Creep Behavior of Hafnia and Ytterbium Silicate Environmental
Barrier Coating Systems on Si1C/Si1C Ceramic Matrix Composites

Environmental barrier coatings will play a crucial role in future advanced gas turbine engines
because of their ability to significantly extend the temperature capability and stability of SiC/SiC
ceramic matrix composite (CMC) engine components, thus improving the engine performance. In
order to develop high performance, robust coating systems for engine components, appropriate test
approaches simulating operating temperature gradient and stress environments for evaluating the
critical coating properties must be established. In this paper, thermal gradient mechanical testing
approaches for evaluating creep and fatigue behavior of environmental barrier coated SiC/SiC CMC
systems will be described. The creep and fatigue behavior of Hafnia and ytterbium silicate
environmental barrier coatings on SiC/SiC CMC systems will be reported in simulated
environmental exposure conditions. The coating failure mechanisms will also be discussed under
the heat flux and stress conditions.
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Revolutionary Ceramic Coatings and Composites Impact
Turbine Engine Technology

— Advanced environmental barrier coatings and SiC/SiC CMC combustor and
turbine airfoil component technologies are being developed for reduced cooling
and NO, emission under NASA programs

— Next generation environmental barrier coating-CMC development require more
sophisticated laboratory testing to simulate turbine engine temperature and
stress environments
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NASA Environmental Barrier Coating — CMC System
Development: Temperature and Strength Goals
« Emphasize temperature capability, performance and durability requirements

» Help fundamental understanding, database and design tool development
* Increase the coating Technology Readiness Levels for engine applications
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Outline

Advanced creep and fatigue testing development for environmental
barrier coating — CMC systems
» High heat flux thermal fatigue test rig — past experience
* New heat flux mechanical test rigs
» High heat flux tensile creep rupture rig
» High heat flux ball-on-ring creep/fatigue test rigs
« FEM analysis and model validation

Creep testing of candidate model environmental barrier coating
systems for SiC/SiC CMC airfoils and combustors

* Ytterbium silicate

+ HfO, and HfO, Rare Earth Aluminosilicate EBCs

« The coating degradation and delamination under thermal cycle and
creep conditions

Preliminary failure mechanisms and modeling

Summary




Laser High Heat Flux Approach

igh-heat

-flux tests crucial for CMC coating system developments

— Turbine level h

« Existing high heat testing High power CO, laser high-heat-flux rig (up to 315 W/cm?)
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Real-Time Thermal Conductivity Measurements
and Damage Monitoring
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Typical Thermal Cyclic Behavior of EBC Systms

— Sintering and delaminations of coatings reflected by the apparent thermal
conductivity changes
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Delamination in a High Heat Flux Thermal Cycling
Condition
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Experimental:
High-Heat-Flux Tensile Creep Rupture Test Rig

- Integrated with a High Power CO, laser system

- Allows very high temperature, high heat flux cooled thermal gradient testing
under turbine blade stress conditions, and Long-term testing capability

- Accommodates conventional 6” tensile dog-bone and also other configuration

specimens
- Specifically designed for CMC turbine airfoil system development
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Experimental: New High-Heat-Flux Ball-on-Ring Creep and
High Cycle Fatigue Test Rig

Integrated high power CO, laser and mechanical test rig allows

- High heat flux cooled thermal gradient testing under biaxial stress conditions

- high cycle fatigue (up to 100Hz) testing

- Accommodates 1” diameter, 2” diameter CMC disc test specimens and also
various configuration subelements

- Designed for advanced CMC combustor material testing
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EBC Processing Using Plasma-Spray (PS) and Plasma
Spray-Physical Vapor Deposition (PS-PVD)
— Plasma spray YSZ/mullite/mullite+BSAS coated CMC system used for FEM
model validation
— Plasma spray and/or plasma vapor HfO,, HfO,-Yb,SiO/Yb,Si,O, environmental
barrier coatings on Melt-Infiltrated (

—
Nozzle section view m

Plasma-spray processing of Hybrid PS-PVD coater system for PS-
environmental barrier coatings PVD coating processing
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High-Heat-Flux Tensile Creep Rupture Test Rig

Some early creep test examples under various stresses (34.5 — 103.5 MPa) at
TEBC surface 1320°C and TCMC back surface 1200°C

Large scatter in early creep tests due to CMC quality variability

Environmental effects with high pressure burner rig exposures also studied
Advanced EBCs demonstrated initial stress-strain resistance under thermal
gradient stress rupture tests and helped protecting CMCs
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Long-Term High Heat Flux Tensile Creep Rupture Tests

Advanced EBC and MI CMC systems currently used for long-term creep testing
Hafnia-ytterbium silicate based EBCs along with the hafnia-silicon bond coat on M
SiC/SiC specimen completed 600 hr creep rupture testing at 69 MPa (10 ksi)
StreSS’ and Tcoating surface 1350°C and TCMC back surface 1200°C
Degradation monitored by through-thickness thermal conductivity measurements
Creep rupture testing for 1000 hours at 69 MPa (10ksi) and 103.5 (15ksi) to meet
project goals
Thermal cycling fatigue testing will be incorporated
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Long-Term High Heat Flux Tensile Creep Rupture Tests

Temperature and system thermal conductivity monitoring
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FEM Analysis of High Heat Flux Ball-on-Ring Creep and
High Cycle Fatigue Test Rig

FEA models used to help understand the heat transfer and axial
displacements of the 1” disc specimen under a Ball-on-Ring test
Tensile strains induced on the EBC side

Tensile strains induced on
the coating side

Temperature distribution Axial total displacement under heat flux
testing
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Modeled CMC Test Stress Conditions in a Ball-on-Ring

Test Rig
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Elastic Stress Distribution in a Disc Test Specimens under
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Radial Strain, m/m

New High Heat Flux Ball-on-Ring and Ring-on Ring Creep @
and High Cycle Fatigue Test Rig - Continued

-  FEA models used to help understand the heat transfer and axial displacements
of the 1” disc specimen under a Ball-on-Ring test
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Thermal conductivity, W/m-K

The YSZ/Mullite/Mullite+BSAS/Si EBC Degradation In-Situ @
Monitored in a Ball-on-Ring Creep Test

Tested T,

urface

1482°C and T,

interface

Constant tested load 445 N
Excellent correlations between thermal conductivity and creep strain response
due to coating failure

kcera

—o— Tsurface
—/—— Tinterface
——— Thack

——— qthru

0 5

10 15
Time, hours

20

N
(&3]

1600
1400
1200
1000
800
600
400
200

Temperature, °C; heat flux, wicnt

1250°C

Displacement, mm

0.2 B T T T

0.0

02
04 [
0.6
0.8

Uy, mm

—— Ey, mm
——=—— Creep displacement

‘ T T T T ‘ T T T T
Start Spalling

Y}7 YYYYYYYYYYYY'
Y YYYYY AAAAA_AAAAAAAAAAAAAAAAAAAAAAALAAAAAA_AAAAAAAALM
Yy Wi

Time, hours

19



The YSZ/Mullite/Mullite+BSAS/Si EBC Degradation In-Situ

Monitored in a Ball-on-Ring Creep Test - continued
Creep model validated for the EBC-CMC system (at 200 MPa)
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Thermal conductivity, W/m-K

Examples of a Ytterbium Silicate EBC — SiC-SiC CMC @
Testing

High creep system resulted in the material system early failure
Real time monitoring through the conductivity and creep strain changes
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Thermal conductivity, W/m-K
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Examples of a Ytterbium Silicate EBC — SiC-SiC CMC
Testing - Continued

Real time monitoring through the conductivity and creep strain changes
Cracking-delamination rates can be determined for EBC

Creep rates for the CMC system
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Thermal conductivity, W/m-K

Examples of HfO, and Hf-RE-Aluminum Silicate EBC @
Testing

Real time monitoring through the conductivity and creep strain changes
Less degradation observed for the EBC at similar substrate creep rates
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Examples of HfO, and Hf-RE-Aluminum Silicate EBC

Testing

Real time monitoring through the conductivity and creep strain changes
Less degradation observed for the EBC at similar substrate creep rates
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Failure Morphologies of Ytterbium Silicate/Si EBC system
- Coating surface cracking, interface reaction and delamination after testing
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Failure Morphologies of HfO, - Based EBC

- Some coating surface cracking, perhaps crack healing observed after testing
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€,=0.06% m/m

Modeling of EBC Failure Mechanisms in Tensile Creep
and Ball-on-Ring Flexural Creep Tests: Creep Induced
Mixed Mode Delaminations
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In(da/dN)

Delamination under Cyclic Fatigue Load
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Summary

Advanced high heat flux tensile rupture and ball-on-ring rigs established for
simulated EBC-CMC testing

— High temperature comprehensive testing capability

— Real time coating degradation monitoring

— FEM models helped understand the testing

Initial creep and fatigue behavior evaluated for EBC systems from plasma spray
and and plasma spray vapor deposition
— Coating failure mechanisms identified and modeled

Advanced EBC demonstrated initial capability to resist thermal and mechanical
stresses likely to be encountered in a turbine component
— High strength and high stability coating systems are still being developed

Fatigue behavior of EBC-CMC systems being investigated systematically to
understand time and cycle dependent fatigue behavior
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Modeling of EBC Failure Mechanisms in Tensile Creep
and Ball-on-Ring Flexural Creep Tests: Creep Induced
Mixed Mode Delaminations: Elastic Solution Case

- More severe damage under larger creep strains needs a better
understanding coating properties and creep stress relaxation
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