

NASA Space Technology Draft Roadmap Area 13: Ground & Launch Systems Processing

Greg Clements, presenter

February 10, 2011

Space Technology Roadmaps Process

Commercial Space Conference – Feb 2011

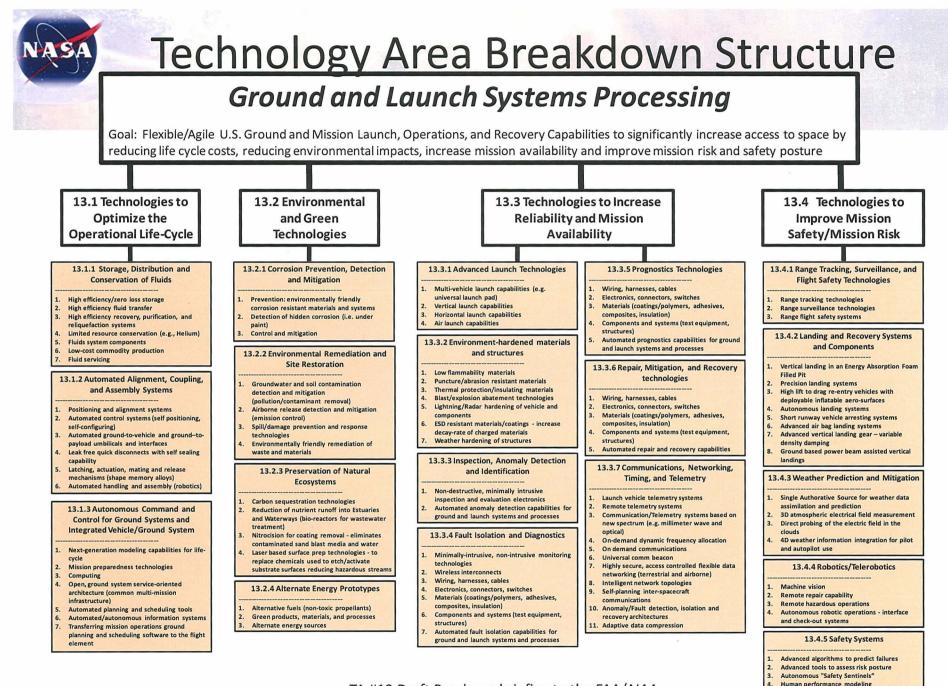
The Scope of TA #13 includes:

- Assembly, integration, and processing of the launch vehicle, spacecraft, and payload hardware
- Supply chain management
- Transportation of hardware to the launch site
- Transportation to and operations at the launch pad
- Launch processing infrastructure and its ability to support future operations
- Range, personnel, and facility safety capabilities
- Launch and landing weather

The Scope of TA #13 also includes:

- Environmental impact mitigations for ground and launch operations
- Launch control center operations and infrastructure
- Mission integration and planning
- Mission training for both ground and flight crew personnel
- Mission control center operations and infrastructure
- Telemetry and command processing and archiving
- Recovery operations for flight crews, flight hardware, and returned samples

Technology Area Overview


• HIGH RECURRING COSTS. . . are the bane of our nation's Space Program. . .and significantly and negatively impact our ability to fulfill NASA's mission

Technology Area Overview

- What are the challenges and cost drivers in our current Ground and Mission operations?
 - Dated, Vehicle-unique infrastructure
 - Labor intensive operations
 - Proliferation of duplicative systems
 - Lack of sufficient insight into system configuration/ system performance margins
 - Low mission availability due to weather restrictions and significant maintenance/ refurbishment required between missions
 - Conservative risk and safety postures

Technology Area Overview

- TA #13 identifies ground, launch and mission technologies that will:
 - Dramatically transform future space operations, with significant improvement in life-cycle costs
 - Improve the quality of life on earth, while exploring in co-existence with the environment
 - Increase reliability and mission availability using low/zero maintenance materials and systems, comprehensive capabilities to ascertain and forecast system health/configuration, data integration, and the use of advanced/expert software systems
 - Enhance methods to assess safety and mission risk posture, which would allow for timely and better decision making

TA #13 Draft Roadmap briefing to the FAA/AIAA Commercial Space Conference – Feb 2011

5.

Fauinment

Advanced systems for Protection of

Advanced systems for protection of personnel

8

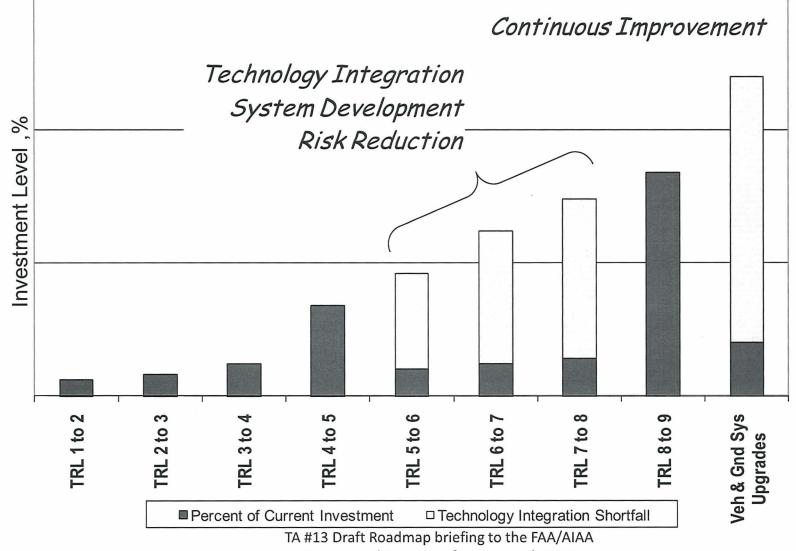
Key Technologies Identified

- Low-loss cryogenic storage and transfer (TABS 13.1.1)
- **Corrosion detection and prevention** (TABS 13.2.1)
- Autonomous systems and integrated systems health management (ground systems and moving ground to onboard systems) (TABS 13.1.3.7)
- Intelligent, self-diagnosing/self-healing components and systems (TABS 13.3.5.4 and 13.3.6)
- Multipurpose models enabling distributed control and collaboration (TABS 13.1.3)
- Environmental protection and remediation (TABS 13.2.2 and 13.2.3)
- Weather effects detection and mitigation (TABS 13.4.3)
- Ground launch assist systems (TABS 13.3.1)
- Landing and recovery systems (TABS 13.4.2)

Corrosion Detection and Control

- Corrosion is a "silent killer" of the world's critical infrastructure and costs the world economy over \$2 trillion annually
 - The total annual estimated direct cost of corrosion in the U.S. in 2010 was \$578 billion approximately 4.2% of the nation's Gross Domestic Product
- For NASA, the severe degradation of structures from corrosion (caused by exposure to high temperature, humidity, salinity, sunlight, or highly acidic launch exhaust, use of dissimilar metals, standing/trapped water, etc.) has resulted in significant ground operations corrosion-related costs.
- NASA can achieve significant cost savings, for the space program and for the nation as a whole, by developing and implementing new corrosion prevention, detection, and mitigation technologies that provide environmentally friendly (no toxic materials) corrosion resistant/protective materials, coatings, and systems
 - longer lasting and fewer reapplications required
 - lower maintenance/inspection costs
 - reduced corrosion related damage/structural failures
 - less environmental contamination

TA #13 Draft Roadmap briefing to the FAA/AIAA Commercial Space Conference – Feb 2011



10

Corrosion Detection and Control Technologies

- Enhancing current capabilities: Smart, multifunctional, environmentally friendly paint system that detects and signals corrosion, mitigates corrosion, and self heals mechanical damage.
- Proactive corrosion control technologies will replace the current reactive state-of-the-art practice of repair and refurbishment after a failure or problem occurs
- Enabling new, game-changing capabilities: Autonomous, self-healing structures using corrosion-hardened materials that perform without degradation or the need for coatings or repairs; corrosion resistant structures
- Providing benefits for improving and protecting national infrastructure
 - Military weapon systems . (CC Tech and NACE Int. in cooperation with DoT and FAA, Sept 2001)
 - Army ground vehicles and Navy ships
 - U.S. oil and gas industry ageing infrastructure (rusting, corroded assets)
 - Other potential spinoffs/collaborators include the automotive, building, manufacturing, and housing industries, the Paint industry, and degrading transportation infrastructure

Need for Additional "Higher TRL" Investment

Commercial Space Conference – Feb 2011

Ground and Launch Technologies Demonstrations

- In our existing Spaceflight Programs, sets of existing "Domain" Technologies have been integrated and validated for Ground and Launch operations
- Without comprehensive capabilities for full scale test and demonstration, new, individual technologies are overly constrained to be "one for one", drop-in replacements for an existing capability, without the ability to re-engineer HOW operations are conducted
 - This has severely restricted the ability for meaningful technology insertion
- To address this issue, a series of Ground and Launch Technology Demonstrations (GLTDs) are identified in TA #13 to integrate and test a bundled set of technology capabilities into an operationally relevant environment (TRL 6/7 and IRL 6/7).

Ground and Launch Technologies Demonstrations

- Regularly scheduled technology demonstrations (approximately every 18 months) provide a deterministic and consistent ability for technologists, engineering and operations experts to collaborate for fielding demonstrations for advancing Technology and Integration Readiness of component technologies.
- GLTDs would showcase a distributed Ground Demonstration "Network" to utilize multiple locations (e.g., vehicle providers, commercial data centers, test stands and control rooms distributed across the country) collaborating for conducting distributed demonstration.
- Promising and emerging technologies that are proven via GLTD could then be incorporated into upcoming test flights, referenced for the planning and development of future missions, and/or retrofitted into upgrades to existing operational capabilities.

Technology Area Strategic Roadmap

Technology Roadmap: Ground and Launch Systems Processing

Key Assumptions NASA Space Missions and Milestones	ISE Utilization APRM-1 xScout-1 PTD- crvostar
Key Investments and New Capabilities	Ground Ground/ Gaund/ Condemark/ Condemark/ Gaund/ Condemark
13.1 Technologies to Optimize the Operational Life-Cycle	Dens transfer psv coolng + insul Human computer Human computer Human computer Human computer Human computer He use reduction Pav cooling Zero loss Flex xfer 1Eff vapor capture/ NBP cryce NBP cryce NBP cryce Ground/aunch Pinterface pathfinder Modular propellant production Multi-core art cooling positioning Multi-core avionics Reconfigurable Pav cooling Security protocols Modular propellant production Multi-core avionics NBP cryce Modular propellant production Multi-core avionics Nato generated procedures Auto generated procedures art work instructions Reconfigurable Pav cooling Auto generated procedures Auto generated Auto generate
Details 13.2 Environmental and Green Technologies	Env friendly coatings Autonomous detection coatings Green materials Green materials Green structures Green structures Corrosion Corro
Details 13.3 Technologies to Increase Reliability and Mission Availability	Software defined radios autonomous cryo ops Bezcons electronics strxs Bezcons
Details 13.4 Technologies to Improve Mission Safety/ Mission Risk	Virtual range Tele-operated inspection and servicing robod Ground based Vehicle surveillance Remote vehicle surveillance Remote vehicle surveillance Remote vehicle surveillance Autonomous Inspection Sensing at landing Autonomous Inspection Autonomous Inspection Autonomous Inspection Autonomous UAV Autonomous UAV Autonomous UAV Autonomous Vehicle/payload
201	2020
	TA #13 Draft Roadmap briefing to the FAA/AIAA Commercial Space Conference – Feb 2011

Summary

- Ground and Launch Processing Technologies enhance life on earth AND have a major impact on how we access space
 - GLPT are also directly applicable to building and manufacturing industries, weather forecasting, defense/homeland security, oil and gas industries, energy, hazardous operations
 - Can feasibly provide the cost breakthroughs to help realize routine, commercial space access
- The inter-relationships between Technology Readiness, Integration Readiness, and System Readiness drive the maturation of Ground and Launch Processing Technologies
 - "Ground and Launch Technology Demonstrations", which integrate promising technologies into an operationally relevant environment, can maximize the benefits of our Agency's technology programs
- For more information on this Roadmap, and to provide input and public comment, please visit the National Research Council Site or support the public workshop in March:

http://sites.nationalacademies.org/DEPS/ASEB/DEPS_059552

BACKUP

TA #13 Draft Roadmap briefing to the FAA/AIAA Commercial Space Conference – Feb 2011

17

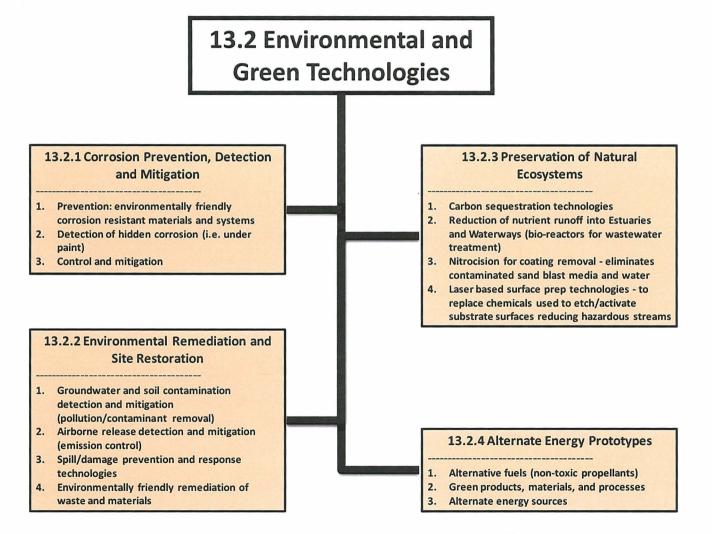
Technology Area Breakdown Structure

13.1 Technologies to Optimize the Operational Life-Cycle

13.1.1 Storage, Distribution and Conservation of Fluids

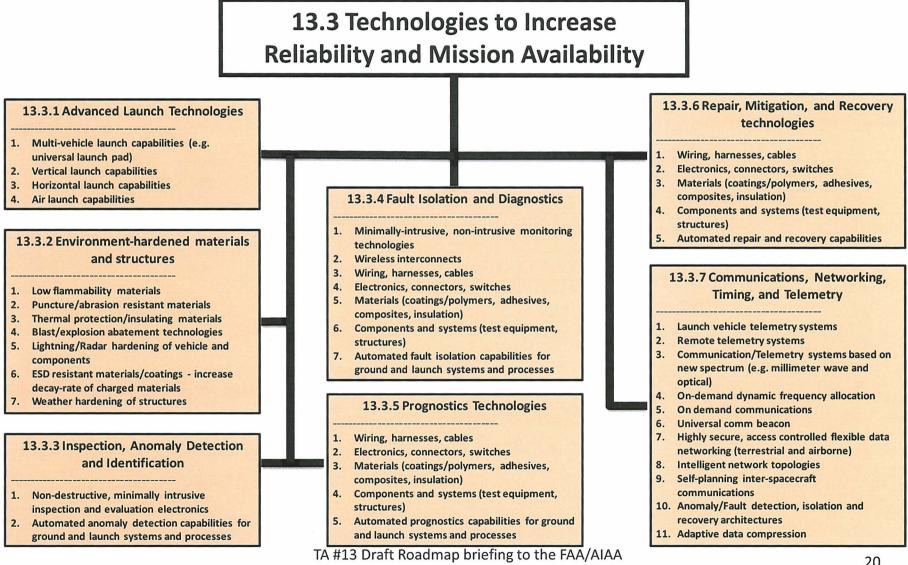
- 1. High efficiency/zero loss storage
- 2. High efficiency fluid transfer
- 3. High efficiency recovery, purification, and reliquefaction systems
- 4. Limited resource conservation (e.g., Helium)
- 5. Fluids system components
- 6. Low-cost commodity production
- 7. Fluid servicing

13.1.2 Automated Alignment, Coupling, and Assembly Systems

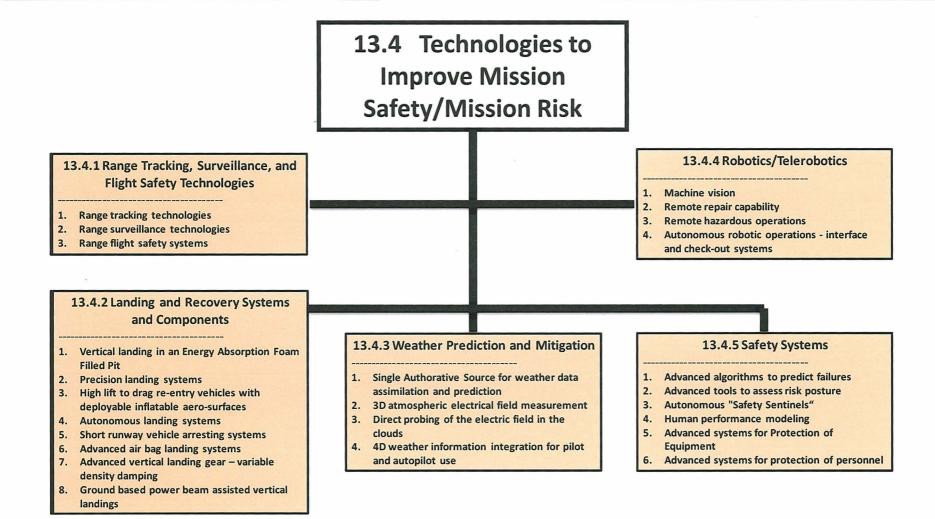

- 1. Positioning and alignment systems
- 2. Automated control systems (self positioning, self-configuring)
- 3. Automated ground-to-vehicle and ground-topayload umbilicals and interfaces
- 4. Leak free quick disconnects with self sealing capability
- 5. Latching, actuation, mating and release mechanisms (shape memory alloys)
- 6. Automated handling and assembly (robotics)

13.1.3 Autonomous Command and Control for Ground Systems and Integrated Vehicle/Ground System

- 1. Next-generation modeling capabilities for lifecycle
- 2. Mission preparedness technologies
- 3. Advanced space-borne computing
- Open, ground system service-oriented architecture (common multi-mission infrastructure)
- 5. Automated planning and scheduling tools
- 6. Automated/autonomous information systems
- 7. Transferring mission operations ground planning and scheduling software to the flight element

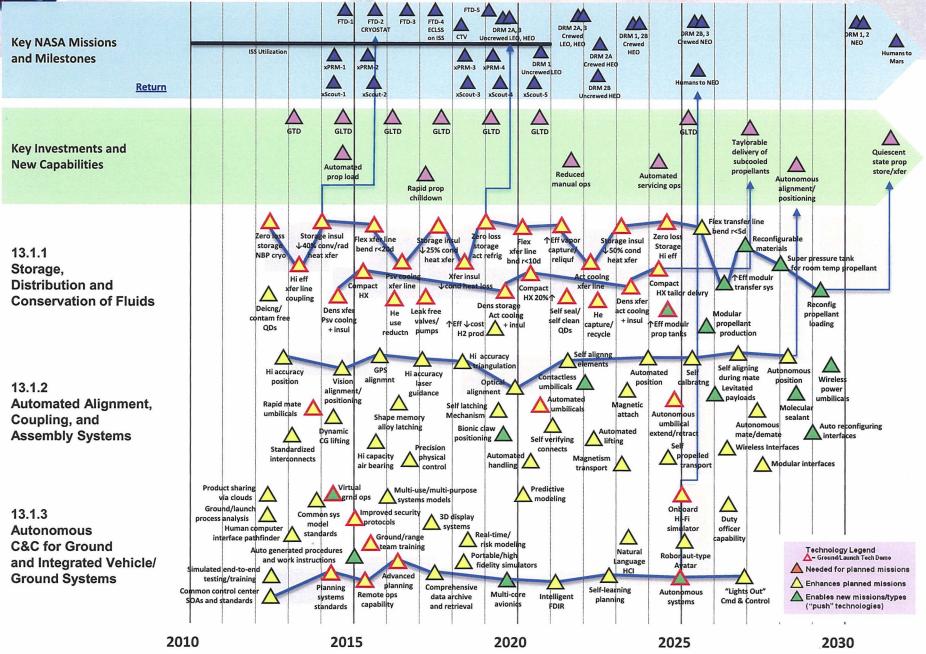

TA #13 Draft Roadmap briefing to the FAA/AIAA Commercial Space Conference – Feb 2011

Technology Area Breakdown Structure

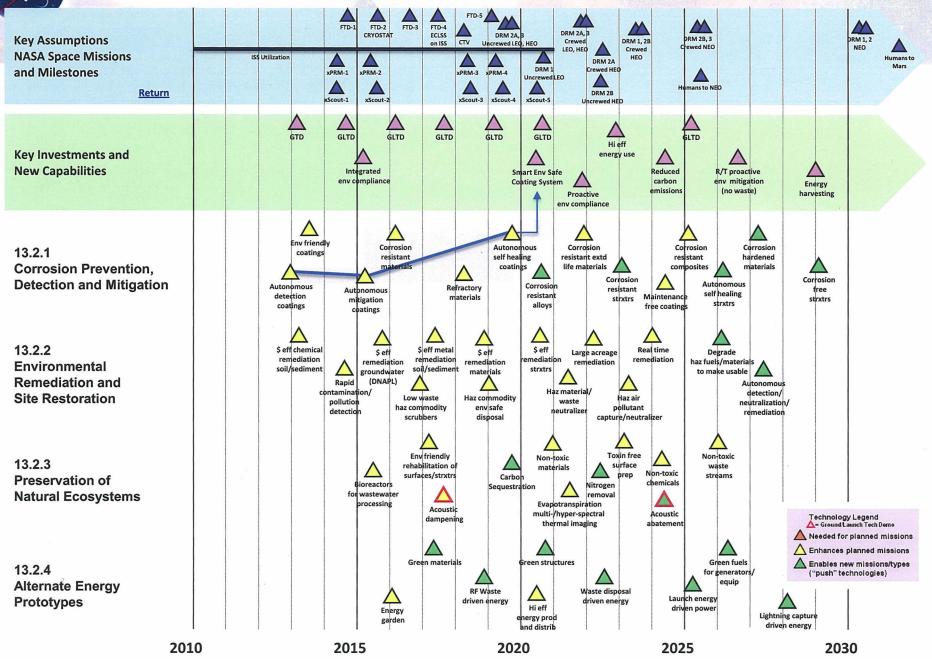

TA #13 Draft Roadmap briefing to the FAA/AIAA Commercial Space Conference – Feb 2011

fechnology Area Breakdown Structure

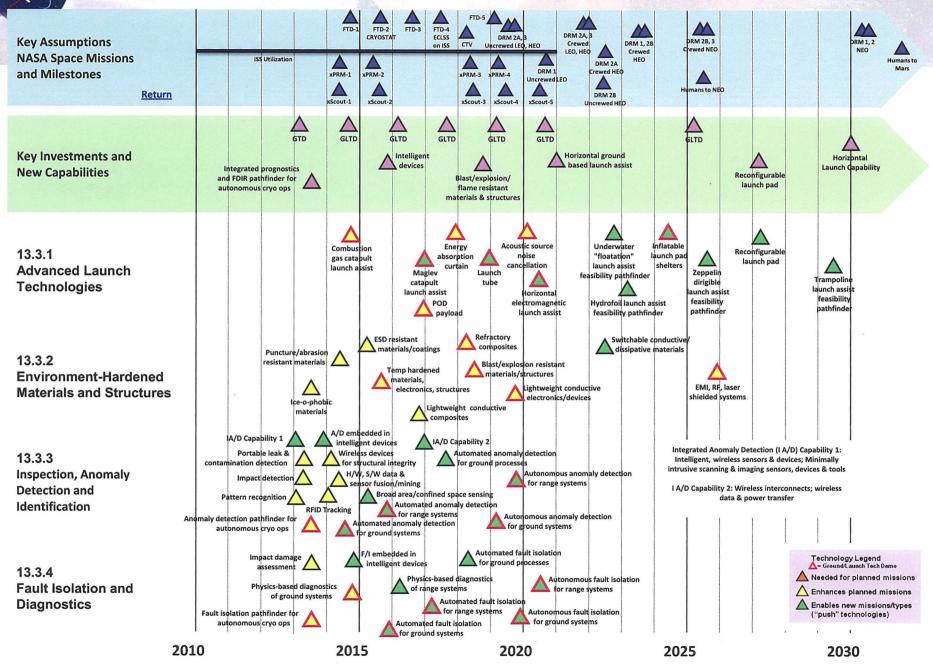
Commercial Space Conference - Feb 2011

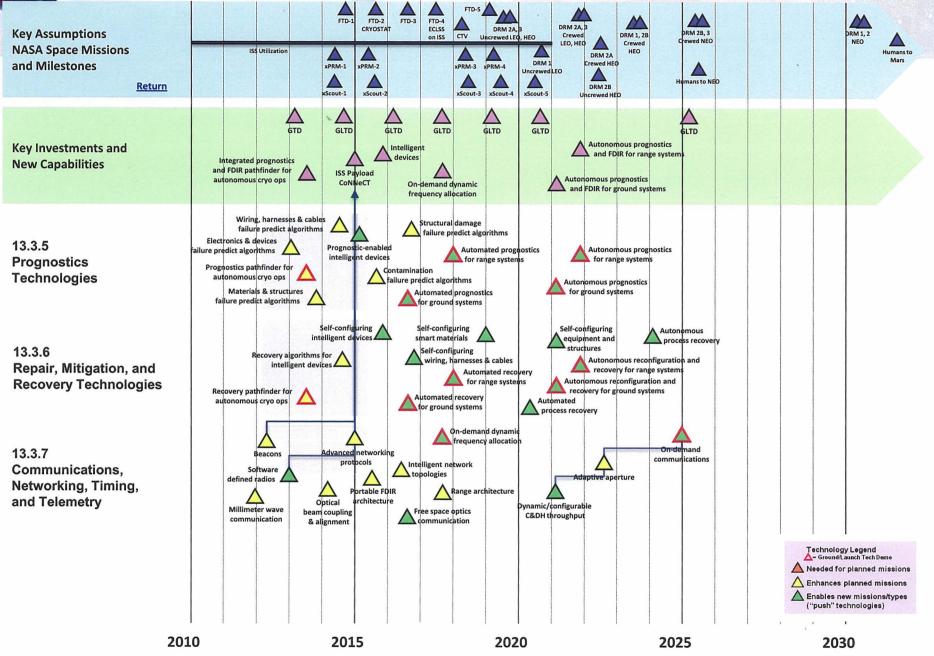

Technology Area Breakdown Structure

TA #13 Draft Roadmap briefing to the FAA/AIAA Commercial Space Conference – Feb 2011

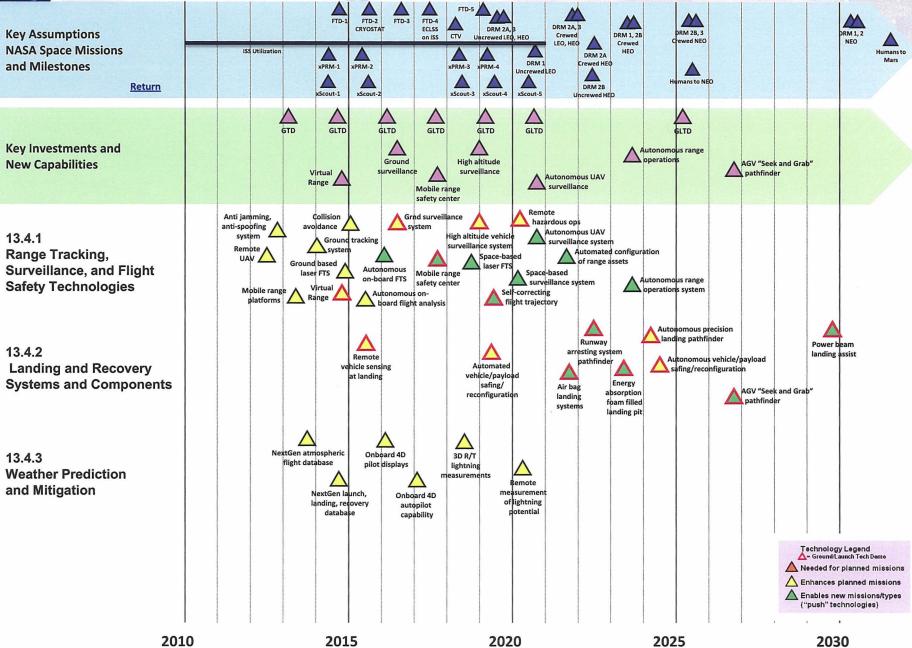


Backup – TASR - 13.1 Technologies to Optimize the Operational Life-Cycle

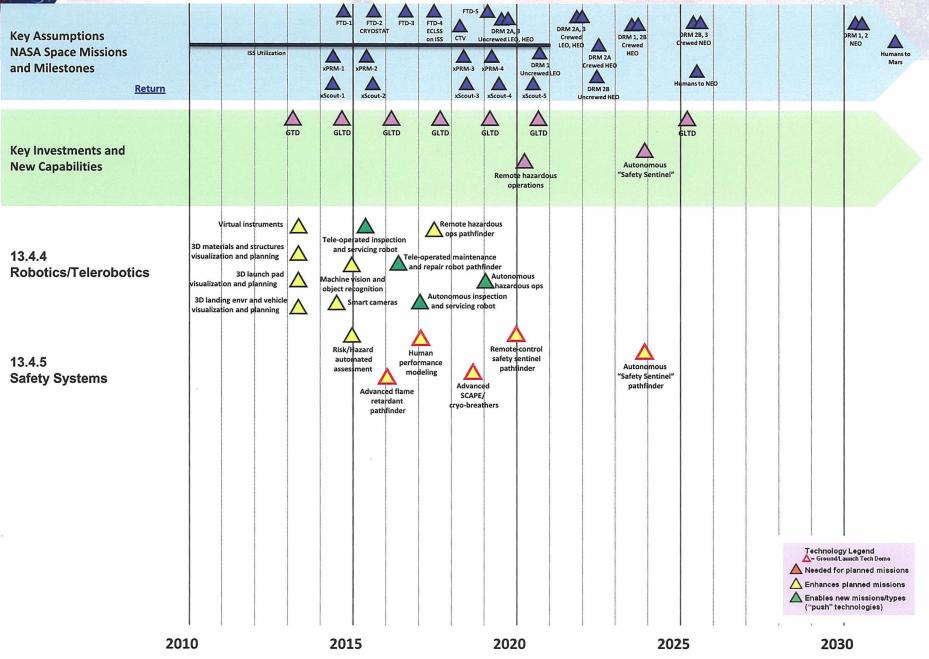


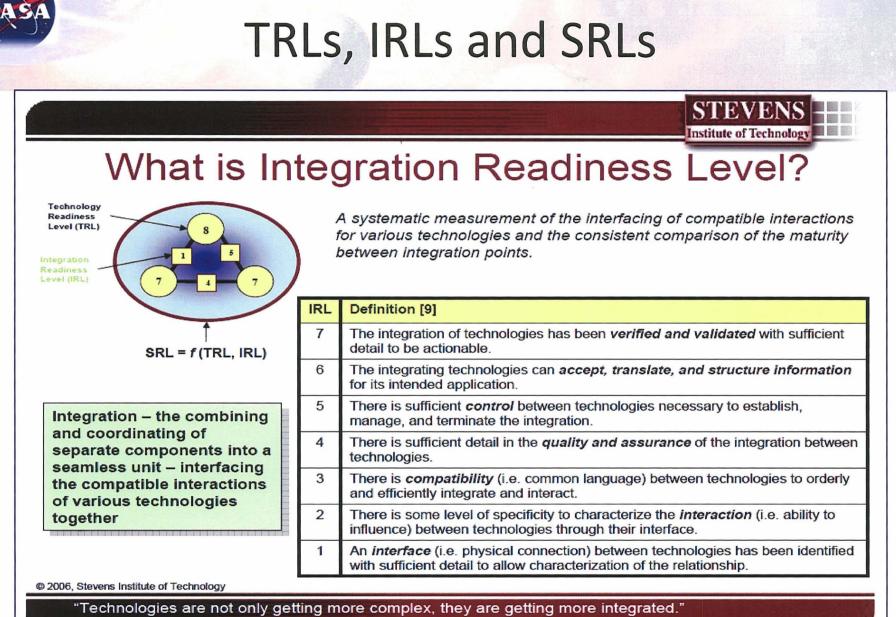

Backup – TASR - 13.2 Environmental and Green Technologies

ASA Backup – TASR - 13.3 Technologies to Increase Reliability and Mission Availability (1 of 2)

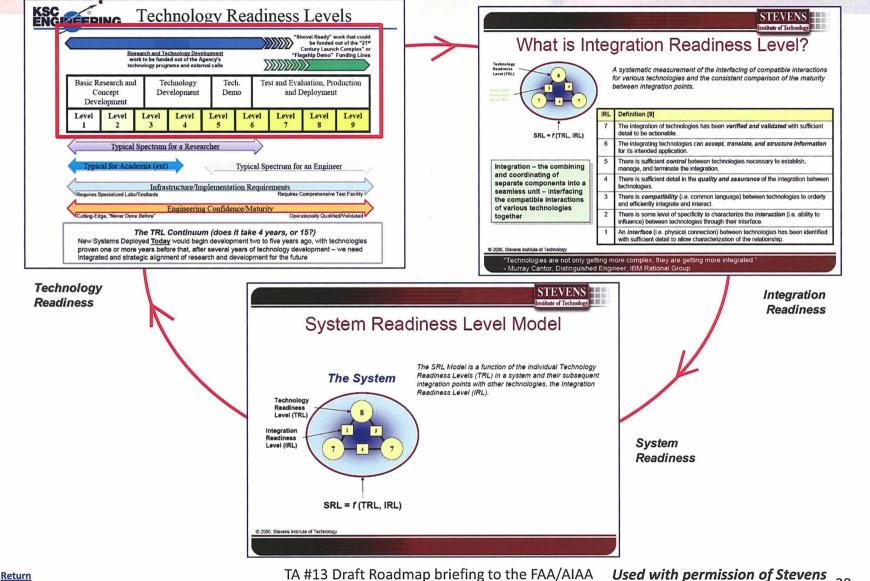


ASA Backup – TASR - 13.3 Technologies to Increase Reliability and Mission Availability (1 of 2)




Backup – TASR - 13.4 Technologies to Improve Mission Safety/Mission Risk (1 of 2)

Backup – TASR - 13.4 Technologies to Improve Mission Safety/Mission Risk (2 of 2)



- Murray Cantor, Distinguished Engineer, IBM Rational Group

Return

TA #13 Draft Roadmap briefing to the FAA/AIAAUsed with permission of StevensCommercial Space Conference – Feb 2011Institute of Technology

TRLs, IRLs and SRLs

Commercial Space Conference – Feb 2011 Institute of Technology

s 29