NASA Technology Area 1: Launch Propulsion Systems

Presentation to AIAA FAA Commercial Space Transportation Conference, February 9-11, 2011

Paul McConnaughey, presenter
Mark Femminineo
Syri Koelfgen
Roger Lepsch
Richard M. Ryan
Steven A. Taylor
Technology Area Overview

• Domain
 – Earth to LEO Launch Propulsion Systems (Space Access)
• Does not include
 – Beyond LEO Transportation
 – Ground Systems other than launch assist
 – Launch Vehicles
 • Select subsystems in other TAs
• TA divided into 5 technical focus areas
Traceability to NASA Strategic (draft) Goals

<table>
<thead>
<tr>
<th>Goal</th>
<th>LPSTA Alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Extend and sustain human activities across the solar system.</td>
<td>Launch propulsion technologies advance human access to space.</td>
</tr>
<tr>
<td>2. Expand scientific understanding of the Earth and the universe in which we live.</td>
<td>Launch propulsion technologies facilitate efficient scientific access to space.</td>
</tr>
<tr>
<td>3. Create the innovative new space technologies for our exploration, science, and economic future.</td>
<td>Research into launch propulsion technologies builds and sustains the nation’s leadership in access to space.</td>
</tr>
<tr>
<td>4. Advance aeronautics research for societal benefit.</td>
<td>Advances in air-breathing technologies have strong synergy with access to space.</td>
</tr>
<tr>
<td>5. Enable program and institutional capabilities to conduct NASA’s aeronautics and space activities.</td>
<td>Launch propulsion technologies provide and maintain a base for NASA programs and institution to build on for access to space.</td>
</tr>
<tr>
<td>6. Share NASA with the public, educators, and students to provide opportunities to participate in our mission, foster innovation and contribute to a strong National economy.</td>
<td>Expanding the nation’s propulsion technology research leads to new opportunities for academic institutions and for student STEM skills.</td>
</tr>
</tbody>
</table>
Traceability to NASA (and OGA) Missions

- Assessed Agency Mission Planning Manifest
 - 2011 draft
- SMD
 - Continuous tempo of 5–8 payloads per year
 - 3–5 small, 2–3 medium, 1 large payload every few years
 - No investment in LPSTA
 - Needs low cost, reliable access to space
- ESMD
 - Heavy Lift Propulsion Technology Plan (HLPT)
 - Human Exploration Framework Team
 - Commercial Crew
 - Commercial Cargo
- SOMD
 - Depends on ESMD for LPSTA development
- ARMD
 - Hypersonic roadmaps
- DoD
 - HLPT Common Engine Study (NASA/USAF)
 - Hypersonic roadmap joint with USAF/USN
Benefits to Other National Needs

- Emerging Domestic Commercial Space Sector
 - Low-Cost Access to Space
 - Potential New Markets
- Other U.S. Government Agencies
 - Low-Cost, Reliable Access to Space
 - Supports the Need for Large-Diameter Payloads
 - Operationally Responsive Space
- Increased University Involvement in Fundamental Propulsion Research
 - Supports Science, Technology, Engineering and Mathematics Education
- Supports Robust Industrial Base
 - Enhanced Supplier Base Stability
 - Reduced Reliance on Foreign Sources
Reviewed existing Launch Propulsion Systems Technology Area (LPSTA) databases

- Solicited input from industry
- Involved Agency experts for input
- Reviewed by Red Team of NASA senior experts
- Documented and summarized per OCT guidance
- Roadmaps were then reviewed by special team established by OCT before submittal to NRC
Databases Consulted

• Space Launch Initiative (SLI) Technology Plan
• USAF/NASA 120-Day Study Technology Team Data Package
• National Aerospace Initiative (NAI)
• Next Generation Launch Technology (NGLT)
• Advanced Planning and Integration Office (APIO) In-Space Transportation Roadmap
• Heavy Lift Propulsion Technologies (HLPT) NASA/USAF Engine Study
• Integrated High Payoff Rocket Propulsion Technology (IHPRPT)
• Capability, Requirements, Analysis, and Integration (CRAI) Database
• Alternate Horizontal Launch Space Access Technology Roadmap
• NASA Fundamental Aeronautics Program Hypersonics Project 6-Month and 12-Month Reviews (with roadmaps)
• “USA Fundamental Hypersonics” presentation to 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference
• National Aeronautics Research and Development Plan
• Report to Congress: Roadmap for the High-Speed and Hypersonic Programs of the Department of Defense
• National Hypersonics Plan: Access to Space Team Roadmap
• Boeing National Institute of Aerospace (NIA) Hypersonics Report
• National Research Council (NRC) Decadal Survey of Civil Aeronautics
• Gryphon Integrated Product Team (IPT) Kickoff Meeting and Roadmap
• NASA Hypersonics Project Planning Meeting
Industry & Other Government Agencies (OGA) Input

- Aerojet
- Andrews Space
- ATK
- Boeing
- Lockheed Martin
- Northrop Grumman
- Pratt & Whitney/Rocketdyne
- SpaceX
- United Launch Alliance (white papers supplied)

Industry survey was not exhaustive but intended to be representative as validation of TA01 team roadmap assumptions
Mission and Launch Vehicle Manifest Through 2035

Key NASA Missions & Milestones

- SMD Milestone
- ESMD Milestone
- ARMD Milestone
- SOMD Milestone
- Other

Mission manifest includes a range of flight types
- Small: 0-2 t payloads
- Medium: 2-20 t payloads
- Heavy: 20-50 t payloads
- Super Heavy: > 50 t payloads
- Air-Breathing Launch Propulsion/Flight Tests

Mission manifest generates a launch vehicle manifest

Launch Vehicle Flights
- Small Launch Vehicle
- Medium Launch Vehicle
- Heavy Lift Vehicle
- Super Heavy Lift Vehicle
- Advanced Combined Cycle

Propulsion system technologies map to launch vehicles
Focus of Technology Investments (Figures of Merit)

Life Cycle Cost (LCC)

- Production
- Operations

Expendable Systems → $ → Reusable Systems

Performance (Game Changing)

System and Operational Concepts – System or launch concepts that enable new capabilities or efficiencies that are not attained in current operational systems
- i.e., higher reliability and shorter launch centers enable Earth orbit assembly missions

Propulsion System/Subsystem Efficiency and Capability – Propulsion elements or subsystems that significantly improve payload lift efficiency or capability beyond current operational concepts
- i.e., higher Isp, energy density, margins

National needs to sustain and expand world leadership supported by input from other government agencies and industry

To make a significant change in either LCC or system performance, system robustness (margin) and reliability must be increased.
Benefits—Launch Propulsion System Goals

Long Term
- Greater than 50% (game changing) recurring cost reductions
- Greater than 50X increase in reliability
- Enable new capabilities

Mid-term
- 50% recurring cost reduction
- 10X increase in reliability
- Enable new capabilities

Near Term
- 25% recurring cost reduction
- 5X increase in reliability

BASELINE
Shuttle, EELVs, Small Launchers

2010 2015 2020 2025 2030 2035

NOTE: Goals developed by TA01 based on past studies and reports. No systems analysis was performed to support these goals.
Proposed Launch Propulsion Systems Technology Area Breakdown Structure (TABS)

1.0 Launch Propulsion Systems

1.1 Solid Rocket Propulsion Systems
 - 1.1.1 Propellants
 - 1.1.2 Case Materials
 - 1.1.3 Nozzle Systems
 - 1.1.4 Hybrid Rocket Propulsion Systems
 - 1.1.5 Fundamental Solid Propulsion Technologies

1.2 Liquid Rocket Propulsion Systems
 - 1.2.1 LH2/LOX Based
 - 1.2.2 RP/LOX Based
 - 1.2.3 CH4/LOX Based
 - 1.2.4 Detonation Wave Engines (Closed Cycle)
 - 1.2.5 Propellants
 - 1.2.6 Fundamental Liquid Propulsion Technologies

1.3 Air Breathing Propulsion Systems
 - 1.3.1 TBCC
 - 1.3.2 RBCC
 - 1.3.3 Detonation Wave Engines (Open Cycle)
 - 1.3.4 Turbine Based Jet Engines (flyback boosters)
 - 1.3.5 Ramjet/Scramjet Engines (accelerators)
 - 1.3.6 Deeply-cooled Air Cycles
 - 1.3.7 Air Collection & Enrichment System
 - 1.3.8 Fundamental Air Breathing Propulsion Technologies

1.4 Ancillary Propulsion Systems
 - 1.4.1 Auxiliary Control Systems
 - 1.4.2 Main Propulsion Systems (Excluding Engines)
 - 1.4.3 Launch Abort Systems
 - 1.4.4 Thrust Vector Control Systems
 - 1.4.5 Health Management and Sensors
 - 1.4.6 Pyro and Separation Systems
 - 1.4.7 Fundamental Ancillary Propulsion Technologies

1.5 Unconventional/Other Propulsion Systems
 - 1.5.1 Ground Launch Assist
 - 1.5.2 Air Launch/Drop Systems
 - 1.5.3 Space Tether Assist
 - 1.5.4 Beamed Energy / Energy Addition
 - 1.5.5 Nuclear
 - 1.5.6 High Energy Density Materials/Propellants
Launch Propulsion Systems Technology Roadmap

Key NASA Missions & Milestones

- SMD Milestone
- ESMD Milestone
- ARMD Milestone
- SOMD Milestone
- Other

Launch Vehicle Flights

Small Launch Vehicle
Medium Launch Vehicle
Heavy Lift Vehicle
Super Heavy Lift Vehicle
Advanced Combined Cycle

1.1 Solid Rocket Propulsion Systems

1.2 Liquid Rocket Propulsion Systems

1.3 Air Breathing Propulsion Systems

1.4 Ancillary Propulsion Systems

1.5 Unconventional/Other Propulsion Systems

1.6 Propulsion Systems

1.7 Composite Case Structures

1.8 Composite Case and Structure

1.9 High Energy Density Green Propellant Demo

1.10 High Energy Density Green Propellant Demo

1.11 Composite Case SRB

1.12 High Energy Density Green Propellant Demo

1.13 Advanced Sensors

1.14 Automated Health Monitoring and Fault Recovery Using Advanced Sensors

1.15 Fusion NTR

1.16 Low Energy Nuclear Reaction

1.17 Atomic and Metastable HEDM

DRAFT
STR Process

NASA Process

1. **START & Input from MDs & Center**
 - Identified MD Goals, Missions, Architectures & Timelines;
 - MD Technology Roadmaps & Prioritizations;
 - Center Technology Focus Areas

2. **Identify Technology Areas**
 - Identified Technology Areas (TAs)

3. **Establish TA Teams**
 - OCT established NASA internal 6-member subject expert teams for each TA, with one or two chairs

4. **Common Approach for TA Teams**
 - Guidelines, assumptions, deliverables

5. **Form Starting Point for TA Roadmaps**
 - Assessed past roadmaps; MD & Center inputs

6. **Roadmapping Process**
 - Preliminary roadmaps for TA areas

7. **Internal Reviews**
 - Each TA Roadmap reviewed by OCT & extended teams of subject experts

8. **DRAFT NASA STRs**
 - OCT released draft Space Technology Roadmaps to the NRC & to the Public

9. **FINAL NASA STR REPORT**
 - NASA to release Roadmap Report

NRC Process

A: **Establish NRC Teams**
 - NRC to appoint steering committee and 6 panels

B: **Identify Common Assessment Approach**
 - NRC to establish a set of criteria to enable prioritization within and among all TAs

C: **Initial Community Feedback**
 - NRC to solicit external input from industry & academia

D: **Additional Community Feedback**
 - NRC to conduct public workshops

E: **Deliberations by NRC Panels**
 - NRC panels meet individually to prioritize technologies and suggest improvements to roadmaps

F: **Documentation by NRC Panels**
 - NRC Panels to provide written summary to Steering Committee

G: **NRC Interim Findings**
 - NRC to release a brief interim report that addresses high-level issues associated with the roadmaps, such as the advisability of modifying the number or technical focus of the draft NASA roadmaps

H: **FINAL NRC REPORT**
 - With decisional information, including: summary of findings and recommendations for each of the roadmaps; integrated outputs from the workshops and panels; identify key common threads and issues; priorities, by group (e.g., high, medium, low), of the highest priority technologies from the TAs
Summary

- LPSTA Draft Roadmap is a balanced portfolio of fundamental, midrange, and mature technology needs
- Technology investments address needs for the next 25+ years
- Technologies include evolutionary advancements in existing capabilities and game-changing candidates for the future
- Benefits can be found across all launch vehicle classes
- Opportunities exist to submit comments and additions through the NRC review process
- Several areas have been neglected in the past but must be restored to maintain national capability and leadership

Foundational technology is key to making sustained significant advances in the future.