of the 
Infrastructure Modernization Program, Mr. Williams managed the Master Utility Plan for 
upgrading the entire major utility infrastructure for the NIH Bethesda Campus. 

Prior to joining NIH, Mr. Williams worked for the Department of the Navy. He worked in 
facilities engineering positions for both shore activities and on nuclear submarines. He held the 
position of Program Manager at the Chesapeake Division of the Naval Facilities Engineering 
Command, responsible for managing energy and other facility engineering projects. As a 
Program Manager for the Naval Sea System Command, Mr. Williams was responsible for 
testing, monitoring, and extending the operating life of HVAC systems onboard the Navy’s 
nuclear class submarines.  

mailto:calvin.williams@nasa.gov�


Evaluation of Arc Jet Facilities Report 
 

 84 

Mr. Williams graduated from Howard University with a B.S in Mechanical Engineering. He 
also obtained an M.S. in Engineering from the Johns Hopkins University. 

 

• Hal Bell 
Office of the Chief Engineer; NASA HQ 
(202) 358-1040 (office) 
(202) 391-3935 (cell) 
harold.m.bell@nasa.gov 
 

• Linda Voss 
Report Editor 
Dell Perot Systems 
(703) 524-3554 (phone and fax) 
(703) 867-1817 (secondary number) 
Linda.Voss@psgs.com 
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Appendix F: Current Arc Jet Capabilities 

This appendix assesses and compares the performance capabilities of the overall arc jet 
complexes support equipment and individual arc jet facility capabilities. 

Ames Research Center Arc Jet Complex 
The ARC arc jet complex consists of eight available test bays, all with vacuum exhaust 
capability located in two separate buildings as shown in Figure F-1. Four of the test bays contain 
operational arc jet facilities: IHF, AHF, PTF, and TFD. All of the test bays share a common 
steam-ejector driven vacuum system, a water cooling system, high-pressure gas system, and 
other auxiliary systems. Two power supplies are available—a nominal 60MW power supply and 
a 20MW power supply. The IHF facility uses the 60-MW power supply while the other three 
facilities use the 20-MW power supply.  

 

 
Figure F-1. Aerial View of Ames Arc Jet Complex. 

The current configurations for each of the four facilities are presented in Table F-1. Note that the 
AHF facility can be operated with a segmented or Huels type heater, resulting in different overall 
test capabilities. 
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Table F-1. ARC Arc Jet Complex Active Configuration Summary 

 
Each of the four active arc jet facilities are described in detail in the sections below. 

Interaction Heating Facility (IHF) 
The IHF uses a segmented type arc heater with multiple ring electrodes on either end of the 
heater as shown in Figure F-2. The heater operates off the 60-MW power supply; however, the 
typical maximum operating power is approximately 45 MW.  The facility is equipped to run off 
of air or nitrogen test gas and uses argon shield gas over the electrodes to help with arc 
attachment on the electrodes. The heater has cold-air injection capability on the downstream end 
of the heater, prior to the nozzle entrance, to provide a lower-enthalpy test gas. 

A 10-degree half-angle conical nozzle with five individual segments is available (Figure F-3), 
which results in a range of nozzle exit diameters from 6 in. to 41 in. Several throat diameters are 
available, which results in a wide range of area ratios with minimal hardware. Free-jet stagnation 
type testing or free-jet shear type testing can be performed using the conical nozzles. The model 
injection system was recently updated and now has four independent sting arms similar to the 
ones shown in Figure F-4. A 8-in. by 32-in. semi-elliptic nozzle is also available, which is 
typically used for large panel (up to 24 in. by 24 in.) shear type testing. Performance envelopes 
for each of these types of testing are shown in Figure F-5 through Figure F-9. 

 

*Heating Rate is a cold wall, fully catalytic value on a 4-inch diameter hemisphere
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Figure F-2. Ames Interaction Heating Facility (IHF). 

 
Figure F-3. 10-degree Conical Nozzle Segments for IHF. 

 
Figure F-4. Model Injection System Showing Two Sting Arms. 

 

 

Flow
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Figure F-5. IHF Stagnation Performance for Cold Wall Heat Flux vs. Pressure. 

 
Figure F-6. IHF Stagnation Performance for Centerline Enthalpy vs. Pressure. 
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Figure F-7. IHF Wedge Test Capability on a 4-in x 4-in Sample, Heat Flux vs. Wall Pressure. 

 
Figure F-8. IHF Wedge test Capability on a 4-in x 4-in Sample, Heat Flux vs. Shear Force. 

0

50

100

150

200

250

300

350

400

450

500

0 10 20 30 40 50 60

Co
ld

 W
al

l H
ea

t F
lu

x 
(W

/c
m

2 )

Wall Pressure (kPa)

IHF Wedge Test, 4-in x 4-in Sample
Heat Flux vs. Wall Pressure

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500 600

Co
ld

 W
al

l H
ea

t F
lu

x 
(W

/c
m

2 )

Shear Force (Pa)

IHF Wedge Test, 4-in x 4-in Sample
Heat Flux vs. Shear Force



Evaluation of Arc Jet Facilities Report 
 

 90 

 
Figure F-9. IHF Panel Test Performance on a 24-in x 24-in Sample, Heat Flux vs. Wall Pressure. 

Aerodynamic Heating Facility (AHF) 
The AHF can operate with a segmented arc heater, as shown in Figure F-10, or with a Huels arc 
heater. This results in different test capabilities as shown in Table F-1. The facility is typically 
operated with the segmented heater, which has multiple ring electrodes on either end of the 
heater. The heater, segmented or Huels, operates off of the 20-MW power supply and can 
operate using air or nitrogen. The segmented heater uses argon shield gas over the electrodes.  

An 8-degree half-angle conical nozzle with five individual segments, similar to the IHF conical 
nozzle shown in Figure F-3, is available. This results in a range of nozzle exit diameters from 12 
in. to 36 in. Several throat diameters are available, which results in a wide range of area ratios 
with minimal hardware. Free-jet stagnation type testing or free-jet shear type testing can be 
performed in this facility. Stagnation models can be as large as 8-in. diameter and wedge models 
as large as 26 in. by 26 in. Five sting arms are available on a linear injection system, as shown in 
Figure F-11, with one swept type sting arm, which is typically used for an instrumentation probe. 
The five-arm model injection system is fully programmable and has the capability of injecting 
the model nearly vertical into the flow or injecting in a transverse motion. 

The segmented heater operates at chamber pressures from 1 to 9 atm and bulk enthalpy levels 
from 500 to 14,000 BTU/lbm. Convective heating rates can range from a low value of 0.05 
BTU/ft2-sec with wedge type testing to a high value of 225 BTU/ft2-sec with the 12-in. diameter 
conical nozzle. The Huels type heater operates at chamber pressures from 1 to 40 atm and bulk 
enthalpy levels from 1,500 to 4,500 BTU/lbm. Convective heating rates are approximately the 
same as the segmented because the surface pressures on the model tend to be higher, which 
offsets the lower enthalpy typically associated with a Huels type heater.  
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Figure F-10. Ames Aerodynamic Heating Facility (AHF) 

 
Figure F-11. AHF model Injection System. 
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Figure F-12. AHF Stagnation Performance, Heat Flux vs. Pressure. 

 
Figure F-13. AHF Stagnation Performance, Centerline Enthalpy vs. Pressure. 
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Panel Test Facility (PTF) 
The PTF uses a segmented arc heater similar to IHF and AHF to drive the facility and operates 
off the 20-MW power supply. This facility is specifically designed to perform panel shear type or 
protuberance type testing and is coupled with a semi-elliptic nozzle. Two semi-elliptic nozzle 
sizes are available, a 4 in. by 17 in. and a 1.5 in. by 6.7 in., which result in either a 14-in by 14-in 
panel test size or a 4-in by 4-in panel test size. The smaller nozzle and resulting smaller panel 
test size result in higher surface pressures, heat flux, and shear on the test sample; however, these 
conditions are not shown in Table F-1.  A picture of the larger nozzle and a test sample are 
shown in Figure F-14. The test sample can be inclined in the flow from -4 to +8 degrees and can 
be changed during the run. Run times of up to 30 minutes are possible. There is good optical 
access to the test model face during the run. 

The heater operates at chamber pressures from 1 to 9 atm and bulk enthalpies from 3,000 to 
15,000 BTU/lbm. Convective heating rates on the model surface range from 0.5 to 30 BTU/ft2-
sec. Pressures range from 0.0006 to 0.05 atm. Facility performance is presented in Figure F-15 
through Figure F-17. 

 
Figure F-14. Panel Test Facility Test Cabin showing Semi-Elliptic Nozzle and Test Panel. 
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Figure F-15. PTF Panel Test Performance on a 24-in x 24-in Sample, Heat Flux vs. Wall Pressure. 

 
Figure F-16. TPTF Panel Test Performance on a 4-in x 4-in Sample, Heat Flux vs. Wall Pressure. 
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Figure F-17. TPTF Test Performance on a 4-in x 4-in Sample, Heat Flux vs. Shear Force. 

Turbulent Flow Duct (TFD) 
The TFD uses a Huels heater to drive the facility and operates off the 20-MW power supply. The 
heater can operate on either air or nitrogen. This facility is specifically designed to perform shear 
type testing and has a 2-in. by 9-in. channel flow test configuration as shown in Figure F-18. The 
test sample is installed so it is part of the channel wall and can be subjected to higher shear values 
than the other ARC facilities. Test sample sizes can be either 8 in by 10 in. or 8 in. by 20 in. 

Bulk enthalpies range from 1,300 to 4,000 BTU/lbm with convective heating rates on the model 
surface from 2 to 60 BTU/ft2-sec and pressures from 0.02 to 0.15 atm. Model shear force values 
range from 1 to 15 lb/ft2. 
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Figure F-18. Turbulent Flow Duct. 

 
Figure F-19. TFD Performance on a 2-in x 9-in Sample, Heat Flux vs. Wall Pressure. 

Johnson Space Center Arc Jet Complex 
The JSC complex contains two available test bays. Both have vacuum exhaust capability and are 
occupied with active facilities, TP-1 and TP-2.  Both test bays share a common power supply, 
steam-ejector driven vacuum system, water cooling system, high-pressure gas system, and other 
auxiliary systems. The power supply is rated for 10-MW continuous power output; however, 
both facilities typically operate at power levels around 5 to 6 MW. 

 

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25

Co
ld

 W
al

l H
ea

t F
lu

x 
(W

/c
m

2 )

Wall Pressure (kPa)

TFD Panel Test, 2-in x 9-in Sample
Heat Flux vs. Wall Pressure



Evaluation of Arc Jet Facilities Report 
 

 97 

 
Figure F-20. Sketch of the JSC Arc Jet Complex. 

Both of the arc heaters that drive TP-1 and TP-2 are segmented heaters with a tungsten button 
cathode on the upstream end and a conical copper anode on the downstream end. The test gas is 
a mixture of nitrogen and oxygen with the nitrogen and oxygen being individually injected at 
discrete locations and mixed along the heater bore. The percentages of nitrogen and oxygen can 
be varied. The heater can also be operated on pure nitrogen. Argon is not injected over the 
electrodes during testing, so only oxygen and nitrogen are injected into the heater as the test gas. 
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Figure F-21. JSC Arc Jet Facility Showing TP-1 on the Left and TP-2 on the Right. 

Test Position-1 (TP-1) 
The TP-1 facility is a channel-flow facility that is unique to the Agency. The facility is designed 
with a channel flow configuration having a 2-in. wide channel and three different test locations 
along the 10-degree half-angle nozzle as shown in Figure F-22. The test sizes are: 8 in. by 10 in., 
12 in. by 12 in., and 24 in. by 24 in. The test sample is installed so it becomes part of the nozzle 
side wall. The pressures and heat flux are highest at the upstream test position and lowest at the 
downstream test position. Test performance for the 12-in. by 12-in. and 24-in. by 24-in. sample 
sizes are shown in Figure F-23. A new 4-in. by 4-in, 10-degree half-angle duct has been 
fabricated that will provide higher heat flux, pressure, and shear than the 8-in. by 10-in. test 
station. 

The opposing side wall facing the test sample can be instrumented with pressure and heat flux 
gages, or it is possible to heat the wall to provide a radiant heating capability. Optical access to 
the test sample is not possible. 
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Figure F-22. TP-1 Channel Nozzle Showing Three Test Locations. 

 
Figure F-23. TP-1 Panel Test Performance for Heat Flux vs. Wall Pressure. 
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Test Position-2 (TP-2) 
TP-2 uses a family of 15-degree half-angle conical nozzles with exit diameters of 5, 7.5, 10, 15, 
20, 25, 30, 35, and 40 in. (shown in Figure F-24). The 12-foot diameter test chamber allows 
video and optical temperature measurement access. Two hydraulically controlled sting arms are 
available that can support models weighing up to 500 lbs. The facility can test stagnation type 
models or shear type models using a wedge configuration. The model size is dependent on the 
nozzle exit diameter being used, but four standard wedge configurations are available with test 
sample sizes of 4.5 in. by 5 in., 6 in. by 6 in., 12 in. by 12 in., and 24 in. by 24 in. 

 
Figure F-24. TP-2 40-in. exit Diameter Nozzle Configuration. 

Arnold Engineering Development Center Arc Jet Complex 
The AEDC arc jet complex contains four free-jet to atmosphere test bays, of which two are 
occupied with active arc jet facilities—H1 and H3. In addition, AEDC has a vacuum-capable test 
bay, which is occupied by the H2 facility. The two free-jet to atmosphere facilities, H1 and H3, 
provide high-heating and high-pressure simulation, which is of little interest for NASA missions. 
Therefore, the H1 and H3 heaters will not be evaluated in this report. The H2 heater, however, 
does have test capabilities that overlap an area of interest for NASA, specifically, test simulation 
in higher pressure, higher-shear operating ranges. 

The H2 facility is driven by a Huels arc heater, as shown in Figure F-25, from the 70-MW power 
supply and uses air as the test gas. The heater typically operates at a maximum power of 42 MW. 
A five-sting arm, computer controlled model injection system can inject models into the flow at 
variable speeds and move models axially in the test flow during the test. Multiple models or 
probes can be put on each sting arm, as shown in Figure F-26. Stagnation type models or wedge 
type models can be tested. Maximum run times are from 3 to 30 minutes depending on the test 
condition. The nozzle exit diameters range from 5 to 24 in. Flow-field stagnation enthalpies 
range from 1,200 to 6,500 BTU/lbm.  Facility performance is shown in Figure F-27 and Figure 
F-28. 
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Figure F-25. AEDC H2 Huels Type Arc Heater. 

 

 

 
Figure F-26. View of AEDC H2 facility Test Cabin and Model Injection System. 
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Figure F-27. H2 Wedge Test Performance Compared with NASA Wedge Test Performance. 

 
Figure F-28. H2 Stagnation Test Performance Compared with NASA Facility Performance. 
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Boeing LCAT Arc Jet Complex 
The Boeing arc jet complex has two test bays, one free-jet to atmosphere and one with vacuum 
exhaust capability. The LCAT facility occupies the vacuum capable test bay and is driven by a 
12-MW power supply.  The LCAT facility has a Huels arc heater. A rotary model injection 
system can test up to four models per run; however, typically only three models are tested per 
run. Three conical nozzles are available with 4-in., 6-in., and 12-in. exit diameters. In addition, 
the LCAT facility has a square nozzle and a semi-elliptic nozzle. Performance of the LCAT 
facility is shown in Figure F-31 through Figure F-34. 

 
Figure F-29. View of Boeing LCAT Facility. 

 
Figure F-30. View of LCAT Test Cabin Interior and Model Injection System. 
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Figure F-31. LCAT Stagnation Performance of Heat Flux vs. Pressure. 

 
Figure F-32. LCAT Stagnation Performance of Centerline Enthalpy vs. Pressure. 
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Figure F-33. LCAT Wedge Test Performance, Heat Flux vs. Wall Pressure. 

 
Figure F-34. LCAT Wedge Test Performance, Heat Flux vs. Shear Force. 
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Appendix G: Investment Options 

Several options were evaluated for NASA’s 30-year investment in arc jets to support TPS 
development and operation for future missions. They were compared on the basis of capability, 
capacity, availability, and cost. The AJEWG assumed that no more than one new construction 
complex would be identified as a viable funding possibility. The basis for estimated costs over 
30 years is included in the discussion of each option. A table of individual cost elements for each 
option is included at the end of the section [deleted from public version of report].  

The options identified for evaluation are: 

• Close the existing arc jet complexes at ARC and JSC 

• Continue operating both arc jet complexes, but provide no additional investment for 
revitalization and recapitalization 

• Make both ARC and JSC complexes healthy, including investment for revitalization and 
recapitalization 

• Close the ARC complex and make the JSC complex healthy 

• Close the JSC complex and make the ARC complex healthy 

1.1 Close the Existing Arc Jet Complexes at JSC and ARC 
The AJEWG recognizes that arc jet tests will be required to support future missions, because it is 
not anticipated that missions beyond LEO will be flown without arc jet tests, so this option 
means that test services would be procured outside NASA. The only available Government 
facility is at AEDC, and its low enthalpy, high-pressure conditions are not a good match for the 
environments anticipated for most NASA missions. The only available commercial facility is 
LCAT, at Boeing, but its capabilities do not cover the full test range needed. International 
facilities, most notably Sirocco in Italy, appear to be capable, but complications associated with 
data security and ITAR regulations suggest that regular international testing is untenable. The 
Air Force has relied on NASA test capabilities for some strategic vehicles and stated they would 
not test materials in a foreign facility, even if ITAR restrictions were not an issue.  

Although the near-term cost savings may seem attractive, the long-term costs of relying on an 
external facility have a high risk, and may ultimately exceed the cost of maintaining a NASA 
capability. Also, the availability of arc jet test time, especially for rapid access in a crisis, would 
be poor. 

Most importantly, the technical knowledge and skills associated with arc jet design, diagnostics, 
and operations will be lost to NASA. 

Estimated Costs 
The cost to close and dispose of both complexes is estimated to be several million.  

Although at face value this option offers savings, this option is unacceptable due to high risk of 
lack of access when needed and the loss of critical testing capability and knowledge.  
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1.2 Continue Operating Both Arc Jet Complexes But Provide No Additional Investment for 
Revitalization and Recapitalization 
Both complexes could continue to operate for several years without major infrastructure 
investment. The long-term deferral of refurbishment, which is a decision to run to failure, 
effectively amounts to a decision to close the complexes at an uncertain time, when a serious 
failure will render the complexes inoperable.  

Estimated Costs 
Two cases are evaluated for this option: the continuation at the current level of operation and 
operations at a reduced level.  

Reducing the operations at ARC will result in a decrease to maintenance, personnel, and 
capacity, and will essentially become proficiency operations only. Operations at JSC will 
decrease from two shifts to one shift.  

These options are also unacceptable, since continuing to operate the facilities without a strategy 
to upgrade or replace to support the long-term needs of NASA will eventually result in an 
unplanned loss of capability. 

1.3 Make Both ARC and JSC Complexes Healthy, Including Investment for Revitalization 
and Recapitalization 
In recent years, the facilities at ARC and JSC have been heavily utilized, with ARC handling all 
planetary mission testing for the Science Mission Directorate and JSC handling the bulk of 
Shuttle testing. ARC has provided backup testing for the Shuttle, and there has been considerable 
coordination of testing between the two facilities for Orion support, both through the TPS 
Advanced Development Project and subsequent Orion insight and oversight work.  

Operational benefits associated with the existence of two geographically distinct facilities have 
been demonstrated in recent years. The redundancy of some capability can compensate for a lack 
of reliability at either complex. The combined capacity permits robust response to surges in test 
requirements, which has been particularly helpful for real-time support of Shuttle missions.  

Interaction of the personnel at different facilities is also fruitful. The distinct groups have 
different approaches to dealing with similar technical issues, so more options are proposed, and 
their relative merits are vigorously assessed. At times when mission test requirements are low, 
the excess capacity can be used to investigate differences in the two facilities and the 
implications for differences in test outcomes. Members of both teams can develop deeper 
understanding of arc jet design and operations through the unique features of each facility.  

Ultimately, this option should ensure current test capabilities and maintain a robust pool of 
highly skilled personnel for arc jet operations. In the short term, vibrant teams at two locations 
are likely to promote innovative approaches for facility development, but in the long term, the 
cost of maintaining two complexes with separate operating teams will leave little funding to 
implement innovations.  

Estimated Costs 
This option is not recommended because it does not adequately address NASA’s long-term 
mission goals. Unfortunately, the benefits of operational robustness and personnel interaction 
have a considerable cost due to maintenance of two sets of infrastructure and high staffing levels. 
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The outdated technology at both facilities would be retained, so that the existing capability 
would be delivered inefficiently. 

Some of the redundancy benefits of distinct facilities can be realized at a single complex through 
judicious design of infrastructure and arc heaters. Similarly, some of the benefits of two distinct 
teams cross-pollinating to improve test practices can be realized at a single location if personnel 
are organized in separate groups. A single complex might have a group concentrating on testing 
to support mission design and operations, while a second team is devoted to material and TPS 
concept development. The groups could coordinate facility usage and share ideas on potential 
improvements. Such an approach has been effectively employed at AEDC. 

1.4 Close the ARC Complex and Make the JSC Complex Healthy 
The complex at JSC has less capability and capacity than the ARC complex and, consequently, 
has somewhat lower operating costs. It is capable of supporting LEO missions well, but its lower 
power levels provide limited utility for more energetic entry profiles. This option is somewhat 
better than closing both facilities, because some arc jet expertise is retained and small samples 
can be tested effectively, but it does not adequately address NASA’s long-term mission goals. 

Estimated Costs 
This option is unacceptable in the long term, since it leaves NASA without the higher 
performance capability that currently exists at ARC. 

1.5 Close the JSC Complex and Make the ARC Complex Healthy 
Closing the JSC arc jet complex and making the ARC complex healthy has the potential to 
reduce total arc jet costs by decreasing capacity and backup robustness without giving up 
capability, because JSC operating conditions are a subset of those achievable at ARC. JSC 
currently has superior functionality in its ability to vary gas mixtures and avoid argon in the test 
stream, but this capability can be implemented at ARC at a modest development cost. 

The cost reductions that would accrue through closure of one facility are likely to be smaller than 
anticipated. JSC also operates the RHTF with the same crew now operating the ARMSEF. Either 
the radiant capability would also be lost, or the personnel reductions would be smaller than the 
total number currently operating the arc jets. The remaining team would likely be less productive 
than they are currently. Furthermore, the lack of a second operation may reduce the impetus to 
deliver efficiency improvements at the remaining facility. The cost savings that are achieved are 
unlikely to be redirected to arc jet support at a different Center, making it less likely that the 
remaining complex can upgrade its capability. Existing technology will be maintained, but the 
pool of talent that can drive improvement will shrink. 

Estimated Costs 
This option should reduce costs relative to operating two facilities, but it reduces capacity and 
introduces some availability risk without delivering substantial capability improvement. In the 
long term, if the Agency chooses not to improve capability, this is a viable option. But it is not 
recommended because it does not adequately address NASA’s long-term mission goals. There 
are significant human resource risks associated with closure of one facility. The TPS 
communities at ARC and JSC have worked together extremely well in the years since the 
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Columbia accident, displaying unity of purpose through RTF and into Orion TPS development 
and oversight. Facility closure is likely to lead to Center-centric decision making.  

Finally, there are real risks associated with concentrating resources at ARC. The likelihood of 
major damage from earthquakes is small but real, and the consequences for Agency mission 
support could be severe. The cost of upgrades that comply with structural codes is relatively 
large in California. ARC might soon require a waiver for air quality. A new boiler would address 
that issue, but air and water quality regulation limits will continue to become more stringent in 
California, and the cost of compliance could be high. Finally, ARC is approaching its quota for 
low-cost hydroelectric power, and the cost and availability of electrical power might be 
problematic in future decades. 
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Appendix H: Work Statement  
 

Provide engineering support to the NASA Office of the Chief Engineer for, and be a member of, 
the Arc Jet Evaluation Working Group (AJEWG), a focused, independent evaluation of NASA 
arc jet facilities, considering the availability and use of other hypersonic thermal testing 
facilities, against planned and future mission requirements and provide findings that will help 
inform possible long-term investment strategy alternatives for NASA’s arc jet capability. 

Evaluation Purpose 

An arc jet facility provides ground-based, long-duration, high-energy density (enthalpy) 
environments for testing thermal protection materials. These facilities are designed to simulate 
heating and aerothermal forces experienced during hypersonic deceleration of a spacecraft 
through a planetary atmosphere. The environments the arc jet can achieve allow material 
engineers and spacecraft designers to: develop new, innovative thermal protection materials; 
select the appropriate heat shield, backshell, and seal design, and validate estimates of its 
response; and flight certify and establish required performance margin for the thermal protection 
system (TPS) design during entry, descent, and landing (EDL). They also provide NASA the 
capability to test, analyze, and consider repair alternatives to on-orbit thermal protection system 
anomalies, as well as the capability to support mishap investigation boards.  

Introduction 

In operation, high-pressure air is heated electrically to a flight-like energy enthalpy. This high-
energy air is expanded and accelerated to hypersonic speeds through a nozzle into a vacuum test 
chamber where the test article(s) is/are exposed to a flight-relevant heating, pressure, and shear 
environment. The test article is inserted into the flow for periods of up to an hour to simulate the 
long duration exposure of an actual entry. Data is recorded continuously from model-embedded 
sensors and optical instrumentation. Test articles include ablative, as well as reusable materials 
and systems. 

The arc jet facility includes elements that are required to accomplish given program or project 
requirements, as well as to maintain the facilities in ready-to-operate condition. This includes the 
skilled workforce, support facilities/equipment, suppliers/supplies, and contracts that, when 
combined, perform the arc jet function. Facilities and equipment include all real 
property/structures such as buildings, software and business systems, and any personal property 
that might be required to operate the arc jet. The workforce includes the technical staff (both 
civil servant and contractor) required to safely and reliably operate the facility, as well as to 
conduct analysis, engineering and science, and produce reports. The workforce includes all 
support staff required to conduct business-like functions such as scheduling and budget 
formulation, execution, and reconciliation. Suppliers/supplies, contracts, and other items for 
consideration include O&M, data/data storage, knowledge (intellectual property, reports, and 
collective undocumented wisdom and experience), old and current contracts and contract-related 
termination liability, and all other ancillary supplies, tools, utilities, and consumables required 
for safe arc jet operation. 
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The AJEWG will document requirements and capabilities for current and planned NASA 
missions, as well as aeronautics research milestones and advanced entry system technologies that 
drive the utilization of arc jet facilities used for hypersonic thermal testing. Those requirements 
will be evaluated against the performance envelopes and throughput capacities that are supported 
in the current NASA thermal protection system test facility configuration. Support for all mission 
phases, from precursor technology maturation through sustaining engineering of operational 
systems, should be considered. Driving thermal testing requirements should consider human and 
robotic Mars entry; human and robotic Earth return from the LEO, the Moon or Mars; deep 
space robotic Earth return; robotic science missions to Venus and the Giant Planets; and 
atmospheric entry of robotic science missions to Titan. Table H-1 is provided as a guide for one 
method that could be use to identify driving thermal testing requirements for planned and future 
missions. Hypersonic thermal test facility throughput capacities should consider use of all 
available resources (both NASA and non-NASA), maximum throughput capacity of those 
resources, and envelope of operation of those resources against thermal testing requirements for 
future missions. Throughput capacities of test facilities are not expected to be stagnant, as 
consideration should be given for planned maintenance and facility upgrades. A report will be 
generated to capture results of the evaluation and based on findings and analysis; the report will 
include possible investment strategy alternatives for NASA’s hypersonic thermal test facility 
capability. 

Charter 

The AJEWG will coordinate their efforts and findings with the Technical Capabilities, 
Requirements, and Utilization Panels of the Facilities Program Board, to inform these panels as 
they develop a 5-10 year Agency investment strategy. Findings should consider: 

• Maintaining current capabilities for a specified period of time, 
• Consolidation and upgrade of current capabilities as deemed appropriate, 
• New construction (“Greenfield” approach), 
• Other categories to include combinations of alternatives and utilization of outside capability 

such as Arnold Engineering Development Center (AEDC) or Boeing St. Louis arc jets. 
 

 

 

 



Evaluation of Arc Jet Facilities Report 
 

 112 

Table H-1: Program and Project Requirements for Arc Jet Capability 

Program Gas

Input 
Power 
(MW)

Typical 
Test Time 
(heat load)

Types of 
Test 

Article

Model 
Test 

Positions

Nozzle 
Exit 

(Inches)
Mach 

Number

Flow 
Enthalpy 
(Btu/lbm)

Surface 
Pressure 

(atm)
Heating Rate 
(Btu/ft2-sec)

*Human Mars Entry
*Robotic Mars Entry
*Human Lunar Return
Human ISS Return
Robotic Lunar Return
*Human Mars Return
*Robotic Mars Return
*Deep Space Robotic Return
Robotic Venus Aerocapture
Robotic Venus Entry
Robotic Giant Planet Aerocapture
Robotic Giant Planet Entry
Robotic Titan Aerocapture
Robotic Titian Entry
*ISS Down Mass

*Most likely future missions.  
 

The AJEWG will be comprised of knowledgeable individuals that do not have a stake in the 
outcome, and this working group will be led by Mike Ryschkewitsch, NASA Chief Engineer. 
The AJEWG Lead will engage technical experts and advisors as required.  

Organization 

 

• Draft Report: February 24, 2010, including possible investment roadmap alternatives (rough 
order estimated cost, schedule and risk) that inform the 5-10 year infrastructure investment 
strategy to provide capability through 2040. 

Deliverables 

 

• Final Report: March 31, 2010. 
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