

CO₂ Removal and Atmosphere Revitalization Systems for Next Generation Space Flight

ARC Air Revitalization Group

Bernadette Luna Lila Mulloth, Mini Varghese, John Hogan

October 28, 2010

Outline

- Design Objectives of Atmosphere Revitalization
 - Reliability
 - Low Power
 - Loop Closure
- ISS CO2 Removal
- Low Power CO2 Removal System
- Next Generation Atmosphere Revitalization

Loop Closure

BASIS:

one Human Equivalent Unit

(1 kg CO₂ generated / day)

Current ISS

vent to space

excess H₂ is vented also

1.0 kg CO₂ / day

(about 0.05 kg / day)

3

Increased Loop Closure

ISS CO2 Removal

Low Power CO2 Removal - LPCOR

- * Passive membrane drying technology for low power
- * Structured residual dryers for low power and reliability
- * Integrated CO₂ capture and compression for loop closure and low power

Specifications

PARAMETER	SPECIFICATION
Crew-size	4 (max)
CO ₂ concentration	2600 ppm (average)
Cycle Time	60 minutes
Flow rate: process air inlet	850 slm
Temperature: process air inlet	8-10°C
Dewpoint: process air inlet	8°C
CO ₂ delivery pressure	133 kPa
Adsorbent Cooling Method	process air and rack air for additional cooling

Test Stand

- * Test platform for evaluation/ characterization of AR components
- * Air Flow range : 0-1275 slm
- * Air Temperature : 5°C-20°C
- * Air Dewpoint : 5°C-20°C
- * Air Relative Humidity: 35%-100%
- * Supplemental Air Flow Range: 0-1416 slm
- * Supplemental Air Flow Dewpoint: -70°C

Dryer Orientation

- st Tube flow 850 slm, Shell flow 722 slm (85% of tube flow), Inlet DP 8°C
- * 70% water-removal efficiency in horizontal orientation
- * 81% water-removal efficiency in vertical orientation

Efficient Heating – In-line vs. proximal

Desiccant

Air Pre-Heater

In line

Proximal

- * 60-minute adsorption/desorption cycles
- * Average power for desiccant regeneration 250 W

Low Power CO2 Removal - LPCOR

- * Passive membrane drying technology for low power
- * Structured residual dryers for low power and reliability
- * Integrated CO₂ capture and compression for loop closure and low power

2-Stage Compressor

- * Built-in inlet and outlet valves with integrated valve actuation assembly
- * Concentric design with stage 1 embedded inside of stage 2
- * Coiled heater assembly for uniform heating of each stage

Operating Principle of TSAC

Adsorption vs. Mechanical Compressor

- No rapidly moving parts
- No vibration
- Proven reliability and sustainability

ISS CO2 and TCCS - separate loops

Next Generation

- * Combine CO₂ and TC functions
- Structured sorbents for low pressure drop and longevity

Outline

- Design Objectives of Atmosphere Revitalization
 - Reliability
 - Low Power
 - Loop Closure
- ISS CO2 Removal
- Low Power CO2 Removal System
- Next Generation Atmosphere Revitalization
- QUESTIONS