Ultimate Temperature of Pulse Tube Cryocoolers

Peter Kittel Consultant

This work was funded through University Affiliated Research Center (UARC) Subcontract S0181769. UARC is managed by the University of California, Santa Cruz under NASA Ames Research Center Contract NAS2-03144

Introduction

- Ideal pulse tube cooler with real gas
 - No losses (entropy generation) except in orifice / inertance tube
- T_{min} ; result of real gas properties

Regenerator Thermodynamics

Constraint: dT = 0

Volume expansivity: $\beta = 1/V dV/dT|_P$ Ideal gas: $T \beta = 1$

Pulse Tube Thermodynamics

Constraint: ds = 0

General expressionIdeal gasReal gas $ds = c_P dT/T - R dP/P$ ds = 0ds = 0 $dT/dP = V/c_P$ $dT/dP = T \beta V/c_P$ $dh = c_P dT + [1 - T \beta]V dP$ dh = V dP

Volume expansivity: $\beta = 1/V dV/dT|_P$ Ideal gas: $T \beta = 1$

Cooling Power

Change in Enthalpy flow at cold heat exchanger

General expression	Ideal gas	Real gas
$dq = \Delta dh$	dq = V dP	$dq = T \beta V dP$
minimum <i>T</i>	$T_{min} = 0$	when $\beta = 0$
		$(dV/dT _{P} = 0)$

Volume expansivity: $\beta = 1/V dV/dT|_P$ Ideal gas: $T \beta = 1$

ref: HE3PAK v1.2, HEPAK v3.4, and HEPAK v4a

? Meaning of $\beta \neq 0$?

- $\beta > 0 \rightarrow$ Conventional PT
 - Can PT operate below 0.5 K ?
- $\beta < 0 \rightarrow$ What does this mean ?
- Efect of mixing ³He and ⁴He ?

• $\beta < 0$: reverse enthalpy flow or $\Delta \Phi$ between \dot{m} and *P* by ~180°

• $\beta_3 < 0$, T < 1 K: β is small

- to small to be useful
- $\beta_4 > 0$, T < 1 K: β is very small

β = 0; Mixed ³He / ⁴He

2.5 all data at SVP 2 limited data in He-I region He-I ≈ straight line fit $\beta > 0$ Temperature [K] 1 2 more data in He-II region He-II $\beta < 0$ lower $\beta > 0$ region over estimated 0.5 **Phase Separation** $\beta > 0$ 0 Esel'son, B.N., et.al., 20 40 60 80 100 Solutions of He³ - He⁴ Quantum Liquids, 0 molar % ³He in mixture Nauka, Moscow, 1973 (in Russian) p. 424.

Ebner, C. and Edwards, D.O.,

"The Low Temperature Thermodynamic Properties of Superfluid Solutions of ³He in ⁴He," Physics Reports **2**, pp. 77-154 (1971)

Los Alamos superfluid pulse tube

"p"; thermometers by "T".

³He in Superfluid ⁴He

- 2-fluid behavior
 - T < 1 K: ³He low-density gas moving in fixed ⁴He background
 - Los Alamos pulse tube cooler
 - filled with 17% ³He and operated between 1 K and 0.6 K
 - Compressor does not cause pressure oscillations
 - causes the ³He concentration, x_3 , and the osmotic pressure, Π_3 , to oscillate.
 - in regenerator, heat exchangers, and orifices
 - $\succ \nabla P$ replaced by $\nabla \Pi_3$
 - In the pulse tube
 - > constraint that $\nabla P = 0$ is replaced by $\nabla \mu_4 = 0$

 μ_4 is the chemical potential of the ⁴He.

Loci of Constant μ_4

- Dashed line: approx operation of Los Alamos cooler
- T_{min} = phase separation
- Lowest T ⇒
 x₃ < 6.4 % @ cold hx
 x₃ < 1 % @ 0.6 K
 - Low density of ³He limits the mass flow and cooling in practical cooler

Radebaugh, R., "Thermodynamic Properties of He³-He⁴ Solutions with Applications to the He³-He⁴ Dilution Refrigerator," NBS TN 362 (1967)

Summary

- Below ≈ 1 K, ³He concentration driven pulse tube
 - possible with no known ultimate limiting temperature
 - Iack of thermodynamic data at very low T
- Limit of conventional pulse tube cryocoolers: $\beta = 0$
 - ⁴He limit *T* >≈ 2.2 K
 - ³He limit *T* >≈ 1 K.
 - mixture of ⁴He and ³He:
 - limit adjustable
 - mixing ratio not constant throughout the cooler
 - because μ₄ (*T*, *P*)
 - *T_{min}* depends on the mixing ratio at the cold hx

