

NASA Stratospheric Platforms

Performance Summary

			Au and a second
	ER-2	WB-57	Global Hawk
Altitude	>70,000 ft >21 km	65,000 ft 20 km	65,000 ft 20 km
Payload	2,900 lb 1,300 kg	8,800 lb 4,000 kg	1,500 lb 700 kg
Duration	>10 hours	6.5 hours	30 hours
Range	>4,000 nm >7,400 km	2,500 nm 4,600 km	>10,000 nm > 18,500 km
Airspeed	410 kts	410 kts	335 kts

Note: performance parameters are sensitive to payload distribution and atmospheric conditions

Manned Platforms

Based at Ellington Field, Texas / NASA JSC 2 aircraft available for science missions Dual crew

Variant of the Canberra, B-57 airframe developed for Air Force weather reconnaissance

Recent upgrades have increased gross weight and added new payload accommodations

- Multiple pressurized and unpressurized compartments
- 115 VAC and 28 VDC
 experimenter power
- Common payload infrastructure

- Science mission operations since the 1970's
- World-wide deployment experience

WB-57 Payload Accommodations

- Highly reliable Unmanned Aircraft System (UAS)
 - Multiply redundant system design
 - Military experience with Global Hawk now exceeds 40,000 flight hours and 12 years of operation
- NASA owns three, Advanced Concept Technology Demonstrator (ACTD) aircraft
- Aircraft are based at the Dryden Flight Research Center on Edwards Air Force Base
- Configuration and performance similar to standard 'Block 10'
- First NASA flight Oct. 23, 2009

- Total payload weight ~ 680 kg (1,500 lbs)
- Multiple compartments
 - Standardized power and command/control interface (EIP's)
 - Some ECS controlled
 Pressure alt < 8.2 km
 - 0 < Temp < 55° C
 - No condensation
 - Some w/19" rack mounting
- Integration
 - Conducted by NASA / Northrop Grumman team
 - Pre-flight simulations
 - full mission duration
 - extreme environments
 - full functional check-out

Legend:

ECS controlled, pressurized compartments: Non-ECS controlled, unpressurized compartments: Compartment space unavailable to payloads:

X

- Unique to NASA Global Hawk operations
- Located at Dryden Flight Research Center, Edwards AFB, CA

- Designed to enhance scientist's participation during flight
 - Situational awareness
 - Controlled access to flight crews
 - Science collaboration
- Researchers have limited command and control access to their instruments

GloPac – Global Hawk Pacific

April 7th 14.1 hrs, 4600nm, 61200 ft

April 13th 24.3 hrs, 8000nm, 62300 ft

(April 2: Range flight, 6.3 hrs) (April 30: Equatorial flight attempt, 9.3 hrs)

GloPac Total: 82.6 hrs

April 23rd 28.6 hrs, 9700nm, 65200 ft

GRIP Genesis and Rapid Intensification Processes

- Collaborative science opportunities announced through NASA ROSES
- Availability
 - Commitments generally developed 12 to 18 months before deployment
 - ER-2 and WB-57 have schedule opportunities, contact project managers for discussion of interests
 - Global Hawk is heavily committed over next three years
- Reimbursable missions for ER-2 or WB-57
 - Rate structure
 - User fee (fuel included), per hour, per week
 - Mission peculiar costs
 - Travel, logistics, instrument integration, satellite communications

	ER-2	WB-57	Global Hawk	
Program web-Site	http://www.nasa.gov/ centers/dryden/ aircraft/ER-2/ index.html	http://jsc-aircraft- ops.jsc.nasa.gov/ wb57/index.html	http://www.nasa.gov/ centers/dryden/ aircraft/GlobalHawk/ index.html	
Experimenter's Handbook	http://www.nasa.gov/ centers/dryden/pdf/ 189893main_ER-2_ handbook_02.pdf	http://jsc-aircraft- ops.jsc.nasa.gov/ wb57/docs/ 33890BasicPCN1-03 -18-02.pdf		

Back-Up Charts

Global Hawk Pacific (GLOPAC)

АСАМ	Airborne Compact Atmospheric Mapper (GSEC)	Cross-track scanning spectrographs	
		of NO2, O3, & aerosols.	
CBI	Cloud Physics LIDAR (CSEC)	Backscatter LIDAR for hi-res	
OFL	CIOUR FILYSICS LIDAR (GSFC)	profiling of clouds & aerosols.	
FCAS	Featured Coulty Associal Spectrometer (II. of Denver)	Aerosol size and concentration	
FCAS	rocused Cavity Aerosol Spectrometer (0. of Deriver)	measurements.	
MMS	Mata and a minal Management Stratemy (ABC)	Science quality aircraft state	
	meteorological measurement System (ARC)	variable measurements.	
МТР	Mission Transform Des (iles (IDI)	Passive microwave radiometer	
	Microwave Temperature Profiler (JPL)	meas. of O2 thermal emissions.	
HDVis	LUD-f)/id Outton (ADO)	Time-lapse nadir color digital	
	Hiber video System (ARC)	imagery with georeferencing.	
		Aerosol size and concentration	
NWASS	Nuclei-mode Aerosol Size Spectrometer (U. of Denver)	measurements.	
0		Dual-beam UV photometer for	
Ozone	UAS OZONE (NOAA)	accurate O3 measurements.	
UCATS		Dual gas chromatographs for N2O,	
	UAS Chromatograph for Atmospheric Trace Species (NOAA)	SF6, H2, CO, & CH4 meas.	
	Ultra-High Sensitivity Aerosol Spectrometer (Droplet	Ultra-high sensitivity aerosol	
UHSAS	Measurement Technologies)	spectrometer.	
ULH	UAS Laser Hygrometer (JPL)	in-situ ni-accuracy atmospheric	
		water vapor measurements.	

Objectives

- First demonstration of the Global Hawk unmanned aircraft system (UAS) for NASA and NOAA Earth science research and applications.
- Validation of instruments on-board the Aura satellite.
- Exploration of trace gases, aerosols, and dynamics of remote upper Troposphere / lower Stratosphere regions.
- Sample polar vortex fragments (IPY) and atmospheric rivers.
- Risk reduction for future missions that will study hurricanes and atmospheric rivers.

Real-Time Payload Communications & Control Systems

Risk reduction for Global Hawk participation in Genesis and Rapid Intensification Process (GRIP)

- 2 Flights operated from GHOC
 - Edwards range
 - Gulf, demonstrate COA
- July
- Partial payload integration
 - Drop sondes
 - HiWRAP
 - HAMSR
 - LIP
- Demonstrate:
 - Access to Gulf of Mexico and Caribbean
 - Methodology and sensors for operation near hazardous weather
 - stormscope
 - forward video both daylight and IR

Mobile Operations Facility

- Allows deployed operations
 - Antarctic missions based in Chile or Australia
 - Eastern U.S. basing for greater coverage of Atlantic and Greenland
- Supports terminal operations only, science team will support missions from the Dryden GHOC

- UAVSAR (synthetic aperture radar)
 - Dual wing pylons for aero symmetry and mass balance
 - Bi-static interferometry option
- Lidars for atmospheric profiling and topographic mapping

ER-2 Payload Accommodations

	ft ³ m ³	3	lb	kg	Electrical Company	
Area		m°			VAC (3¢)	VDC
1. Nose	47.8	1.35	605	294	50A at 115/208	2kW at 28
2. Equipment Bay (Q-Bay)	64.6	1.83	1,300	590	100A at 115/208	4kW at 28
3. Left wing pod	86.0	2.43	650	294	50A at 115/208	2.2kW at 28
4. Right wing pod	86.0	2.43	650	294	50A at 115/208	2.2kW at 28
5. System 20 pod	.74	.02	45	20.4	30A at 115/208	840W at 28
6. Centerline pod	14.0	.40	350	159	30A at 115/208	840W at 28

Mission Support

ER-2 and WB-57 both have long history with world-wide deployment capabilities

DC-8 Flying Laboratory Large Capacity, Range and Endurance

Capabilities

- Ceiling 42,000 ft.
- Duration 12 hours
- Range > 5,400 nautical miles
- Payload 30,000 lbs

Mission Support Features

- Shirtsleeve environment for up to 30 researchers
- worldwide deployment
 experience
- Extensive modifications to support in-situ and remote sensing instruments
 - zenith and nadir viewports
 - wing pylons
 - modified power systems
 - 19 inch rack mounting

Gulfstream III

UAV Synthetic Aperture Radar (UAVSAR)

Capabilities

- Ceiling 45,000 ft.
- Duration 6 hours
- Range > 3,400 nautical miles
- Payload 2,610 lbs

Mission Support Features

- Center-line pod/pylon supports UAVSAR instrument
- Precision flight path capability
- Shirtsleeve environment instrument support
- World-wide deployment capability

UAVSAR

- Repeat-pass interferometry
- Ka- and L-band capability (separate pods)
- Designed for UAV operation possible integration to Global Hawk

Ikhana (Predator B) Medium Altitude, Very Long Endurance

Capabilities

- Duration > 24 hours
- Ceiling > 40,000 ft
- Payload 2,000 lbs, 750 lbs in wing pod
- Range 3,500 nautical miles

Mission Support Features

- Highly reliable UAS
- Deployment ready
 - Mobile ground station
 - High bandwidth science data link
 - Transport by land/sea/air
 - Ku Satcom for over the horizon missions
- External experiment pod with payload tray for parallel mission processing
- Internal payload compartments
- Experimenter network and data system
- Airborne Research Test System

Recent Campaigns – Wildfire Research and Applications Partnership

WRAP

Long Range, Duration Flights Over the Western States Flight operations with the Ikhana have demonstrated unprecedented UAS capaibility for data collection in the civil air space

Emergency Response Missions into Congested Airspace

Communications

- Separate links for aircraft and payload communications
 - Iridium provide primary 'beyond line of sight' command and control for aircraft and experimenters
 - High bandwidth links for experimenters can be accommodated as required

GloPac – Global Hawk Pacific

- First Global Hawk science flight
 - Apr 7
 - 14.1 hrs
 - Sampled polar vortex
 - Fulfilled last IPY goal
 - Satellite underpass

- Second Global Hawk science flight
 - Apr 13-14
 - 24.3 hrs
 - A-train satellite underpass
 - 2 vertical profiles to 43K'
 - Dipped to 12 degrees N

GloPac – Global Hawk Pacific

- First Global Hawk Arctic flight
 - Apr 23-24
 - 28.6 hrs
 - Reached 85 deg North (new Global Hawk record)
 - Reached 65k ft altitude
 - Sampled Arctic air
 - Investigated Asian dust plume
 - Satellite underpass