
Creep Behavior of Hafnia and Ytterbium Silicate Environmental 
Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites 
   
Environmental barrier coatings will play a crucial role in future advanced gas turbine engines 
because of their ability to significantly extend the temperature capability and stability of SiC/SiC 
ceramic matrix composite (CMC) engine components, thus improving the engine performance. In 
order to develop high performance, robust coating systems for engine components, appropriate test 
approaches simulating operating temperature gradient and stress environments for evaluating the 
critical coating properties must be established. In this paper, thermal gradient mechanical testing 
approaches for evaluating creep and fatigue behavior of environmental barrier coated SiC/SiC CMC 
systems will be described. The creep and fatigue behavior of Hafnia and ytterbium silicate 
environmental barrier coatings on SiC/SiC CMC systems will be reported in simulated 
environmental exposure conditions. The coating failure mechanisms will also be discussed under 
the heat flux and stress conditions. 
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Revolutionary Ceramic Coatings and Composites Impact 
Turbine Engine TechnologyTurbine Engine Technology

– Advanced environmental barrier coatings and SiC/SiC CMC combustor and 
turbine airfoil component technologies are being developed for reduced cooling 
and NOx emission under NASA programs

– Next generation environmental barrier coating-CMC development require more 
sophisticated laboratory testing to simulate turbine engine temperature and 
stress environments
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NASA Environmental Barrier Coating – CMC System 
Development: Temperature and Strength GoalsDevelopment: Temperature and Strength Goals

• Emphasize temperature capability, performance and durability requirements
• Help fundamental understanding, database and design tool development
• Increase the coating Technology Readiness Levels for engine applications
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Outline
─ Advanced creep and fatigue testing development for environmental 

barrier coating – CMC systems
• High heat flux thermal fatigue test rig – past experience g g g p p
• New heat flux mechanical test rigs

• High heat flux tensile creep rupture rig
• High heat flux ball-on-ring creep/fatigue test rigs 
• FEM analysis and model validation• FEM analysis and model validation

─ Creep testing of candidate model environmental barrier coating 
systems for SiC/SiC CMC airfoils and combustors

Ytt bi ili t• Ytterbium silicate
• HfO2 and HfO2 Rare Earth Aluminosilicate EBCs

• The coating degradation and delamination under thermal cycle and 
creep conditions

─ Preliminary failure mechanisms and modeling
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Laser High Heat Flux Approach
– Turbine level high-heat-flux tests crucial for CMC coating system developments

• Existing high heat testing High power CO2 laser high-heat-flux rig (up to 315 W/cm2)

Heat flux
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Real-Time Thermal Conductivity Measurements 
and Damage Monitoringand Damage Monitoring
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Typical Thermal Cyclic Behavior of EBC Systms
– Sintering and delaminations of coatings reflected by the apparent thermal 

conductivity changes
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Delamination in a High Heat Flux Thermal Cycling 
ConditionCondition

1 1,E  hP

M

interface
delamination crack



Evans and

Transient Temperature

1400

1500

1600

Surface
Interface

Transient Temperature

1400

1500

1600

Surface
Interface

  21
1 1 0

1

11
6 1 SG E h T T 


 

   

2 2,E 
Evans and 
Hutchinson model, 
Surface Coating 
Technology, 2007

T=~500˚C

1000

1100

1200

1300

1400

Te
m

pe
ra

tu
re

, o C

Interface
Crack Opening Sureface

T=~500˚C

1000

1100

1200

1300

1400

Te
m

pe
ra

tu
re

, o C

Interface
Crack Opening Sureface

Temperature, oC1467 oC 1315 oC

1066 oC

800

900

0.00 0.05 0.10 0.15 0.20
Time, sec

800

900

0.00 0.05 0.10 0.15 0.20
Time, sec

Crack Extension Force G as a function of timeCrack Extension Force G as a function of time 1066 oCCrack Extension Force G as a function of time
for 2.0mm half delamination length and crack depth of 0.08mm

5.0

6.0

7.0

8.0

or
ce

 G
, J

/m
2

32

28

fo
rc

e 
(E

=~
50

G
Pa

)

or
ce

 (E
=~

20
0G

Pa
)

24

20

Crack Extension Force G as a function of time
for 2.0mm half delamination length and crack depth of 0.08mm

5.0

6.0

7.0

8.0

or
ce

 G
, J

/m
2

32

28

fo
rc

e 
(E

=~
50

G
Pa

)

or
ce

 (E
=~

20
0G

Pa
)

24

20

32

28

fo
rc

e 
(E

=~
50

G
Pa

)

or
ce

 (E
=~

20
0G

Pa
)

24

20

0 0

1.0

2.0

3.0

4.0

C
ra

ck
 E

xt
en

si
on

 F

4mm delamination length

C
ra

ck
 e

xt
en

si
on

 d
riv

in
g 

ra
ck

 e
xt

en
si

on
 d

riv
in

g 
fo

16

12

8

4

00 0

1.0

2.0

3.0

4.0

C
ra

ck
 E

xt
en

si
on

 F

4mm delamination length

C
ra

ck
 e

xt
en

si
on

 d
riv

in
g 

ra
ck

 e
xt

en
si

on
 d

riv
in

g 
fo

16

12

8

4

0C
ra

ck
 e

xt
en

si
on

 d
riv

in
g 

ra
ck

 e
xt

en
si

on
 d

riv
in

g 
fo

16

12

8

4

0

8

The FEM model
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Experimental:
High-Heat-Flux Tensile Creep Rupture Test RigHigh Heat Flux Tensile Creep Rupture Test Rig

- Integrated with a High Power CO2 laser system
- Allows very high temperature, high heat flux cooled thermal gradient testing 

under turbine blade stress conditions and Long-term testing capabilityunder turbine blade stress conditions, and Long term testing capability
- Accommodates conventional 6” tensile dog-bone and also other configuration 

specimens
- Specifically designed for CMC turbine airfoil system development
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Experimental: New High-Heat-Flux Ball-on-Ring Creep and 
High Cycle Fatigue Test RigHigh Cycle Fatigue Test Rig

Integrated high power CO2 laser and mechanical test rig allows 
- High heat flux cooled thermal gradient testing under biaxial stress conditions
- high cycle fatigue (up to 100Hz) testing
- Accommodates 1” diameter, 2” diameter CMC disc test specimens and also 

various configuration subelements
- Designed for advanced CMC combustor material testing  
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EBC Processing Using Plasma-Spray (PS) and Plasma 
Spray-Physical Vapor Deposition (PS-PVD)Spray Physical Vapor Deposition (PS PVD)

– Plasma spray YSZ/mullite/mullite+BSAS coated CMC system used for FEM 
model validation

– Plasma spray and/or plasma vapor HfO2, HfO2-Yb2SiO5/Yb2Si2O7 environmental 
barrier coatings on Melt-Infiltrated (MI) CMC creep behavior studied

Nozzle section view Mid section view End section (sample side) view
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Hybrid PS-PVD coater system for PS-
PVD coating processing

Plasma-spray processing of 
environmental barrier coatings



High-Heat-Flux Tensile Creep Rupture Test Rig
- Some early creep test examples under various stresses (34.5 – 103.5 MPa) at 

TEBC surface 1320°C and TCMC back surface 1200°C
- Large scatter in early creep tests due to CMC quality variability

E i t l ff t ith hi h b i l t di d- Environmental effects with high pressure burner rig exposures also studied
- Advanced EBCs demonstrated initial stress-strain resistance under thermal 

gradient stress rupture tests and helped protecting CMCs
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Long-Term High Heat Flux Tensile Creep Rupture Tests
- Advanced EBC and MI CMC systems currently used for long-term creep testing
- Hafnia-ytterbium silicate based EBCs along with the hafnia-silicon bond coat on MI 

SiC/SiC specimen completed 600 hr creep rupture testing at 69 MPa (10 ksi) 
stress and T ti f 1350°C and TCMC b k f 1200°Cstress, and Tcoating surface 1350 C and TCMC back surface 1200 C

- Degradation monitored by through-thickness thermal conductivity measurements
- Creep rupture testing for 1000 hours at 69 MPa (10ksi) and 103.5 (15ksi) to meet 

project goals
Th l li f ti t ti ill b i t d- Thermal cycling fatigue testing will be incorporated
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Long-Term High Heat Flux Tensile Creep Rupture Tests
- Temperature and system thermal conductivity monitoring
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FEM Analysis of High Heat Flux Ball-on-Ring Creep and 
High Cycle Fatigue Test RigHigh Cycle Fatigue Test Rig

- FEA models used to help understand the heat transfer and axial 
displacements of the 1” disc specimen under a Ball-on-Ring test

- Tensile strains induced on the EBC sideTensile strains induced on the EBC side

Temperature distribution Axial total displacement under heat flux 

Tensile strains induced on 
the coating side 
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Modeled CMC Test Stress Conditions in a Ball-on-Ring 
Test RigTest Rig

Radial Stress Profile Hoop Stress Profile
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Elastic Stress Distribution in a Disc Test Specimens under 
Ball-on-Ring TestsBall on Ring Tests 

0.001

0.002

400

600

9E-18

0.001

200

400

R
aPa

Stress
Strain

-0.002

-0.001

-200

0

adial Strainl S
tr

es
s,

 M

-0.004

-0.003

-600

-400

n, m
/m

R
ad

ia
l

-0 006

-0.005

-1000

-800 Substrate EBC

17

0.0061000
0 0.5 1 1.5 2 2.5

Axial Distance, mm



New High Heat Flux Ball-on-Ring and Ring-on Ring Creep 
and High Cycle Fatigue Test Rig - Continuedand High Cycle Fatigue Test Rig Continued

- FEA models used to help understand the heat transfer and axial displacements 
of the 1” disc specimen under a Ball-on-Ring test
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The YSZ/Mullite/Mullite+BSAS/Si EBC Degradation In-Situ 
Monitored in a Ball-on-Ring Creep TestMonitored in a Ball on Ring Creep Test

- Tested Tsurface1482°C and Tinterface 1250°C
- Constant tested load 445 N
- Excellent correlations between thermal conductivity and creep strain response
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The YSZ/Mullite/Mullite+BSAS/Si EBC Degradation In-Situ 
Monitored in a Ball-on-Ring Creep Test - continuedMonitored in a Ball on Ring Creep Test continued

- Creep model validated for the EBC-CMC system (at 200 MPa)
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Examples of a Ytterbium Silicate EBC – SiC-SiC CMC 
TestingTesting

- High creep system resulted in the material system early failure
- Real time monitoring through the conductivity and creep strain changes
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Examples of a Ytterbium Silicate EBC – SiC-SiC CMC 
Testing - ContinuedTesting Continued

- Real time monitoring through the conductivity and creep strain changes
- Cracking-delamination rates can be determined for EBC
- Creep rates for the CMC system
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Examples of HfO2 and Hf-RE-Aluminum Silicate EBC 
TestingTesting

- Real time monitoring through the conductivity and creep strain changes
- Less degradation observed for the EBC at similar substrate creep rates
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Examples of HfO2 and Hf-RE-Aluminum Silicate EBC 
TestingTesting

- Real time monitoring through the conductivity and creep strain changes
- Less degradation observed for the EBC at similar substrate creep rates
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Failure Morphologies of Ytterbium Silicate/Si EBC system
- Coating surface cracking, interface reaction and delamination after testing

Near edge

Center
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Failure Morphologies of HfO2 - Based EBC
- Some coating surface cracking, perhaps crack healing observed after testing

Center region Near edgeCenter region Near edge

26



Modeling of EBC Failure Mechanisms in Tensile Creep 
and Ball-on-Ring Flexural Creep Tests: Creep Induced 

Mi d M d D l i tiMixed Mode Delaminations
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Delamination under Cyclic Fatigue Load
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Zhu, Choi, Miller, Surface Coating and Technology, 2004



Summary

• Advanced high heat flux tensile rupture and ball-on-ring rigs established for 
simulated EBC-CMC testing

High temperature comprehensive testing capability─ High temperature comprehensive testing capability
─ Real time coating degradation monitoring
─ FEM models helped understand the testing

Initial creep and fatigue behavior evaluated for EBC systems from plasma spray• Initial creep and fatigue behavior evaluated for EBC systems from plasma spray 
and and plasma spray vapor deposition
─ Coating failure mechanisms identified and modeled  

• Advanced EBC demonstrated initial capability to resist thermal and mechanical 
stresses likely to be encountered in a turbine component
─ High strength and high stability coating systems are still being developed

• Fatigue behavior of EBC-CMC systems being investigated systematically to 
understand time and cycle dependent fatigue behavior  
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Modeling of EBC Failure Mechanisms in Tensile Creep 
and Ball-on-Ring Flexural Creep Tests: Creep Induced 

Mi d M d D l i ti El ti S l ti CMixed Mode Delaminations: Elastic Solution Case
- More severe damage under larger creep strains needs a better 

understanding coating properties and creep stress relaxation
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