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To enable arriving aircraft to fly optimized descents computed by the flight management
system (FMS) in congested airspace, ground automation must accurately predict descent
trajectories. To support development of the trajectory predictor and its uncertainty mod-
els, commercial flights executed idle-thrust descents at a specified descent speed, and the
recorded data included the specified descent speed profile, aircraft weight, and the winds
entered into the FMS as well as the radar data. The FMS computed the intended descent
path assuming idle thrust after top of descent (TOD), and the controllers and pilots then
endeavored to allow the FMS to fly the descent to the meter fix with minimal human
intervention. The horizontal flight path, cruise and meter fix altitudes, and actual TOD
location were extracted from the radar data. Using approximately 70 descents each in
Boeing 757 and Airbus 319/320 aircraft, multiple regression estimated TOD location as
a linear function of the available predictive factors. The cruise and meter fix altitudes,
descent speed, and wind clearly improve goodness of fit. The aircraft weight improves fit
for the Airbus descents but not for the B757. Except for a few statistical outliers, the
residuals have absolute value less than 5 nmi. Thus, these predictive factors adequately
explain the TOD location, which indicates the data do not include excessive noise.

Nomenclature

b Least squares estimate of β
IW,FMS Integral with respect to time of the along-track component of the wind forecast entered into the

FMS descent winds page
N Number of observations
p Number of terms in regression model, including the constant
r Least squares residual
S0 Path distance of TOD location if winds were zero
STOD Path distance relative to the meter fix of TOD location
Vh Vertical speed
Wv Along-track component of wind, positive for a tailwind
x = (x0, x1, . . . , xp−1)T Predictive factors in regression model
Z Observed values of STOD

Symbols
β = (β0, β1, . . . , βp−1)T Coefficients of regression model
ε Regression model error

I. Introduction

In congested airspace today, controllers direct aircraft to descend in steps. Since air density, and hence
drag, increase as the aircraft descends, significant reductions in fuel consumption and emissions would

result if aircraft stayed at cruise altitude longer and then descended smoothly at idle thrust. The flight
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management system (FMS) on a large jet can compute the location of top of descent (TOD) assuming
an idle-thrust descent. To merge aircraft, however, controllers impose level flight segments, which make it
much easier for them to estimate the relative speeds of two aircraft given their calibrated airspeed (CAS).
Three-Dimensional Path Arrival Management (3DPAM) enables arriving aircraft to fly optimized descents
computed by the FMS in congested airspace.1 The 3DPAM ground automation must accurately predict
descent trajectories in order to minimize conflicts and to provide situation awareness to controllers. To
support development of the predictor and its uncertainty models, commercial flights executed idle-thrust
descents at a specified descent speed, and the recorded data included not only the radar data but also the
specified descent speed profile, aircraft weight, and the winds entered into the FMS descent wind page. The
procedures and data collected will be explained in more detail in Section II.

Due to the potential fuel savings and emissions reductions, enabling continuous descents is being pursued
by several research groups.2–6 Most of the previous error analysis has focused on the difference between
operational arrival time at a waypoint and its prediction by the FMS or ground automation. In addition
to predicting the meter fix arrival time accurately to ensure lateral separation, accurate prediction of the
vertical profile is essential to ensure vertical separation from aircraft at different altitudes, including crossing
traffic, so that controllers do not have to interrupt an FMS-controlled efficient descent. Using data from
commercial operations, the current study investigated the extent to which various factors determine the
TOD location and analyzed the relative importance of those factors.

Various authors2,5, 7 have used operational commercial data to analyze the accuracy of the TOD location
predictions from a proposed ground automation system, but such analyses do not give insight into the
inherent predictability of the TOD location. Furthermore, they did not investigate the relative importance
of input factors. On the other hand, analyses of the equations of motion,8 performance models,9 and FMS
test benches6,10,11 have been used to assess the sensitivity of trajectories to various factors, but operational
data are required to determine the sensitivity and uncertainty that an operational concept such as 3DPAM
will need to handle. Green, Grace, and Williams12 did discuss the relative impact of various factors on the
error in Efficient Descent Advisor (EDA) descent predictions, but they used a single research aircraft whose
FMS trajectory predictor was developed by NASA rather than being a commercial design.

The primary goals of the research in this paper were to investigate the factors affecting TOD location in
idle-thrust descents planned and flown by commercial FMSs and also to estimate the randomness in these
TOD locations. Some factors that might affect these descents — such as engine type, winglets, FMS code
revision — were not recorded during this experiment, so their effects would actually appear as noise in
the trajectories. Other possible sources of noise include execution randomness or error, manually recording
data incorrectly, and pilot errors entering data into the FMS. Determining whether the actual trajectory
can be accurately predicted under operational conditions requires data that contain noise that would occur
in operations. To account for this noise, the current research used a statistical multiple linear regression
approach on the TOD locations from a relatively large sample — about 70 descents for each of two aircraft
types — as discussed in Section III. Section III.E discusses the relative importance of the predictive factors,
which has implications for developing an acceptable ground automation trajectory predictor for 3DPAM.

II. Experiment Procedures and Data

This section describes the experiment procedures and data. Coppenbarger et al.13 give more information
about the procedures. In the 3DPAM concept, the FMS will be given the descent speed profile as well as the
initial and final speeds and altitudes. Assuming idle thrust in the descent, the FMS will compute the vertical
profile and fly it with minimal human intervention. To collect data from commercial aircraft operations, the
concept was adapted to current FAA and airline procedures. The data collection occurred September 8–23,
2009, in the Denver (ZDV) Air Route Traffic Control Center (ARTCC). Two airlines participated. Eligible
flights were Airbus 319/320 and Boeing 737-300, 737-800, and 757-200 descending to Denver International
Airport (DEN). For simplicity in this document, the Airbus 319/320 category will simply be referred to as
Airbus, and the Boeing 757-200 will be referred to as B757.

In addition to the usual speed and altitude constraints at the meter fix, the controller specified the speed
profile, which was recorded by subject matter experts at ZDV. The pilot programmed the FMS to fly an
idle-thrust descent, using this speed profile and the wind forecast provided by the airline. To compute its
descent trajectory, the FMS used the constraints shown in Figure 1, which uniquely determine the trajectory.
The parameters shown in each box are specified for that segment or that point of the descent, and their
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values — other than idle thrust — were either recorded during the experiment or extracted from radar data
afterwards. The cruise speed was maintained at the initial Mach number. The initial plan was to use descent
speeds 260, 280, and 300 kt CAS (KCAS) roughly evenly; but 260 KCAS was only used by about 15% of the
flights because it is quite slow and seemed to be penalizing crews participating in the experiment. The FMS
also used speed and altitude constraints at the meter fix, which were typically to cross at 19,000 ft (16,000 ft
or 17,000 ft in 15% of descents) and at 250 KCAS (230 KCAS in less than 5% of descents). In Figure 1, the
first segment after TOD has constant Mach number, which is the same as the cruise Mach number. As the
altitude decreases, the CAS increases until it reaches the target descent CAS, which was specified by the
controller. The next segment is then flown at that CAS. Finally, the aircraft pitched up to decelerate to the
meter fix speed constraint. In about 10% of the descents analyzed, the descent CAS was slower than the
cruise speed; so the aircraft decelerated at the cruise altitude, and there was then no constant Mach segment
after TOD. Once the clearance was given, the controllers and pilots then endeavored to allow the FMS to
fly the descent to the meter fix with minimal human intervention. When the aircraft entered the Terminal
Radar Approach Control Facility (TRACON), pilots and controllers reverted to today’s standard operating
procedures.
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Figure 1. Schematic of typical idle-thrust descent vertical profile and constraints.

During the data collection, the Host radar data were recorded at NASA from both the ARTCC and the
TRACON. The latter source was included because it extends beyond the TRACON boundary and is sent at a
higher frequency than the ARTCC radar data. Due to missing data caused by a short network connectivity
problem, ATAC Corporation provided Performance Data Analysis and Reporting System (PDARS) data
from the same source for eight participating flights. For analysis, the horizontal flight path, cruise and meter
fix altitudes, and actual TOD location were extracted from the radar data. Pilots also were requested to
complete data forms that included aircraft weight, the winds programmed into the FMS, and any comments;
but many pilots did not complete their data forms.

The crews of over 300 flights requested to participate. The controllers denied some requests or had to
break off the procedure due to traffic or other conditions. In some cases, the radar data or pilot data sheet
indicated an issue such as descent clearance issued too late, change of clearance during descent, or different
speed profiles recorded on flight deck and at ZDV. In the Airbus, the flight crew must manually initiate the
descent. In the B757, the autopilot system will automatically start the descent near the FMS-computed
TOD, but the flight crew can of course override this and start descent either earlier or later than intended
by the FMS. For this data collection, the pilots were instructed to use autopilot to the extent possible
and, in the Airbus, to initiate descent near the FMS-computed TOD. Some of the sample flights, however,
clearly descended more than 5 nmi earlier than the FMS intended. In such cases, the autopilot maintains a
shallow descent rate of 1000 ft/min until the aircraft intersects the intended vertical profile, at which point
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the autopilot resumes flying the FMS intent. The initial descent at 1000 ft/min was fairly easy to spot
by plotting the vertical profile. Some of the flights that descended too early were identified during initial
data cleansing, whilst others were discovered because they were residual outliers in multiple regression. In
this paper, no such descents are included in any of the analyses. Of the roughly 20 flights discarded for
descending too early, most are in Airbus aircraft and most did not have a pilot data sheet filled out. While
checking whether a flight descended early was fairly easy, the only way to confirm that an aircraft descended
late was from comments on the pilot data sheet or from comments recorded by the observer at ZDV. About
10 flights were discarded for such concerns, but one descent was kept due to lack of such evidence even
though its vertical profile looks like it descended late. Discarding all descents with any data problems left
about 110 descents each for Airbus and B757.

The aircraft weight and the winds programmed into the FMS were essential for the multiple regression
analysis discussed below. Airbus and B757 each had about 70 good descents with all the necessary data.
The number of B737 descents was much smaller and had to be broken into two subtypes — B737-300 and
B737-800 — each of which had 10 good descents with all necessary data. This was not enough for this
analysis, so the rest of this paper considers only the Airbus and B757 descents.

To make analysis of the TOD location as simple as possible, it was specified as path distance relative to
the meter fix. Due to noise in the radar positions, path distance could not be computed by summing the
distances between consecutive points. Instead, a piecewise linear horizontal trajectory was deduced from
the radar data, either algorithmically or manually. Figure 2 shows an example radar track and estimated
horizontal trajectory. The deduced horizontal trajectory ends at the meter fix and is 120 nmi long. The cross-
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Figure 2. Example radar track and piecewise-linear estimate of the horizontal trajectory deduced from it.

track error between the radar positions and the estimated horizontal trajectory was nearly always less than
0.5 nmi, although this error was a bit larger within 10 nmi of the meter fix because the TRACON controllers
sometimes started vectoring the aircraft before it had quite reached the TRACON. For five descents, this
error exceeded 5 nmi for a few radar hits. Since the horizontal trajectory used to compute path distance
assumes a zero turn radius, the TOD path distance may not be exactly right, but the FMS most likely
made the same assumption. Only about 20% of the descents used in the regression analysis had any turns
in the estimated horizontal trajectory. The regression residual did not seem to be affected by these turns,
but identifying such an effect would be difficult since so few descents had turns.
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To complete the description of the data extracted from the radar data, the TOD location was chosen
to be the point where the aircraft left cruise altitude. About 50 of the participating flights were assigned
temporary altitudes within 120 nmi of the meter fix, so the temporary altitude was used as the cruise altitude.
Unfortunately, the existence of temporary altitudes as well as noise in the radar altitudes complicated
determination of the cruise altitude. Essentially, the algorithm to identify the cruise altitude looked for nine
consecutive radar reports with altitude within 250 ft of each other. A couple of descents were not used
because there were too few radar reports in the temporary altitude segment.

III. Multiple Regression of Actual TOD Location

The TOD location was modeled as a function of the following predictive factors: aircraft type, cruise
altitude, cruise Mach number, descent CAS, meter fix altitude constraint, meter fix speed constraint, aircraft
weight, and wind. There may be other factors that affect TOD location, but they were not recorded in these
data and are not likely to be available to 3DPAM in an operational environment. The first goals of the study
were to:

• determine the shape of this function, which will show the relative importance of these factors, and

• estimate the amount of noise in TOD location that is not explained by these factors, which will indicate
how difficult it is to predict the TOD location.

Specifying the TOD location as path distance STOD along the estimated horizontal trajectory relative
to the meter fix makes the dependent variable a scalar, and all the potential independent variables except
aircraft type and wind are scalars. Different aircraft types were analyzed separately. Wind was transformed
to a scalar as described in Section III.A. Hence, the goal was to model a continuous scalar STOD as a
function of scalar variables based on empirical data. It is difficult to visualize STOD as a function of all
seven independent variables simultaneously. In a controlled environment, the test matrix can be chosen so
that STOD can be plotted as a function of each independent variable separately as in Ref. 11. Since this
was an operational environment, however, the descent CAS was the only variable that could be controlled
experimentally. Furthermore, the measured values of the variables included random error due to a wide
variety of error sources such as radar measurements, manually recording data, deducing the horizontal
trajectory and STOD, and execution error (especially in manually initiating the descent in the Airbus).

Since STOD is expected to be a smooth function of the independent variables, it can be approximated
by a Taylor polynomial around a point in the range of observed values of the predictive factors. Following
common practice, we started with a first-order polynomial, which turned out to be sufficient. This meant
the model has the form

STOD ≈ β0 +
∑

i

βixi, (1)

where the xi were chosen from the available predictive factors listed above. In matrix form, the model is

Z = Xβ + ε, (2)

where Z is an N×1 matrix containing the observed values of STOD; each row of the N×p matrix X contains
the observed values of the independent variables for one sample descent, including a one in the first column;
ε is the model error; N is the number of observations; and p is the number of coefficients. The goal was then
to estimate the coefficients β and the error ε.

Since the system Z = Xβ is overdetermined and has no exact solution, multiple regression uses the least
squares solution

Z = Xb + r. (3)

The vector b is an estimate of β that minimizes the square rT r of the residual, which is an estimate of the
error ε. Although the use of Eq. (1) was motivated by Taylor polynomials, the regression approximation
Xb is generally not the same as the first-order Taylor polynomial. If the regression approximation is good,
however, then it will be close to the Taylor polynomial. Furthermore, the goal was simply to determine a
good linear approximation of STOD as a function of x, if possible.
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III.A. Integral of Along-track Wind

To motivate the definition of the scalar representing wind, consider two trajectories for which all the param-
eters are the same except one has zero wind and the other has along-track wind Wv, with Wv positive for a
tailwind. Suppose that the total derivative dWv/dt along the trajectory is negligible, which is assumed by
at least some FMSs. Then Wv does not appear explicitly in the equations of motion, so the flight path angle
relative to the air mass is the same function of altitude for the two trajectories. Let S0 denote the TOD
path distance of the one with zero wind and STOD that of the other. Then

S0 − STOD ≈
∫ tfix

tTOD

Wv(τ)dτ =
∫ hfix

hTOD

Wv(h)
Vh(h)

dh, (4)

where t is time, h is altitude, and Vh is the vertical speed of the trajectory with nonzero wind. This is true
because the integral is approximately the additional distance that the wind moves the aircraft with respect
to the ground between TOD and the meter fix. This means the term in Eq. (1) due to wind should be
approximately − ∫ tfix

tTOD
Wv(τ)dτ ≡ −IW,FMS, and this would be exactly true if the derivative of wind were

omitted from the equations of motion when computing STOD.
The formula to compute IW,FMS for this analysis was based on integrating with respect to altitude because

wind was input to the FMS as a function of altitude only. We then assumed that the x and y coordinates of
wind were linear between the altitudes input to the FMS (which is probably not how the FMS interpolates
wind), and approximated Vh by the constant −2000 ft/min in order to avoid estimating a derivative from
noisy data. The value of IW,FMS was then computed using the trapezoidal rule with nodes at the waypoints
on the piecewise linear horizontal trajectory and at the altitudes at which the wind conditions were specified
to the FMS (typically cruise altitude, FL340, FL300, FL240, and FL180).

III.B. Selecting Regressors

The objective in this section is to determine which of the candidate predictive factors actually affect STOD.
This was simplified by the fact that the factors were independent of each other, and the order in which they
were added to the model did not matter. First, meter fix speed was discarded as a possible predictive factor
because very few (less than 5 per aircraft type) of the descents had a speed constraint other than 250 KCAS
at the meter fix. The next question was whether to use all six remaining predictive factors. The fit always
improves as more factors are added to the model, but overfitting should be avoided. There are several
methods to select the regressors: partial-F tests (MATLAB Statistics Toolbox stepwisefit function with
default settings), using confidence intervals or p-values for the estimated coefficients, comparing residuals,
and comparing R2 values. In this case, all gave the same results for all six candidate factors.

For the Airbus, the model should include the cruise and meter fix altitudes, descent CAS, wind, and
aircraft weight. The R2 value was then 0.93, and adding cruise Mach only increased it by 0.002. Figure 3
shows the distributions of the residuals for selected sets of regressors, which confirms that adding cruise
Mach has little effect on the residuals for the Airbus. Using the empirical cumulative distribution function
rather than histograms in this figure makes it much easier to compare four distributions in the same plot.
It also makes it easy to estimate the percentage of descents with residuals in any specified range. Figure 4
also shows the histogram of the residuals for the models with the selected regressors.

In the plot of residuals for the B757, however, adding weight had very little effect, so the red line
essentially covers the green line. Including the cruise and meter fix altitudes, descent CAS, and wind gave
an R2 value of 0.92, and adding aircraft weight and cruise Mach only increased it by 0.0002.

This does not necessarily mean that these values are not used by the FMS or that they have no effect
on the FMS-computed trajectory. Instead, it means that their effects were too small to be observed in this
data set, given the noise and the observed ranges of the parameters. Assuming Standard Atmosphere to
convert the cruise Mach numbers to true airspeed showed that, for each aircraft type, a spread of about
15 kts covered about 65% of the descents used in this regression. Thus, the observed variation in cruise
Mach was not large enough to cause much variation in TOD location. The difference between the minimum
and maximum weights was about the same for the two aircraft types, but apparently the partial derivative
of STOD with respect to weight was larger for the Airbus than for the B757.

Note that Figure 4 shows that all but six of the observations have residual with absolute value less than
5 nmi, which is a tentative bound on acceptable error for the ground automation trajectory predictor. Thus,
these predictive factors adequately explain the TOD location, which means the data do not include excessive
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Figure 3. Cumulative distribution functions of residuals for regression of actual TOD path distance for selected sets
of regressors.
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Figure 4. Histograms of regression residuals for (a) Airbus when the model includes cruise and meter fix altitudes,
descent CAS, wind, and aircraft weight and (b) B757 when the model includes the same regressors except weight.
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noise. Furthermore, any additional factor affecting TOD location either has a small effect or changes it by
an additive constant for these descents. The approximate linearity is consistent with Stell,11 which only
investigated the effect of descent speed, aircraft weight, and wind.

III.C. Estimating Coefficients

This section gives the estimated coefficients of the regression model. If the regression assumptions are valid,
then regression not only gives estimates bi of the coefficients in the model but also confidence intervals for
βi. If the experiment were run 100 times, 95 of the resulting 95%-confidence intervals for βi would include
the true value of βi. If the 95%-confidence interval for βi does not include zero, then the null hypothesis that
βi is equal to zero would be rejected at the 95% level; so this gives another way to assess which candidate
predictive factors are significant. Including all the possible factors in the model resulted in 95%-confidence
levels that included zero for the coefficient of cruise Mach number for both aircraft types, and also the
interval for the coefficient of weight includes zero for the B757. Including only the significant terms in the
model for each aircraft type gave the estimates and 95%-confidence intervals for the coefficients shown in
Table 1.

Table 1. Estimates and confidence intervals of the coefficients from multiple regression of actual TOD path distances.

Airbus B757
95%-confidence 95%-confidence

Term bi interval for βi bi interval for βi

Constant -14 [-41,12] -76 [-97,-54]
Cruise altitude, ft -0.0028 [-0.0030,-0.0025] -0.0025 [-0.0028,-0.0023]
Meter fix altitude, ft 0.0027 [0.0018,0.0035] 0.0027 [0.0021,0.0033]
Descent CAS, kt 0.14 [0.095,0.18] 0.20 [0.15,0.25]
Wind integral, nmi -1.3 [-1.5,-1.2] -1.1 [-1.3,-0.95]
Weight, lb -0.00027 [-0.00035,-0.00019] omitted from model

For the B757, Table 1 shows the results for a regression model that excludes aircraft weight because it
does not seem to be significant. Including weight would increase the constant term by 4 nmi but would not
affect the other coefficients at the precision shown. The estimate of the coefficient of weight would be on the
order of −10−5 with the endpoints of the 95%-confidence interval being ±10−4.

The coefficient of the integral IW,FMS of the along-track component of wind merits a few comments.
Section III.A indicated that this coefficient should be -1. This is close to its estimate for the B757 but is
outside the 95%-confidence interval for the Airbus estimate. There are two likely causes of this discrepancy.
One is that the FMS uses the current wind measurement blended with the forecast conditions entered by
the pilot in computing the optimal TOD location, whereas IW,FMS does not involve current measurements.
Another is that the value of IW,FMS was computed assuming a constant value for Vh. The preceding results
indicate, however, that simply using IW,FMS in the regression gave a model that fits the data reasonably
well.

III.D. Regression Assumptions and Caveats

Multiple regression is based on several assumptions on the model error ε. While the least squares solution
of Eq. (3) does not depend upon these assumptions, the statistical techniques associated with regression
do depend upon them. For example, the partial-F tests and coefficient p-values mentioned in Section III.B
for selecting regressors depend upon these assumptions. Ultimately, however, the selection of regressors was
based on distributions of residuals shown in Figure 3, which is based only on the least squares solution. More
importantly, the regression assumptions are essential for the confidence intervals in Table 1. This section
briefly considers the validity of these assumptions.

One of the assumptions is that the error is normal. This is typically checked visually with a normal
probability plot, but this is a qualitative rather than quantitative test. Another approach is to use a
statistical test to compare the empirical distribution to the normal distribution. In this case, the χ2, z, t,
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and Kolmogorov-Smirnov tests did not reject the assumption (all p-values greater than 0.3 for both aircraft
types). The most useful approach in this analysis, however, was to check the residual outliers, which were
those residuals with absolute value greater than twice the standard deviation of all the residuals. This helped
identify several of the aircraft that descended early as mentioned in Section II. A further test was to check for
influential observations, which are those that significantly change the regression results when they are added
to the other points. Using standard techniques (Cook’s distance with threshold 1 and DFFITS14) to identify
any such observations and leaving them out of the regression did not change the estimated coefficients by
much more than 10% except for the constant terms and descent CAS coefficients. For both aircraft types, the
new coefficient of descent CAS was 0.17. Therefore, influential observations did not seem to be a problem.

The model errors should also be independent. Plotting the residuals versus descent times suggests the
error distribution changes over time. This may be due to the fact that the FMS merged the current wind
measurement with the wind forecast and forecast error changes with time, but it will be investigated in future
research. Furthermore, when interaction and quadratic terms are included in the possible regressors, the final
model determined by the MATLAB stepwisefit function with default settings (except for scaling) replaced
some of the linear terms included previously with products of those terms. This suggests multicollinearity
might be a problem, which could affect the results in Section III.E, and will be investigated more in the
future.

Using random regressors also might cause problems, but the goal here was to model TOD path distance
as a function of the stated or recorded values of the regressors, so the errors in these values did not affect the
regression itself. More importantly, the observed values of the predictive factors do not adequately cover their
likely ranges in an operational system. Almost 90% of the regression samples have an altitude constraint of
19,000 ft. All but 15% of the samples have descent speed either 280 or 300 KCAS. The operational spread
of IW,FMS is unknown. This shortcoming must be addressed in future data collection.

Finally, the discarding of the early and late descents as well as analyzing only those descents with
completed pilot data forms raise questions about how well the errors represent real-world errors. This is
known as censoring data. If 3DPAM were deployed, pilots would be thoroughly trained on the procedure
and would be expected to follow it. Pilot error could still occur and the system would need to be robust to
such error, but the discarded descents from this data collection probably do not represent the error in an
operational system.

III.E. Relative Importance of Predictive Factors

The regression model of STOD helps to understand the general problem of predicting TOD location for these
descents. This section estimates a lower bound on error due to using a nominal value for a predictive factor.
This also indicates the relative importance of the predictive factors.

Since typical values of descent CAS and cruise altitude, say, differ by several orders of magnitude, simply
comparing the magnitudes of their coefficients does not indicate their relative importance in predicting
STOD. Suppose that one were developing a trajectory predictor that used a nominal value v0 for descent
speed instead of the actual value v. Suppose also that there were no other sources of error. The regression
results show that STOD as a function of v can be approximated by a line as shown in Figure 5. The slope of
the line would be bv, where bv is the regression coefficient of the descent speed, so the error in STOD due to
using v0 instead of v would be ∆STOD = bv(v − v0). To minimize this error, choose v0 to be the midpoint
of the range [vmin, vmax] of descent speeds. Hence, the error bound on STOD would be

|∆STOD| ≤ 1
2
|bv| (vmax − vmin). (5)

The same argument would obviously apply to any of the other predictive factors. Let factor xi have
bounds [xi,min, xi,max], and define

(∆STOD)i =
1
2
|bi| (xi,max − xi,min). (6)

Comparing the (∆STOD)i values to each other also shows the relative importance of the factors in determining
STOD. Table 2 shows estimates of the minimal ranges of values likely to be encountered by an operational
system along with the corresponding error bound (∆STOD)i. The rows in the table are in order of decreasing
(∆STOD)i, which means they are also in order of decreasing importance. This table omits B757 weight due to
the relatively large uncertainty in its estimated coefficient. Furthermore, the coefficients of the two altitudes
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in Table 1 are roughly the negative of each other, which means the cruise and meter fix altitudes can be
replaced in this table by the change in altitude between TOD and the meter fix, with estimated coefficient
-0.0027 for both aircraft types.

Table 2. Approximate lower bound on TOD location prediction error due to a nominal value of an independent variable.

(∆STOD)i, nmi
xi [xi,min, xi,max] Airbus B757

Altitude change [9000,22000] ft 18 18
Wind integral [-10,10] nmi 13 11
Descent CAS [250,320] KCAS 4.9 7.0
Weight [115000,143000] lb 3.8 N/A

The bounds on the predictive factors in Table 2 are primarily based on the values observed in the data, but
an operational system might encounter even larger ranges. For example, the Vmo/Mmo for the Airbus 320
is 350 KCAS/0.82 Mach, so an operational system might encounter larger descent speeds than shown in
Table 2 for the Airbus. The change in altitude between TOD and the meter fix will be larger at most other
airports since Denver has unusually high meter fix altitude constraints.

Consequently, the values in Table 2 probably underestimate the effect on STOD of the predictive factors.
They suggest, however, that in order to predict TOD location within 5 nmi a predictor cannot use nominal
values for altitude change, descent CAS, or wind. A TOD location predictor for the Airbus might be able to
use a nominal value for aircraft weight, but keep in mind that the error budget must allow for other sources
of inaccuracies.

IV. Conclusions

The major conclusions of this paper are that:

• a predictor will need to use accurate values of cruise and meter fix altitudes, descent CAS, and wind
to predict TOD location within 5 nmi for the Airbus 320 and the B757 — and weight may also be
necessary for the Airbus — and

• the observed TOD locations for these descents do not contain excessive noise, as indicated by the fact
that almost all the residuals in Figure 4 have absolute value less than 5 nmi.
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Additional factors might be necessary to explain TOD location in data with more aircraft types and airlines,
at more locations, over longer periods of time, with larger ranges for the predictive factors, and so forth. For
example, Tong, Boyle, and Warren6 found that de-icing setting moved TOD location by about 15 nmi on a
B777 FMS test bench, but observing that in operational data would require collecting over a greater variety
of meteorological conditions. For the descents analyzed here, however, failure of a trajectory predictor to
compute TOD location within 5 nmi is not due to randomness. Furthermore, if it is due to a hidden factor,
it is a factor that changed TOD location by an additive constant for these descents.

The focus of this analysis was predictability of TOD location. Future work on this topic includes analyzing
more data (both operational and laboratory), improving the analysis (using enhanced statistical methods and
reducing assumptions such as the use of constant Vh in computing IW,FMS), and reproducing the regression
model analytically. Many additional obstacles must be overcome in future research in order to deploy a
3DPAM system that would be effective in all traffic conditions. The ground predictor will need to have the
horizontal trajectory, which was extracted from the radar data in post-operations analysis here. Furthermore,
the along-track error has not been analyzed. The target TOD location error bound of 5 nmi was chosen
based on some previous controller feedback; but the tradeoffs between prediction error, conflict avoidance
buffer size, and throughput should be investigated, as well as the impact of prediction error on controllers’
situation awareness and workload. Most importantly, this analysis provides important insight into how to
develop a ground-based trajectory predictor for a 3DPAM system and might even be the basis for such a
predictor, but such a predictor still does not exist. Furthermore, even if the TOD location were known
perfectly by the ground automation, the rest of the vertical profile as well as the path distance at given time
must also be predicted accurately.
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