National Aeronautics and Space Administration



# NASA Technology Area 1: Launch Propulsion Systems

Presentation to AIAA FAA Commercial Space Transportation Conference, February 9-11, 2011

Paul McConnaughey, presenter Mark Femminineo Syri Koelfgen Roger Lepsch Richard M. Ryan Steven A. Taylor

# **Technology Area Overview**

- Domain
  - Earth to LEO Launch Propulsion Systems (Space Access)
- Does not include
  - Beyond LEO Transportation
  - Ground Systems other than launch assist
  - Launch Vehicles
    - Select subsystems in other TAs
- TA divided into 5 technical focus areas





# **Traceability to NASA Strategic (draft) Goals**



|    | Goal                                     | LPSTA Alignment                                |
|----|------------------------------------------|------------------------------------------------|
| 1. | Extend and sustain human activities      | Launch propulsion technologies advance human   |
|    | across the solar system.                 | access to space.                               |
| 2. | Expand scientific understanding of the   | Launch propulsion technologies facilitate      |
|    | Earth and the universe in which we live. | efficient scientific access to space.          |
| 3. | Create the innovative new space          | Research into launch propulsion technologies   |
|    | technologies for our exploration,        | builds and sustains the nation's leadership in |
|    | science, and economic future.            | access to space.                               |
| 4. | Advance aeronautics research for         | Advances in air-breathing technologies have    |
|    | societal benefit.                        | strong synergy with access to space.           |
| 5. | Enable program and institutional         | Launch propulsion technologies provide and     |
|    | capabilities to conduct NASA's           | maintain a base for NASA programs and          |
|    | aeronautics and space activities.        | institution to build on for access to space.   |
| 6. | Share NASA with the public, educators,   | Expanding the nation's propulsion technology   |
|    | and students to provide opportunities to | research leads to new opportunities for        |
|    | participate in our mission, foster       | academic institutions and for student STEM     |
|    | innovation and contribute to a strong    | skills.                                        |
|    | National economy.                        |                                                |

# **Traceability to NASA (and OGA) Missions**

- Assessed Agency Mission Planning Manifest
  - 2011 draft
- SMD
  - Continuous tempo of 5–8 payloads per year
    - 3–5 small, 2–3 medium, 1 large payload every few years
  - No investment in LPSTA
  - Needs low cost, reliable access to space
- ESMD
  - Heavy Lift Propulsion Technology Plan (HLPT)
  - Human Exploration Framework Team
  - Commercial Crew
  - Commercial Cargo
- SOMD
  - Depends on ESMD for LPSTA development
- ARMD
  - Hypersonic roadmaps
- DoD
  - HLPT Common Engine Study (NASA/USAF)
  - Hypersonic roadmap joint with USAF/USN





# **Benefits to Other National Needs**

- Emerging Domestic Commercial Space Sector
  - Low-Cost Access to Space
  - Potential New Markets
- Other U.S. Government Agencies
  - Low-Cost, Reliable Access to Space
  - Supports the Need for Large-Diameter Payloads
  - Operationally Responsive Space
- Increased University Involvement in Fundamental Propulsion Research
  - Supports Science, Technology, Engineering and Mathematics Education
- Supports Robust Industrial Base
  - Enhanced Supplier Base Stability
  - Reduced Reliance on Foreign Sources

# **TA Overview: Planning Approach**



- Reviewed existing Launch Propulsion Systems Technology Area (LPSTA) databases
- Solicited input from industry
- Involved Agency experts for input
- Reviewed by Red Team of NASA senior experts
- Documented and summarized per OCT guidance
- Roadmaps were then reviewed by special team established by OCT before submittal to NRC

# **Databases Consulted**



- Space Launch Initiative (SLI) Technology
  Plan
- USAF/NASA 120-Day Study Technology Team Data Package
- National Aerospace Initiative (NAI)
- Next Generation Launch Technology (NGLT)
- Advanced Planning and Integration Office (APIO) In-Space Transportation Roadmap
- Heavy Lift Propulsion Technologies (HLPT) NASA/USAF Engine Study
- Integrated High Payoff Rocket Propulsion Technology (IHPRPT)
- Capability, Requirements, Analysis, and Integration (CRAI) Database
- Alternate Horizontal Launch Space Access
  Technology Roadmap
- NASA Fundamental Aeronautics Program Hypersonics Project 6-Month and 12-Month Reviews (with roadmaps)

- "USA Fundamental Hypersonics" presentation to 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference
- National Aeronautics Research and Development Plan
- Report to Congress: Roadmap for the High-Speed and Hypersonic Programs of the Department of Defense
- National Hypersonics Plan: Access to Space Team Roadmap
- Boeing National Institute of Aerospace (NIA) Hypersonics Report
- National Research Council (NRC) Decadal Survey of Civil Aeronautics
- Gryphon Integrated Product Team (IPT) Kickoff Meeting and Roadmap
- NASA Hypersonics Project Planning Meeting

# Industry & Other Government Agencies (OGA) Input



- Aerojet
- Andrews Space
- ATK
- Boeing
- Lockheed Martin
- Northrop Grumman
- Pratt & Whitney/Rocketdyne
- SpaceX
- United Launch Alliance (white papers supplied)
- Department of Defense: U.S. Air Force Research Lab, U.S. Air Force Space & Missile Command, and U.S. Navy

Industry survey was not exhaustive but intended to be representative as validation of TA01 team roadmap assumptions

# **Mission and Launch Vehicle Manifest Through 2035**





- Mission manifest includes a range of flight types
  - Small: 0-2 t payloads
  - Medium: 2-20 t payloads
  - Heavy: 20-50 t payloads
  - Super Heavy: > 50 t payloads
  - O Air-Breathing Launch Propulsion/Flight Tests
  - Mission manifest generates a launch vehicle manifest



Propulsion system technologies map to launch vehicles

# NASA

#### Life Cycle Cost (LCC)



#### Performance (Game Changing)



System and Operational Concepts – System or launch concepts that enable new capabilities or efficiencies that are not attained in current operational systems

• i.e., higher reliability and shorter launch centers enable Earth orbit assembly missions



Propulsion System/Subsystem Efficiency and Capability – Propulsion elements or subsystems that significantly improve payload lift efficiency or capability beyond current operational concepts

• i.e., higher lsp, energy density, margins

National needs to sustain and expand world leadership supported by input from



other government agencies and industry

# *To make a significant change in either LCC or system performance, system robustness (margin) and reliability must be increased.*

#### **Benefits—Launch Propulsion System Goals**





NOTE: Goals developed by TA01 based on past studies and reports. No systems analysis was performed to support these goals.

#### Proposed Launch Propulsion Systems Technology Area Breakdown Structure (TABS)





### Launch Propulsion Systems Technology Roadmap





# 1.2 Liquid Rocket Propulsion Systems Roadmap—2010 to 2035





# **STR Process**





# Summary



- LPSTA Draft Roadmap is a balanced portfolio of fundamental, midrange, and mature technology needs
- Technology investments address needs for the next 25+ years
- Technologies include evolutionary advancements in existing capabilities and game-changing candidates for the future
- Benefits can be found across all launch vehicle classes
- Opportunities exist to submit comments and additions through the NRC review process
- Several areas have been neglected in the past but must be restored to maintain national capability and leadership

# Foundational technology is key to making sustained significant advances in the future.