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Abstract 
 

 
A physics-based, systematically coupled, multidisciplinary prediction tool (MUTE) for rotorcraft 

noise was developed and validated with a wide range of flight configurations and conditions. 

MUTE is an aggregation of multidisciplinary computational tools that accurately and efficiently 

model the physics of the source of rotorcraft noise, and predict the noise at far-field observer 

locations. It uses systematic coupling approaches among multiple disciplines including 

Computational Fluid Dynamics (CFD), Computational Structural Dynamics (CSD), and high-

fidelity acoustics. Within MUTE, advanced high-order CFD tools are used around the rotor blade 

to predict the transonic flow (shock wave) effects, which generate the high-speed impulsive 

noise.  Predictions of the blade-vortex interaction noise in low speed flight are also improved by 

using the Particle Vortex Transport Method (PVTM), which preserves the wake flow details 

required for blade/wake and fuselage/wake interactions.   The accuracy of the source noise 

prediction is further improved by utilizing a coupling approach between CFD and CSD, so that 

the effects of key structural dynamics, elastic blade deformations, and trim solutions are 

correctly represented in the analysis.  The blade loading information and/or the flow field 

parameters around the rotor blade predicted by the CFD/CSD coupling approach are used to 

predict the acoustic signatures at far-field observer locations with a high-fidelity noise 

propagation code (WOPWOP3).  The predicted results from the MUTE tool for rotor blade 

aerodynamic loading and far-field acoustic signatures are compared and validated with a 

variation of experimental data sets, such as UH60-A data, DNW test data and HART II test data.  
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Chapter I 

Introduction & Background 

 
MUTE is a systematic combination of multidisciplinary analysis tools that accurately and 

efficiently models the physics of the source of the rotorcraft noise, and predicts the noise at far-

field observer locations.  MUTE uses a systematic coupling approach among multiple disciplines 

including Computational Fluid Dynamics (CFD) with high-fidelity wake modeling, 

Computational Structural Dynamics (CSD), and high-fidelity acoustics.  Figure 1.1 illustrates 

MUTE with its multidisciplinary analysis tools.  

 

 

 
 

The objective of developing the MUTE tool is to accurately model the physics of the 

noise source, and to understand the basis of the noise generation from rotorcraft in a wide range 

of flight regimes.  Within MUTE, advanced high-order CFD tools are used around the rotor 

blade to predict the transonic flow (shock wave) effects, which generate the high-speed 

impulsive noise.  Predictions of the blade-vortex interaction noise in low speed flight are also 

Figure 1.1: MUTE uses a systematic coupling approach among multiple disciplines, to 
accurately and efficiently predict rotorcraft noise. 
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improved by using the Particle Vortex Transport Method (PVTM), which preserves the wake 

flow details required for blade/wake and fuselage/wake interactions.  The accuracy of the source 

noise prediction is further improved by utilizing a coupling approach between CFD and CSD, so 

that the effects of key structural dynamics, elastic blade deformations, and trim solutions are 

correctly represented in the analysis. 

 To efficiently and successfully develop the MUTE tool, the project was divided into 3 

major tasks.  Within each of them, an essential element of the MUTE tool was developed and 

validated during the first two years.  The integration of these elements and the validation of the 

whole MUTE tool were undertaken in the third year of the project.    

 

The purpose of the first task (task 1) was to 

develop high order near blade CFD algorithms 

coupled with CSD for accurate source noise 

prediction. In this task, the effect of high-order 

CFD algorithms on the prediction of rotor blade 

loading was investigated. The effect of 

conventional wake modeling/capturing methods, such as free-wake and CFD with overset-grid 

methods, on the prediction of rotor blade loading were also studied and compared with the new 

PVTM method.  

 

The second task (task 2) was to apply 

and validate the Particle Vortex 

Transport Method (PVTM) for 

accurate wake modeling. In this task, predictions from the PVTM method developed by the Co-I 

were compared with the UH60-a blade loading test data, and the BVI loading data from the 

HART II test. 

 

The purpose of the final task 

(task 3) was to develop an 

improved and efficient interface 

with the acoustic propagation code (WOPWOP 3). A python based control script was developed 

Computational Structure 
Dynamics (CSD) 

High-order 
Computational Fluid 

Dynamics (CFD) 

High-fidelity Wake 
Modeling 

 

High-order 
Computational Fluid 

Dynamics (CFD) 

High-order 
Computational Fluid 

Dynamics (CFD) 
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to control the coupling processes among CFD, CSD and WOPWOP 3.  For acoustic predictions, 

both permeable surface and impermeable surface methods were implemented in the coupling 

process. The acoustic prediction results were compared with the DNW high-speed test case, and 

the HART II BVI noise case.  
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Chapter II 

 

CFD Coupled with CSD for Accurate Source Noise Prediction 
 

 
2.1 Computational Fluid Dynamics (CFD) / Computational Structural Dynamics (CSD) 

Coupling Procedure 
 

Aerodynamic/structural analysis of helicopter rotors is a challenging problem that requires 

multidisciplinary methods to predict the rotor performance. In general, a finite element 

computational structural dynamics (CSD) analysis can predict blade motions and structural 

dynamics accurately if correct surface aerodynamic loadings are provided. However, due to the 

overwhelming complexity of the comprehensive analysis, the aerodynamic components inside a 

CSD analysis are based on lower-order lifting line theory with wake/inflow models and two-

dimensional airfoil tables. These cannot physically model some complicated phenomena such as 

unsteady, three-dimensional viscous flow-fields, transonic flow with shocks, reverse flow and 

dynamic stall. On the other hand, computational fluid dynamics (CFD) analysis will provide high 

fidelity, nonlinear aerodynamics if the elastic rotor motions can be obtained from a CSD 

analysis. Thus, combining CFD and CSD as a systematic rotorcraft analysis tool is getting more 

and more attention.  

Coupling between CFD and CSD can be accomplished in two ways. The first method is 

loose (weak) coupling methodology, where information is transferred on a one per revolution, 

periodic basis between CFD and CSD. The second is tight (strong) coupling, where the CFD and 

CSD are coupled at every time step and marched forward in time simultaneously. Although tight 

coupling is more rigorous and can solve both steady and unsteady problems, the choice of 

algorithm is not trivial and many issues have to be carefully considered. On the other hand, the 

loose coupling approach is more mature and has been widely used in predicting blade loadings at 

different steady flight conditions.  

Currently, a Reynolds averaged Navier-Stokes CFD code (TURNS) [2.1] and a rotorcraft 

comprehensive analysis/CSD code (CAMRAD II) [2.2] have been coupled for all of the 

following simulation results.  The loose coupling approach has been used for these validation 

cases since they are all under steady and periodic flight conditions.  
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Figure 2.1 CFD/CSD Coupling Procedures between TURNS/Free-Wake and CAMRAD 
(Red Box --- Main CFD, CSD and Wake Analysis Solvers) 

(Blue Box --- Interface codes for CFD/CSE coupling iterations) 
(Black Box --- Data/Information exchanged between these main solvers) 
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As shown in Figure 2.1, during the coupling procedure, a CAMRAD II blade motion file 

is first generated with the position of the un-deflected blade quarter chord and the relative 

displacement of three translations and three rotations of the deflected quarter chord as a function 

of the radial location and azimuth angle. TURNS reads this file as input, deforms the grid, and 

computes the results for the next revolution with these motions. To improve convergence, a 

“delta” method has been used to feed back the loading into CAMRAD II. The blade loading 

increment, ∆F, is updated from the difference between the CFD loads and the comprehensive 

analysis calculations,  

)( 111

CSD
i

CFD
i

CSDCSD
i FFFF

i −− −+∆=∆
−

.           (1) 

In this manner, it is not necessary to separate out the lifting line analysis embedded inside the 

comprehensive analysis code (CAMRAD II). CAMRAD II uses this delta force file as input for 

the next iteration. The coupling iterations repeat the above procedure until the predicted loading 

between two iterations is converged.  

 

2.2 Rotorcraft Wake Capturing/Modeling Methods Studies 

 

For rotorcraft aeromechanics simulation, correctly capturing the wake effects is very 

important under many flight conditions. Traditionally, there are two ways to capture/model 

rotorcraft wake effect for CFD simulations. First is the free-wake method, which is based on 

potential flow theory and is dependent on empirical inputs. The second is the CFD overset grid 

methodology, where a large background grid is used with CFD to directly capture the wake 

effect from the blade. This is a physics based, high resolution wake capturing method. However, 

the results are heavily dependent on the background grid resolution, thus are limited by the 

available computational resources. Additionally, the numerical dissipation embedded in the 

algorithm may diffuse the tip vortex too rapidly. 

A new Particle Vortex Transport Method (PVTM) [2.3] has been developed under another 

NRA contract (NNL07AA32C). This is also a physics based high-fidelity wake modeling 

method, where the incompressible vortex transport equation is solved using a Lagrangian 

approach.  
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In task 1, the first two wake capturing/modeling methods, overset grid and free-wake, were 

investigated and validated with UH60a experimental data to assess the advantages and 

limitations of these approaches during different flight conditions. Then, the overset grid 

methodology was applied to the DNW high-speed case and HART II baseline BVI case, to 

obtain more accurate noise source prediction for further acoustic analysis. 

In task 2, the PVTM method was utilized and validated against the same experimental data 

to assess the model limitations and to improve the accuracy and efficiency of the approach.  

 
2.2.1 CFD with overset grid methodology simulation results and discussions for UH60a 

high-speed level flight, low-speed level flight and dynamic stall flight conditions 
 

 
Figure 2.2 Overset Grid (near body grid + background grid) 

 
 In the overset grid method, the full grid around the rotor was divided into two parts, a 

very fine near-body grid to simulate the flowfield around the blade and a large cylindrical 

background grid to capture the wake effects. The RANS solver was used for both grids, thus this 

method can provide physics based high-fidelity flow simulations. A typical overset grid used by 

TURNS is shown in Figure 2.2, where the near-body grid has 3.2 million grid points and the 
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background grid has 2.2 million grid points.  This method is also used by NASA with the 

OVERFLOW CFD code.  

 The first set of experimental/flight test data used in this project was for a UH-60A 

helicopter in level flight. The data were obtained during the NASA/Army UH-60A Airloads 

program.  Currently, the database provides the aerodynamic pressure, rotor forces and moments 

etc. at 9 span locations r/R = 0.225, 0.40, 0.55, 0.675, 0.775, 0.865, 0.92, 0.965, and 0.99, for 

three level flight conditions, allowing for the validation of the aerodynamic models. These three 

flight conditions are: a high-speed level flight (counter no. 8534) with an advance ratio 0.368, a 

low-speed level flight (counter no. 8513) with an advance ratio 0.149, and a high-thrust dynamic 

stall flight (counter no. 9017) with an advance ratio 0.237.   The blade loading predictions from 

CFD with overset grid coupled with CSD are compared with these test data and are discussed in 

the following sections for all three flight conditions. 

 
2.2.1.1 UH-60A High-speed Level Flight Results and Discussions (c8534) 
 

 
Figure 2.3 Convergence History (Blade Loading Prediction by TURNS at 96.5% Span) 
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Figure 2.4 Total Normal Force Comparisons with Flight Test Data 

       
 

       
Figure 2.5 Pitch Moment Comparisons with Flight Test Data 
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For the UH-60A test, flight test counter number 8534, is a high-speed level flight case, 

where the advance ratio is 0.368. The rotor speed is 258 RPM, with a tip Mach number 0.6415. 

The trimmed thrust is at CT/σ = 0.08433. As shown in Figure 2.3, it takes 7 CFD/CSD coupling 

iterations to get a converged result for this case.   As shown in Figures 2.4 and 2.5, the total 

normal forces and pitch moments are in good agreement with the flight test data. Especially in 

the tip region, the near-body CFD solver has accurately captured the transonic flow phenomena 

and the shock wave interaction at the advancing side. This is important for the improved 

prediction of these forces and moments in the tip region compared to the comprehensive analysis 

simulation.  
 
2.2.1.2 UH-60A Low-speed Level Flight Results and Discussions (c8513) 
 

 
 

Figure 2.6 Convergence History (Blade Loading Prediction by TURNS at 96.5% Span, c8513) 
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Figure 2.7 Total Normal Force Comparison with Flight Test Data (c8513) 

    

    
Figure 2.8 Pitch Moment Comparison with Flight Test Data (c8513) 
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The flight test counter number 8513 is a low-speed level flight case with an advance ratio 

of 0.149. The rotor speed is also 258 RPM, with a tip Mach number 0.6646. The trimmed thrust 

is slightly lower than c8534, at CT/σ = 0.0763. As shown in Figure 2.6, it also takes 7 CFD/CSD 

coupling iterations to get a converged result for this case. However, because of the low free-

stream velocity, the CFD requires two revolutions per iteration to obtain a periodic solution.  In 

general, the total normal forces and pitch moments are also in good agreement with the 

experimental data as shown in Figures 2.7 and 2.8.  Since this is a low-speed level flight case, the 

blade vortex interaction is not dominant.  It can be seen from the test data that there are no high-

frequency BVI effects on the blade loading.  However, the tip vortex wake effect from the 

preceding blade is still represented by low-frequency blade loading variations, which are just 

fairly predicted by the CFD overset method.  Some of the tip vortex effects from the preceding 

blade are diffused by the overset methodology, and improvement of the low-speed CFD 

predictions was investigated with the PVTM method. 

 
2.2.1.2 UH-60A High-thrust Dynamic Stall Flight Results and Discussions (c9017) 
 

 
 

Figure 2.9 Convergence History (Blade Loading Prediction by TURNS at 96.5% Span, c9017) 
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Figure 2.10 Total Normal Force Comparison with Flight Test Data (c9017) 

  

  
Figure 2.11 Pitch Moment Comparison with Flight Test Data (c9017) 
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The flight test c9017 is an intermediate speed case with advance ratio of 0.237, high 

thrust with CT/σ at 0.129, and level flight test point flown at 17,000 ft.  This is a challenging 

rotorcraft test case due to the wide effects of unsteady flow conditions, especially the dynamic 

stall effects, with noticeable wake interactions.  

As shown in Figure 2.9, it takes 9 iterations to get a fairly converged result for this case.  

It is difficult to obtain a converged result at the tip region on the retreating side due to the strong 

unsteady effects from the dynamic stall.  As for the forces and moments comparison, as shown in 

Figures 2.10 and 2.11, reasonable agreement is still reached between the CFD predictions and 

the flight test data.  In Figure 2.10, the total normal forces are matched with the experiment, 

except at the root region, r/R = 0.40, where the rotor hub effects are not simulated by CFD. The 

low-frequency wake effect from the preceding blade is also captured. In Figure 2.11, it can be 

seen that the two dynamic stall peaks at the tip region in retrieving side are also fairly captured 

by the CFD. It is essential to have a physics based, high-fidelity solver around the near-blade 

region to capture such unsteady flow characteristics.  
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2.2.2 CFD with Free-wake method simulations and validation 

The following figure shows the typical approach to employing the CFD+Free-wake 

method. Here, the CFD solver is used for the near-body grid to accurately capture the physics of 

flow characteristics around the blade, and a free-wake module is used to get the wake geometry 

and the wake effect quickly. Then, the wake effect is fed back to the CFD solver using a field-

velocity approach.  Compared to the other two methods, this method can generate results much 

faster and has great potential for design purposes.  

  

            
 
2.2.2.1 UH-60A High-speed Level Flight (c8534) 

The UH-60A high-speed case (c8534) has a large advance ratio of 0.368, so the wake 

effect will be expected to be small. The following figures show the comparison of blade loading 

predictions (normal forces and pitch moment) from the CFD+Free-wake method with 

CFD+Overset grid method and the flight test data. 

Figure 2.12 shows the convergence history of the CFD+Free-wake method. For this high-

speed case, both methods converge very quickly, requiring only 6 iterations to get a fully 

converged result. Actually, the CFD+Free-wake method converges even faster than the overset 

grid method, needing only 3-4 iterations to approach a converged result.  

The blade loading predictions are compared in Figures 2.13 and 2.14. It can be seen that 

the CFD+Free-wake method agrees well with both the overset grid predictions and flight test 

data. Particularly in the root to in-board region (Figures 2.13), the CFD+Free-wake method gives 

slightly better predictions than the overset-grid method. This is because the free-wake module 

has a root-wake component, while the overset grid cannot fully capture the root wake due to the 
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grid resolution in that region.  Around the tip region (Figure 2.14), the CFD+Overset grid 

method gives a slightly better prediction than the free-wake method. This is due to the fact that 

the full CFD method captures the physics of the transonic effect better than the free-wake 

approach. 

 
Figure 2.12 Convergence History of CFD+Free-wake  

(Blade Loading Prediction by TURNS at 96.5% Span, c8534) 

 
Figure 2.13 Normal Forces and Pitch Moment Comparisons at r/R = 55% (c8534) 
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Figure 2.14 Normal Forces and Pitch Moment Comparisons at r/R = 96.5% (c8534) 
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Figure 2.15 Convergence History of CFD+Free-wake Method 

 

 

  
Figure 2.16 Normal Forces and Pitch Moment Comparisons at r/R = 55% (c8513) 
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Figure 2.17 Normal Forces and Pitch Moment Comparisons at r/R = 96.5% (c8513) 
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Figure 2.18 Convergence History of CFD+Free-wake Method 

 

 

 
Figure 2.19 Normal Forces and Pitch Moment Comparisons at r/R = 55% (c9017) 
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Figure 2.20 Normal Forces and Pitch Moment Comparisons at r/R = 96.5% (c9017) 
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time they arrive at the acoustic data surface, so that the accuracy of the flow-field description on 

the acoustic surface will be reduced. Hence, the far-field propagation based on the permeable 

surface FW-H equation method will provide non-realistic solutions.  

This activity entailed the implementation of the low dispersion and low dissipation 

Symmetric Total Variation Diminishing (STVD) scheme developed by Helen Yee into the 

current CFD solver.  With a 6th (or even higher 8th order) spatial accuracy algorithm, and with a 

2nd order temporal accuracy scheme, the unsteady flow solutions and shock wave interactions 

can be accurately predicted.  Furthermore, this high-order near-blade CFD solver was coupled 

with the proposed PVTM method, which resolves the transmission of the vortices into the rest of 

the flow field, to accurately model the physics of the source of BVI noise. 

In the baseline TURNS, Roe’s approximate Riemann solver [2.5] has been used for the 

calculation of inviscid fluxes. Considering a cell face at i+1/2, in the Roe scheme, the flux 2/1+iF

is computed as: 

[ ] [ ])(,(
2
1)()(

2
1

2/1 LRRLRiLii qqqqAqFqFF −−+=+  

where the first part [ ])()(
2
1

RiLi qFqF +  is the Physical Flux and the second part 

[ ])(,(
2
1

LRRL qqqqA −  is the Numerical Viscosity filter. In the baseline TURNS, the physical 

flux is solved with the Roe solver, which is second-order. The numerical viscosity filters are 3rd 

order MUSCL [2.6] (Monotone Upstream-Centered Scheme for the Conservation Laws), and 5th 

order WENO [2.7] (Weighted Essentially Non-Oscillatory) schemes. 

 In the low dissipation shock-capturing schemes of Yee et al.  [2.8], there are two steps. 

The first step is the high-order spatial base scheme. The second step is the appropriate 

characteristic-based filter to improve stability, shock and fine flow structure capturing. Thus, the 

flux at i+1/2, 2/1+iF  can be computed as: 

2/1+iF = Base Scheme + Numerical Filter Term 

For the base scheme, a sixth-order central difference scheme (STVD 6) is currently used: 
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For the numerical filter term, the MUSCL and WENO schemes included in the baseline 

TURNS to dissipate the numerical viscosity are already good characteristic-based high-order 

filters. Therefore, in the second step of STVD scheme, these numerical filter terms are retained 

to simplify the implementation. 

The results shown below compare combinations of these four different schemes, which 

are MUSCL+ROE, WENO+ROE, MUSCL+STVD6 and WENO+STVD6. 

The test case for the high-order scheme is again the UH60-A high speed level flight. The 

structural analysis using CAMRAD II was included in the computation and coupling iterations 

between CSD and CFD were conducted until the blade loading predicted by CFD converged.  

The CFD code used here was the single blade TURNS code with a free-wake module as 

described in the previous section. In the future, the free-wake module will be replaced by the 

PVTM module and the code will be used for both high-speed and low-speed BVI simulations.  

Figures 2.22 and 2.23 show the normal force and pitch moment predictions of the four 

different schemes (MUSCL-ROE, MUSCL-STVD6, WENO-ROE, and WENO-STVD6) 

compared with experimental data. The results for the WENO and MUSCL schemes are similar. 

However, the STVD6 scheme gives slightly better predictions than the ROE scheme, particularly 

when there is a large gradient like that at the tip region where transonic flow effects are present.  

From the computational time perspective, for this high speed case, the STVD6 scheme 

generally takes approximately 3% more time than ROE scheme. However, the WENO scheme 

takes 24% more time than MUSCL scheme. So the MUSCL-STVD6 scheme was selected for the 

current simulations. 
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Figure 2.22 Normal Forces and Pitch Moment Comparisons at r/R = 55% (c8534) 
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Figure 2.23 Normal Forces and Pitch Moment Comparisons at r/R = 96.5% (c8534) 
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2.4 CFD+Overset grid Coupled with CSD for DNW High-speed Source Noise Prediction 

 

 For the whole CFD/CSD/Acoustic frame work testing, initial validations were performed 

using the DNW wind-tunnel test data [2.9, 2.10].  Here, the CFD+Overset grid method was used, 

and the overset grid is shown in Figure 2.24.  Compared to the UH60-A cases, a refined grid was 

used with 4.82 million near-body grid points (4*155*139*56) and 5.69 million back-ground grid 

points (4*69 *129*160). 

 The test case is a high-speed case 

with advance ratio of 0.310 and advance 

tip Mach number of 0.873.  Figure 2.25 

shows the convergence history, where 6 

iterations are needed to obtain a 

converged result.    

Comparison of the predicted 

force and moment coefficients with the 

experimental data are shown Figures 

2.26 and 2.27. It can be seen that for this 

DNW high-speed case, both the lift and 

pitch moment coefficient predictions 

follow trends similar to the measurements.  

However, the measured data shows some 

weak BVI effect on the advancing side 

which is not captured by the CFD predictions with this grid resolution.  Conversely, the shock 

effect on the advancing side for this high-speed case has been captured. 

   

Figure 2.24 The Overset Grid for DNW High-
Speed Simulations 
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Figure 2.25 The Convergence History for DNW High-Speed Case 

 

 

 

 
Figure 2.26 Normal Forces and Pitch Moment Comparisons at r/R = 55% (DNW) 
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Figure 2.27 Normal Forces and Pitch Moment Comparisons at r/R = 96.5% (DNW) 
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Figure 2.28 Convergence History for the HART low-speed BVI case  

 
Figure 2.29 The Blade Loading Comparison at 87% Span Location 
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For this HART case, the CFD+Free-wake method was also used to predict the BVI effects. 

After a few tests, a refined grid (3.2 million grid points) was used, as shown in Figure 2.30. 

The coupling iterations with CSD to get trim solutions were converged after 10 revolutions. 

However, the predicted blade loadings show little of the BVI effects as seen in Figure 2.31. 

 

 
 

Figure 2.30 The CFD-Freewake Grid 
 

 
Figure 2.31 The CFD-Freewake Blade Loading Predictions for HART II Baseline Case 
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Chapter III  
 

Particle Vortex Transport Method (PVTM) for Accurate Wake Modeling 
 
  

Modeling the highly nonlinear convective 

wake flow of rotorcraft is challenging.  Two 

major approaches, full CFD overset grid method 

and free-wake method, were investigated in Task 

1 against a variety set of experimental data with 

different configuration and flight conditions. It 

has been found that, although the overall blade 

loading predictions by CFD are in good 

agreement with the flight test data for a wide range of flight conditions (high-speed, low-speed, 

and dynamic stall), there are limitations in preserving the wake effects away from the blade for 

these two methods, such as numerical dissipation and grid dependency.  

There is another relatively new method to model the vortex, the Vortex Transport Method 

(VTM) [3.1], which solves vortex transport equations to determine the evolution of the vorticity 

field on a uniform Cartesian grid.  The approach satisfactorily models the evolution of the 

vorticity field, but the vortex source used is derived from a simplified 2D aerodynamics model. 

The Co-I, Dr. Phuriwat Anusonti-Inthra, developed a combined approach under another 

NRA contract (NNL07AA32C). This approach uses CFD in the vicinity of the rotor blades to 

capture the generation of the vortices, and PVTM to resolve the evolution of the vortices in the 

rest of the flow field (see Figure 3.1).  The fully-coupled CFD-PVTM is implemented by 

appropriate information exchange between CFD and PVTM at every time step.  This approach 

for wake capturing is relatively new and requires further investigation and validation. 

In this task work, this fully coupled CFD-PVTM approach was used to model the wake 

flow from the rotor systems.   A series of systematic and comprehensive validations was 

conducted to assess modeling limitations and to improve the accuracy and efficiency of the 

approach. 

 

 
 

Figure 3.1 Gridless PVTM prescribes 
and preserves evolution of wake from 

rotor systems. 
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3.1 UH60 simulations using coupled CII/TURNS/PVTM method 
 

The coupled CII/TURNS/PVTM methodology was applied to simulate two UH60 cases 

(c8534 and c8513). The near body grid for UH60 blade used by TURNS is presented in Fig. 3.2. 

The grid has about 1.6 million points and extends about 1 chord length in all directions, except 

behind the blade tip where the grid only extends about 0.5 chord.  The variations in blade 

profiles and twist distribution of the UH60 blade grid are shown in Fig. 3.3. The PVTM cell 

resolution is 0.5 chord. A loose coupling methodology is used to obtain coupled trim solution. 

More detailed explanations of the PVTM method and the validation results with UH60 forward 

flight data can be found at Ref. 3.2. 

 

UH60 Case c8534 

Simulations for case c8534, µ = 0.34, are obtained using a coarse PVTM grid. The PVTM grid 

for this case is shown in Fig. 3.4. With the PVTM grid, the finest resolution zone covers about 2 

full revolutions of the rotor wake. Nine coupled trim iterations are simulated, and the 

convergence history of the trim parameters and vehicle trust are presented in Figs. 3.5 and 3.6, 

respectively. The results are shown using 5 and 20 TURNS sub-iterations. It is observed that the 

20 sub-iteration run converge to different trim values.  The comparison of the resulting rotor 

blade normal force and the experimental data at nine radial stations is presented in Fig. 3.7.  

Overall the correlations of the blade normal force are good for all radial stations. The 20 sub-

iteration results provide slightly better correlation than the 5 sub-iteration results. The vorticity 

field results are shown in Fig. 3.8. Overall, the vorticity fields with 5 or 20 sub-iterations are 

similar, with only slight differences in the vorticity with the wake age of more than 1 revolution. 

UH60 Case c8513 

For case c8513, µ = 0.1489, the coupled simulations are obtained using 20 sub-iterations for 

TURNS and the same PVTM grid system (Fig. 3.4). The convergence history of the thrust and 

trim parameters are given in Fig. 3.9. The blade normal force correlation between the simulation 

and experimental data as seen in Fig. 3.10 is generally good, except at a few radial stations. 

Another comparison of the normal force predicted from CFD/PVTM simulations with full CFD 

and CFD/free wake results are shown in Fig. 3.11 for completeness.  The converged vorticity 

field results from PVTM in Fig. 3.12 show the presence of super-vortices behind the rotor.  
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Figure 3.2 UH60 blade grid for near body CFD calculation (Dimension: 219×131×55) 

 
 

 
 

Figure 3.3 (a) UH60 blade profiles and (b) blade twist distribution 
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Figure 3.4 Schematic of PVTM grid with multi-resolution zones for c8534 

 
 

  
                       (a) with 5 sub-iterations                                 (b) with 20 sub-iterations 

Figure 3.5 Convergence history for rotor trim parameters (UH-60A c8534) 
 

  
                       

                          (a) with 5 sub-iterations                                 (b) with 20 sub-iterations 
Figure 3.6 Convergence history for rotor thrust (UH-60A c8534) 
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(a) with 5 sub-iterations for TURNS 

 
(b) with 20 sub-iterations for TURNS 

Figure 3.7 Normal force comparison (UH-60A c8534) 
(o: flight test data, --- intermediate iterations, --- converged CFD/CSD/PVTM solution) 
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                       (a) with 5 sub-iterations                                 (b) with 20 sub-iterations 

Figure 3.8 Converged vorticity field (UH-60A c8534) 
 
 
 

 
 

Figure 3.9 Convergence history of thrust and trim parameters (UH-60A c8513) 
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(a) Intermediate CSD/CFD/PVTM results 

 
(b) Converged CSD/CFD/PVTM results 

Figure 3.10 Comparison of normal force (UH-60A c8513) 
(o: flight test data, ---: intermediate results, ---: converged CFD/CSD/PVTM result) 
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Figure 3.11 Comparisons of normal force (UH-60A c8513) 

     
  (a) Isotropic view     (b) Back view 

 
(c) Top view 

Figure 3.12 Converged vorticity field (UH-60A c8513) 
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3.2 HART II simulations using coupled CII/TURNS/PVTM method 
 

The coupled CII/TURNS/PVTM method was also used to simulate the HART II baseline 

case [3.3], descent condition at µ = 0.15.  The near body grid for TURNS and the blade twist 

profile are shown in Figs. 3.13 and 3.14, respectively. A wind tunnel trim is used to simulate the 

wind tunnel test condition. The TURNS grid has about 1.5 million cells. The case is simulated 

using low and high PVTM resolutions. 

 

Low Resolution PVTM 

 

The low resolution PVTM cells are similar to the one described in Fig. 3.4. The convergence 

history of the thrust and trim parameters are shown in Fig. 3.15. The comparisons the normal 

blade force and the experimental data are given in Figs. 3.16-17. The only experimental data 

available is for one radial station (r/R = 0.87).  The correlation of the converged low resolution 

result is fair.  Some BVI events are observed in the first and fourth quadrants for the blade, but 

the magnitude and duration of the events are very different from the experimental data.  Figure 

3.18 shows the converged vorticity field for this case. The super-vortices behind the rotor are 

apparent.  

 

High Resolution PVTM 

 

The high resolution PVTM grid structure is shown in Fig. 3.19. Two sets of high resolution 

results are presented with different initial conditions: (A) using the converged low resolution 

wake results as the initial condition, (B) using no initial wake. Figures 3.20-22 show the results 

from the Case (A). It is seen that the trim variables obtained from the converged low resolution 

PVTM wake is very different from the required trim for high resolution PVTM wake.  However, 

the high resolution results are still not converged.  The normal force comparison is presented in 

Figs. 3.21-23.  Slightly better correlation is seen for the high resolution results than the low 

resolution results. Case (B) results are presented in Figs. 3.23-24. The converged high resolution 

results and the acoustic predictions were not available for this final report, but they will be sent 

for a paper publication in the future.  

 



 40 

 

 

 
 
 

Figure 3.13 HART II blade grid 

(a) Grid 

(b) Blade Profiles (r/R = 0.25, 0.78, 0.99)  
 

Figure 3.14 HART II blade twist profile 
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Figure 3.15 Trim convergence history (HART II: BL, low resolution) 
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Figure 3.16 Comparison of blade normal force (HART II: BL, low res.) 

 (oo: exp. data, --: intermediate results, --: converged CFD/CSD/PVTM result) 

 
Figure 3.17 Comparison of blade normal force at r/R = 0.87 (HART II: BL, low res.)  

(oo: exp. data, --: intermediate results, --: converged CFD/CSD/PVTM result) 
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 (a) View from retreating side (b) view from back 

Figure 3.18: Converged vorticity field (HART II: BL, low resolution) 
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Figure 3.19 Schematic of PVTM grid with multi-resolution zones for HART high resolution 

results 
 

 

 
Figure 3.20 Trim convergence history (HART II: BL, high resolution: A) 

(Iteration 1-10: low resolution PVTM, Iterations 11-12: high resolution PVTM) 
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Figure 3.21Comparison of blade normal force (HART II: BL, high res. A) 

(oo: exp. data, --: intermediate results, --: last CFD/CSD/PVTM result) 

 
Figure 3.22 Comparison of blade normal force at r/R = 0.87 (HART II: BL, high res. A)  

(oo: exp. data, --: intermediate results, --: last CFD/CSD/PVTM result) 
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Figure 3.23 Comparison of blade normal force (HART II: BL, high res. B) 

(oo: exp. data, --: intermediate results, --: last CFD/CSD/PVTM result) 
 

 
Figure 3.24Comparison of blade normal force (HART II: BL, high res. B) 

(oo: exp. data, --: intermediate results, --: last CFD/CSD/PVTM result) 
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Chapter IV 
 

Improved and Efficient Interfaces with Acoustic Propagation Codes 
 

 Another essential element in the MUTE 

tool is the noise prediction code. Currently, 

WOPWOP3 (also known as PSU-WOPWOP) 

[4.1] provided by LaRC has been used as the main 

acoustic propagation code. WOPWOP3 solves 

Farassat’s retarded-time formulation 1A [4.2] of the 

Ffowcs Williams-Hawkings (FW-H) equation [4.3] 

and computes the rotorcraft tone noises at given 

observer locations. These predictions are based on 

the blade loading on an impermeable surface or the unsteady flow-field description provided by 

CFD simulations on a permeable surface.  

 The traditional method of rotor noise propagation uses the rotor blade surface as the 

acoustic data surface, which is an impermeable surface. The blade loadings provided either by 

the comprehensive analysis (CAMRAD II) or the CFD (TURNS) are integrated into the FW-H 

equation as the source term. This method can accurately propagate and calculate the thickness 

noise and loading noise. However, for high-speed cases when the high-speed impulsive (HSI) 

noise is dominant, errors are incurred with the impermeable surface method because the 

quadrupole term from the shock wave interaction is not included in the FW-H equation. Thus, 

recently, a new method of using the FW-H equation on a permeable surface was developed 

within WOPWOP3. With the availability of an accurate flow-field description on this permeable 

acoustic data surface from the CFD, it is expected that this approach would improve the accuracy 

of the HSI noise prediction.  

 
Without Control With High Harmonic Control 

MAX 

MIN 

Figure 4.1 Noise propagation from the 
rotorcraft to observer locations  

in the far-field. 
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4.1 DNW High-Speed Noise Prediction with Impermeable Surface Method and Permeable 

Surface Method 

 

 
Figure 4.2 The Acoustic Experiments Set-up (Microphone 1 & 7) 

 

 In the DNW High-speed data set [4.4], some acoustic measurements are also available for 

comparison. As seen in Figure 4.2, the acoustic sound pressure from two microphones 
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and in the same plane as the rotor surface.  

 Figures 4.3 and 4.4 show the time averaged total sound pressure read by microphones 1 

and 7 in the experiments.  In these two figures, the high-negative peak is due to compressible 
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Figure 4.3 The Sound Pressure of Microphone 1 

 
Figure 4.4 The Sound Pressure of Microphone 7 
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 Two acoustic prediction methods were used for the acoustic analysis with WOPWOP3, 

the impermeable surface method and the permeable surface method.  At first, the impermeable 

surface method with compact loading patches is used, where the blade surface loadings (Cn, Cd 

and Cm) at each span location are used to obtain the acoustic signature at the observer points.  

As shown in Figure 4.5 and 4.6 for both Microphone 1 and 7, the impermeable surface method 

with loading patches did not fully capture the negative peak of the HSI noise, nor did it capture 

any of the vortex effects.  Subsequently, the impermeable surface method with surface pressure 

as input was used, as shown in Figures 4.7 and 4.8.  When using the surface pressure for the 

impermeable surface method, some improvement of the negative noise peak predictions was 

obtained. However, it is still below the measured levels and the noise due to the vortex effects 

was not captured.  

For the permeable surface method, four different sized acoustic data surfaces (ADS) were 

chosen to investigate the effects of the permeable surface size on the acoustic predictions. The 

first one, referred to as the original surface, was used to verify the accuracy of the interface codes 

and WOPWOP3 input.  The grid index range of the original surface, relative to the near-body 

CFD grid, is:  I from 11 to 123, J from 5 to 125, K from 1 to 43, where I is the chord-wise 

direction, J span-wise and K normal directions.  Three additional ADS grids were extracted from 

the CFD solutions for comparisons, where for Grid 1, I ranged from 9 to 125, J from 5 to 125 

and K from 1 to 44; for Grid 2 I from 8 to 126, J from 5 to 125 and K from 1 to 43; and for Grid 

3 I from 10 to 124, J from 5 to 125 and K from 1 to 43.   Figures 4.9--4.11 show the comparison 

of the original grid with the additional grids.  The acoustic predictions at Microphone 1 for these 

four acoustic data surfaces are compared at Figure 4.12.  It is seen that the predictions using the 

original surface and Grids 2 and 3 are quite similar. However, a larger negative peak is predicted 

with Grid 2 because the aft surface of Grid 2 surface is farther away from the blade trailing edge 

and can capture more of the shock wave effects. The Grid 1 predictions are the least accurate, 

owing to the larger distance from the blade surface and therefore greater numerical dissipation of 

the aerodynamic input.  

For the permeable surface method, Figure 4.13 shows the prediction comparisons at 

Microphone 1. It is clearly seen that the permeable surface method can not only capture the high 

negative peak due to the shock wave interaction, but can also capture a good deal of the noise 

due to the vortex interaction.  Figure 4.14 shows the comparisons for Microphone 7 predictions. 
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Here, the predictions for the permeable surface method are much better than those obtained with 

the impermeable surface method, as the noise due to the vortex interactions is also captured. 

 

 
Figure 4.5 The Sound Pressure Comparison for Microphone 1 (Compact Patch Method)  

 
Figure 4.6 The Sound Pressure Comparison for Microphone 7 (Compact Patch Method) 
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Figure 4.7 The Sound Pressure Comparison for Microphone 1  

(Impermeable Surface method with Surface Pressure as Input) 

 
Figure 4.8 The Sound Pressure Comparison for Microphone 7  

(Impermeable Surface method with Surface Pressure as Input) 
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Figure 4.9 Acoustic Data Surface (Baseline-Grid vs. Grid 1) 

(Red – Blade;  Blue – Baseline Grid;  Yellow – Grid 1) 

 
 

Figure 4.10 Acoustic Data Surface (Baseline-Grid vs. Grid 2) 
(Red – Blade;  Blue – Baseline Grid;  Yellow – Grid 2) 
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Figure 4.11 Acoustic Data Surface (Baseline-Grid vs. Grid 3) 
(Red – Blade;  Blue – Baseline Grid;  Yellow – Grid 3) 

 
Figure 4.12 WOPWOP3 Predictions for Different Acoustic Surface Grids
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Figure 4.13 The Sound Pressure Comparison for Microphone 1  

(Permeable Surface Method) 

 
Figure 4.14 The Sound Pressure Comparison for Microphone 7  

(Permeable Surface Method) 
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4.2 HART II BVI Noise Prediction with Impermeable Surface Method  

The aerodynamic parameters on the blade surface predicted with the above methods 

(CFD+Overset grid, CFD+Free-wake method and CFD+PVTM) were used to obtain the acoustic 

signature on a microphone plane below the rotor disk.  Because the BVI noise is mostly 

generated by the blade surface pressure variation, the impermeable surface method was used to 

predict the acoustic signature on the microphone plane.  As mentioned above, there are two 

different approaches available in WOPWOP3 for specifying the blade loading for the 

impermeable surface method. One uses the surface loading compact patch, while the other uses 

the surface pressure directly. Both of these methods were investigated to check the accuracy of 

the acoustic predictions.  

Figure 4.15 shows the BVI SPL contour from the experiment [4.5], where the two BVI noise 

peaks on the advancing side and retrieving side are clearly observed.   The microphone plane in 

the experiment, located 2.215 meter below the rotor disk with an area of 8 meter * 5.4 meter, is 

also presented here. 

Figure 4.16 shows the BVI SPL contours from the CFD+Overset Grid method, where 4.16(a) 

is the acoustic signature obtained using compact patches and (b) is from the pressure. As shown 

in these figures, the BVI noise predicted with the overset grid method does not generally agree 

well with the measured data, due at least in part to insufficient grid resolution.  Also, the 

maximum noise predicted with the compact patches is well below the levels obtained using the 

surface pressure. This indicates that the compact patch method may not be optimal in this case.  

Figure 4.17 shows the contours from the CFD+Free-wake method, where the noise peak 

location also differs from that seen in the experiment.   As shown in Figure 4.17(b), two 

maximum BVI noise peaks are predicted by the CFD+Free-wake method. However, the 

directivity (i.e., locations of the maximum noise levels) differs from the experiment 

measurements. Additionally, the predicted maximum BVI noise levels are also lower than the 

experimental values. 

Figure 4.18 shows the contours from the CFD+PVTM method with a low resolution wake.  

Again, the acoustic prediction using the compact patch approach does not compare well with 

measured levels as seen in Figure 3.18(a). However, using the surface pressure produces 

predicted BVI SPL contours that compare much more favorably with measurement for both the 
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maximum noise level and location on the advancing and retrieving side. Direct comparison with 

the measured contours is shown in Figure 3.19 for further clarification.  

 
 
 
 

Figure 4.15 Experiment BVI SPL Contour 

 
 

(a) Loading        (b) Pressure 
Figure 4.16 BVI SPL Contour with CFD+Overset Grid Method    
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(a) Loading       (b) Pressure   

 
Figure 4.17 BVI SPL Contour with CFD+Free-wake Method 

    
(a) Loading      (b) Pressure 

 
Figure 4.18 BVI SPL Contour with CFD+PVTM Low Resolution Wake 



 57 

    
               (a) Experiments    (b) PVTM_Low_Resolution_Wake 

 
Figure 4.19 BVI SPL Contours Comparison with PVTM Method 
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Chapter V  
 

Concluding Remarks 
 
 

This report summarizes the development and validation of a physics-based, high-fidelity, 

multi-disciplinary tool (MUTE) for accurate and efficient rotorcraft source noise predictions. The 

MUTE tool uses a systematic coupling of approaches from multiples disciplines. Namely, 

Computational Fluid Dynamics with high-order near body algorithm(STVD 6), a high-fidelity 

wake modeling method (PVTM), Computational Structural Dynamics with feedbacks of the 

rotor blade deformation information and rotorcraft trim solutions, and high-fidelity acoustic 

propagation analysis are incorporated. This coupled CFD/CSD/Acoustic procedure is very 

flexible and controlled by a Python script, so that these CFD, CSD or acoustic modules can be 

easily replaced with other similar codes.  The blade loading and acoustic signature predictions 

from the MUTE tool are compared with several experimental data sets with a wide range of 

flight conditions. 

 Three wake modeling/capturing methods were implemented into the MUTE tool for 

different applications: the free-wake method, the overset grid CFD method, and the PVTM 

method.  The rotor blade aerodynamic loading predictions from these wake modeling methods 

were validated against the UH60A, DNW and HART II experimental data under high-speed, 

low-speed, and BVI flight conditions.   The results show that, in the absence of strong blade 

vortex interaction, all wake modeling methods produced reasonable blade loading predictions 

when the CFD was coupled with CSD to include the blade deformation information (e.g., such as 

the UH60A level flight test cases).  

Compared with the other wake modeling methods investigated, the free-wake method 

was the fastest for most of the high-speed and low-speed level flight simulations when the blade 

wake interaction was minimal. The CFD with overset-grid method would generally be the most 

robust method over the flight conditions considered. This would also be the case for the UH60a 

dynamic stall condition, provided the CFD background grid resolution was high enough to 

preserve the far wake traveling inside the computational zone. However, this would require 

considerably more computational resources.  With the limited computational resources employed 

in this study, the PVTM method was the most efficient way to preserve the wake in the far-field 
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and accurately predict the rotor wake blade interactions. For the HART II BVI test case, only the 

PVTM method gave reasonable predictions at coarse resolution.    

 The acoustic predictions of the MUTE tool were also validated with the DNW high-speed 

noise experimental data and the HART II BVI noise data. In the acoustic analysis using 

WOPWOP 3, both the impermeable surface and permeable surface methods were implemented 

into the MUTE tool.  The results show that, to capture the high-speed impulsive noised produced 

by the shock wave interaction, the permeable surface method gave much better predictions than 

the impermeable surface method. For the BVI noise prediction, the wake modeling method was 

very important for the accuracy of the noise predictions, and the PVTM method gave the best 

results for this case. 

 The accuracy of the noise prediction was greatly dependent on the accuracy of the blade 

loading and rotor wake simulation results. Compared to the very fine grid resolution 

requirements of the CFD overset grid method, the PVTM method has more potential in 

accurately modeling the rotor blade and wake interactions with reasonable computational 

resource requirements.  Improvements of the PVTM computational efficiency may significantly 

improve the correlations and further reduce the computational costs in the future.  
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