

In the beginning...

The timeline...

Exponential growth...

Data from NASA/Goddard Space Flight Center James Hansen, Goddard Institute of Space Studies Robert B. Schmunk, Scientific Visualization Studio

The warmest decade on record...

What is the meaning of sustainable?

World Population (Billions)

Delta National Wildlife Refuge

20 km

sunglint

oil slick

close up-

IPCC predictions www.net.org

Mass extinction (>40% known spp), Sea level rise... Food?

~30% wetlands flooded, freshwater, Islands

Food?

Stress on ecosystems (Population 9 billion)

Food?

Extinctions (20-30% known spp), Food? ocean acidification

} Temp rise 0.7°C
Weather patterns, wildfires, Food?
floods/droughts T. Root, Stanford

Sustainability? Population Afluence Species Technology

Are biofuels the answer? Only if they <u>do not use:</u> • agricultural land • freshwater • fertilizer

Feasible, affordable, scalable, sustainable...

NOW!

WWW.WDoditorials.com/cartooss

How green are biofuels?

	Corn	Sugar Cane	Switch Grass
Product			
GHG output*			
Water			
Fertilizer			
Pesticide			
Energy			
US crop land/ half demand			

*CO₂ kg/MJ: Growing, harvesting, refining, burning fuel (cf., gas=94)

The problem with biodiesel...

	Wood Residue	Soybeans	Rapeseed, Canola
Product	Ethanol, biodiesel	biodiesel	biodiesel
GHG output*	N/A	49	37
Water	low	HIGH	HIGH
Fertilizer	low	low-med	med
Pesticide	low	med	med
Energy	low	med-low	med-low
US crop land/ half demand	150 -250%	180-240%	30%

*CO₂ kg/MJ: Growing, harvesting, refining, burning fuel (cf., Diesel=83)

Biodiesel crops and production:

Plant	Gal/acre-yr	Barrels/yr
Soybeans	50	>10,000,000
Sunflower	100	> 1,000,000
Canola	160	>10,000,000
Jatropha	200?	some, not much
Palm Oil	600	>10,000,000
Microalgae	2,000 to 5,000	~0.1

from: Benemann 2009. Algae Biomass Summit

Algae cultivation systems on land...

Open circulating ponds (raceways)

Closed bioreactors

Aquacarotene, Australia

Cyanotech, HI

THE WORL

NBT/Seabiotics, Israel

What's wrong with this picture?

Algal Bioreactor

Subitec, Germany

www.nerc.ac.uk

What's wrong with this picture?

Cost of PBR infrastructure

Energy requirements: pumping, mixing, cooling

Temperature regulation

What about collecting wild algae from the ocean?

Concentration?

Harvest wild algae?

Spatially/temporally dispersed?
 Species composition?

What about growing algae in the ocean?

O ffshore M embrane **E** nclosures for **G** rowing A Igae

What is OMEGA?

Offshore Membrane Enclosures for Growing Algae

SIEMENS Water Technologies

Wastewater Treatment Plant - Harvest Pipe Outfall Filling/Draining Reactors HARVEST

How realistic is OMEGA?

Challenges for OMEGA

- Biology
 Engineering
 - Economics
 - Environment

Sustainability? Population Affluence Species Technology

Our Future?

The stone age didn't end because we ran out of stones... Yamani

There is no limit to what you can accomplish If you don't care who gets the credit... Truman

"...what we really want is for things to stay the same... but get better."

Drop-in fuel

Are we up to the engineering challenge?

NASA OMEGA

Demonstration Project

Ecology of Technology

SIEMENS Water Technologies

OMEGA MOVIE

A challenge and a call to action...

OMEGA for the fuel of the future?

WWW.WDoditorials.com/cartoors.

Failure is not an option...

There are challenges growing algae on land...

1: Open circulating ponds (raceways)

2: Closed photobioreactors (PBRs)

Sources of biodiesel...

	Wood Residue	Soybeans	Rapeseed, Canola	Algae
Product	Ethanol, biodiesel	biodiesel	biodiesel	biodiesel
GHG output*	N/A	49	37	-183
Water	low	HIGH	HIGH	Low?
Fertilizer	low	low-med	med	Low?
Pesticide	low	med	med	Low?
Energy	low	med-low	med-low	HIGH?
US crop land/ half demand	150 -250%	180-240%	30%	1-2%?

*CO₂ kg/MJ: Growing, harvesting, refining, burning fuel (cf., Diesel=83)

First flight test with sustainable biofuels for commercial aviation

NASA

First sustainable biofuel flight test in Asia

First North American sustainable biofuel flight test

Continental Airlines

Scheduled 2009

Scheduled 2009

Biofuels fly airplanes...

ALGAE Powering the future of aviation?

Paul Steele Executive Director ATAG

Algal Biomass Organization www.algalbiomass.org

Claim that algae will address:

➤ climate change

>energy independence

➢ growth of a green economy

The aviation emissions challenge

CO₂ emissions from the global fuel burn of commercial airlines

How do we limit aviation's CO_2 ?

Carbon Neutral Growth and Reduction Timeline

140

Biofuels for aviation to date:

Carrier	Aircraft	Partners	Date	Biofuel	Blend
virgin atlantic 🛃	B747-400	Boeing, GE Aviation	23 Feb 08	Coconut & Babassu	20% one engine
AIR NEW ZEALAND	B747-400	Boeing, Rolls-Royce	30 Dec 08	Jatropha	50% one engine
Continental Airlines	B737-800	Boeing, GE Aviation, CFM, Honeywell UOP	7 Jan 09	Algae with Jatropha	50% one engine
JNL	B747-300	Boeing, Pratt & Whitney, Honeywell UOP	30 Jan 07	Camelina, Jatropha and Algae tilend	50% one engine
<u>кім</u>	B747-400	GE, Honeywell UOP	23 Nov 09	Camelina	50% one engine
jetBlue	ТВА	Airbus, IAE, Honeywell UOP	ТВА	ТВА	ТВА

Is this true?

How do you know?

Why should I care?
OMEGA System

What about the water?

trent 5/30/09

Desalgae System (OMEGA + Desalination)

Desalgae System (OMEGA + Desalination)

Desalgae System (OMEGA + Desalination)

Example: San Francisco

67 MGD, 80% of SF WW 20 g/m²/day algae growth

Minimum size

- N-limited @ 9 mg/L
- 28 tons dry biomass/day
- 2.3 MG biofuel/yr
- Maximum output
- Water-limited
- 1 g/L algae yield
- 254 tons dry biomass/day
- 20 MG biofuel/yr
- Capture all CO₂ from 32 MW PP

HOW THE DEAD ZONE FORMS

Fertilizer runoff

Stratified water column

Suffocation

Remediating Dead Zones

Vangeze River

Mississippi River Delta

Dead Zones 2008

Science vol. 321: 15 Aug 2008