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Abstract

The direct influences of equatorial waves on the genesis of tropical cyclones are

evaluated. Tropical cyclogenesis is attributed to an equatorial wave when the filtered 

rainfall anomaly exceeds a threshold value at the genesis location. For an attribution

threshold of 3 mm/day, 51% of warm season western North Pacific tropical cyclones are 

attributed to tropical depression (TD)-type disturbances, 29% to equatorial Rossby 

waves, 26% to mixed Rossby–Gravity waves, 23% to Kelvin waves, 13% to the 

Madden–Julian oscillation (MJO), and 19% are not attributed to any equatorial wave. The 

fraction of tropical cyclones attributed to TD-type disturbances is consistent with 

previous findings. Past studies have also demonstrated that the MJO significantly 

modulates tropical cyclogenesis, but fewer storms are attributed to the MJO than any 

other wave type. This disparity arises from the difference between attribution and 

modulation. The MJO produces broad regions of favorable conditions for cyclogenesis, 

but the MJO alone might not determine when and where a storm will develop within 

these regions.

Tropical cyclones contribute less than 17% of the power in any portion of the 

equatorial wave spectrum because tropical cyclones are relatively uncommon 

equatorward of 15° latitude. In regions where they are active, however, tropical cyclones 

can contribute more than 20% of the warm season rainfall and up to 50% of the total 

variance. Tropical cyclone-related anomalies can significantly contaminate wave-filtered 

precipitation at the location of genesis. To mitigate this effect, the tropical cyclone-

related rainfall anomalies were removed before filtering in this study.
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1. Introduction

A significant portion of tropical convective variability has been linked with 

convectively coupled equatorial waves (Kiladis et al. 2009). These waves include 

equatorial Rossby (ER) waves, mixed Rossby–gravity (MRG) waves, and Kelvin waves. 

The Madden–Julian Oscillation (MJO; Zhang 2005) is another prominent source of 

convective variability that consists of convectively forced equatorial waves, but it does 

not follow any equatorial wave dispersion relation. Tropical depression (TD)-type 

disturbances are also wavelike systems that are sometimes called easterly waves. In the 

western North Pacific, TD-type disturbances propagate westward with periods of 3–9 

days and wavelengths of 2500–4000 km (Reed and Recker 1971; Lau and Lau 1990; 

Takayabu and Nitta 1993; Dunkerton and Baldwin 1995; Chang et al. 1996). For brevity,

all of these features will be referred to as equatorial waves because they reside in 

equatorial regions and share wavelike properties.

Equatorial waves also influence tropical cyclogenesis (Liebmann et al. 1994; 

Dickinson and Molinari 2002; Bessafi and Wheeler 2006; Frank and Roundy 2006; 

Molinari et al. 2007; Schreck and Molinari 2009). Dickinson and Molinari (2002) studied

three tropical cyclones that formed as a packet of MRG waves transitioned to TD-type 

structures. Each storm developed on the northeastern edge of the Northern Hemispheric 

cyclonic anomalies where the idealized MRG wave favors convection. In another case 

study, Molinari et al. (2007) examined an ER wave packet that led to eight tropical 

cyclones over 2.5 months. Similar to the MRG waves from Dickinson and Molinari 

(2002), these storms formed on the eastern edge of the cyclonic ER waves where the 

convection was strongest. Schreck and Molinari (2009) investigated three sets of twin 
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tropical cyclones that developed within one month. These twins were associated with 

another series of ER waves. The waves combined with a favorable low-frequency 

background to enhance convection and low-level cyclonic vorticity for each storm’s 

genesis. Together these case studies have shown that equatorial waves can stimulate

cyclogenesis by enhancing the background convection and low-level cyclonic vorticity.

TD-type disturbances have been frequently associated with tropical cyclogenesis. 

Ritchie and Holland (1999) examined the large-scale patterns associated with tropical 

cyclogenesis in the western North Pacific over 8 years. Out of 199 storms, 47% 

developed within TD-type disturbances. The majority of these tropical cyclones formed 

when the disturbance entered the monsoon confluence region. Fu et al. (2007) similarly 

found that TD-type disturbances were associated with 53% of the 34 western North 

Pacific tropical cyclones from 2000 and 2001. Four of these TD-type disturbances 

originated from MRG waves as in Dickinson and Molinari (2002). 

Tropical cyclones produce large local anomalies that significantly contribute to 

the mean and variance of a variety of meteorological fields. For Pacific islands near 

125°E, tropical cyclones generate 24%–62% of the July–October rainfall (Kubota and 

Wang 2009; Hsu et al. 2008). The highest percentages were observed near Taiwan, while 

tropical cyclones tend to have a smaller influence on rainfall at lower latitudes (Rodgers 

et al. 2000; Kubota and Wang 2009). 

The tropical cyclone-related anomalies can also project onto the filter bands 

typically used to identify equatorial waves. For example, they contribute more than half 

of the intraseasonal (20–80-day) variance of vorticity in some portions of the western 

North Pacific (Hsu et al. 2008). These effects have often been ignored in previous studies 
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of equatorial waves. Section 3 demonstrates a method proposed by A. Aiyyer (2007, 

personal communication) for identifying and removing the tropical cyclone-related 

anomalies. This method will also be used to estimate the contamination of the equatorial 

wave power spectrum by tropical cyclones.

Modulation and attribution

Previous climatological studies (e.g., Liebmann et al. 1994; Bessafi and Wheeler 

2006; Frank and Roundy 2006) have focused on the modulation of tropical cyclones by 

equatorial waves. These studies counted the number of storms that formed during each 

phase of a given wave type. If significantly more storms developed in one phase 

compared to another, then this modulation demonstrated a relationship between the 

waves and cyclogenesis.

In the western North Pacific and Indian Oceans, for example, Liebmann et al. 

(1994) found that twice as many tropical cyclones developed in association with negative 

(convective) MJO-filtered OLR anomalies than with positive anomalies. Similarly, Frank 

and Roundy (2006) observed negative wave-filtered OLR anomalies at 55%–85% of 

genesis locations depending on the basin and the equatorial wave type. Bandpass filtered 

data is roughly distributed equally between positive and negative anomalies. Even if no 

relationship existed between tropical cyclogenesis and equatorial waves, then just by 

chance about 50% of the genesis locations would have filtered anomalies with a 

favorable sign. Frank and Roundy determined that tropical cyclogenesis was actually 

significantly more likely to occur within negative OLR anomalies.
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Bessafi and Wheeler (2006) used a different method to examine the modulation of 

tropical cyclones by equatorial waves in the south Indian Ocean. They used principal 

component (PC) indices to determine the phase of each equatorial wave. Six “active” 

categories were defined based on the angle of the two leading PCs, and a “weak” 

category was defined for PC-vector magnitudes less than one standard deviation. They 

examined the modulation by counting the number of storms that formed basin-wide

during each category. The MJO, ER waves, and Kelvin waves each produced significant 

basin-wide modulations of cyclogenesis. For these waves, at least twice as many storms 

developed during the most favorable phase compared with the least favorable phase. 

The present study will take a different approach and will investigate the fraction 

of tropical cyclone formations that equatorial waves directly influenced. This type of 

attribution requires a more stringent threshold than simply a favorably signed anomaly. In 

addition, basin-wide metrics cannot determine attribution. Tropical cyclogenesis is a local 

process, so attribution should depend only on the waves’ influences at the genesis 

location and time.

A relatively simple method will be used to determine which tropical cyclone 

formations may be attributed to equatorial waves using rainfall data. The first step is to 

remove the tropical cyclone-related anomalies as described in section 3. The remaining 

precipitation fields are then filtered for each equatorial wave type. If the filtered anomaly 

in the 1° grid box containing the genesis location exceeds a threshold value, then the 

tropical cyclone is attributed to that equatorial wave. The results of these attributions, 

including their sensitivity to the threshold selection, will be explored in section 4.
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2. Data 

Tropical cyclone tracks are obtained from the National Climate Data Center’s 

(NCDC) International Best Track Archive for Climate Stewardship (IBTrACS; Knapp et 

al. 2009). This dataset merges tropical cyclone data from operational centers around the 

world. Tropical cyclogenesis in the present study will be defined as the first time a storm 

achieves maximum 10-min sustained winds of at least 13 m s−1 (25 knots). This study 

will focus on cyclogenesis in the western North Pacific, defined as the region from the 

equator to 20°N and 120°E to the dateline. Only those storms that formed during the 

warm seasons (May–November) from 1998 to 2007 will be considered.

The equatorial waves will be identified using the Tropical Rainfall Measuring 

Mission (TRMM) multisatellite precipitation analysis (TMPA; TRMM product 3B42; 

Huffman et al. 2007). This dataset merges precipitation estimates from passive 

microwave sensors on a suite of low earth-orbiting satellites. Gaps between low earth-

orbiting passes are filled using geostationary infrared data. The resulting precipitation 

estimates are then calibrated using global analyses of monthly rain gauge data. The 

TMPA data are available from 1998 onward on 3-hourly 0.25° latitude–longitude grids, 

but they have been averaged to 6-hourly 1° latitude–longitude grids to improve 

computational efficiency. The original 0.25° data contained a limited number of missing 

values comprising less than 6% of the entire dataset. The lack of geostationary infrared 

coverage over the Indian Ocean before June 1998 caused most of these gaps (Huffman et 

al. 2007). While averaging to the coarser grid, these missing data were interpolated 

bilinearly in space and linearly in time from the surrounding values. The waves 
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investigated in this research are sufficiently broad in scale that the results will be 

insensitive to the averaging and interpolation. 

Figure 1 shows the wavenumber–frequency power spectrum for the TMPA

rainfall rates calculated following Wheeler and Kiladis (1999). In order to focus on warm 

season signals, the spectra are computed for overlapping 96-day segments that begin 30 

March, 1 May, 2 June, 4 July, 5 August, and 6 September in each year 1998–2007. The 

segments extend beyond May–November to account for the tapering that is applied to 

each segment. These spectra are also calculated at each latitude from the equator to 15°N 

with no equatorial symmetry constraints. The variance is then averaged from all of these 

latitudes and time segments, and Fig. 1a shows the base-10 logarithm of this mean

spectrum.

Previous studies (e.g., Cho et al. 2004; Masunaga et al. 2006) have demonstrated 

the utility of similar datasets for analyzing equatorial waves, and Fig. 1 is qualitatively 

similar to analogous spectra of outgoing longwave radiation (OLR; Wheeler and Kiladis 

1999; Roundy and Frank 2004). Some equatorial wave signals stand out even in the total 

spectrum (Fig. 1a). The most notable spectral peaks are associated with the MJO, Kelvin 

waves, and to a lesser degree MRG and ER waves. These features show more clearly in 

Fig. 1b where the spectrum is divided by a red background following Roundy and Frank 

(2004). 

The cyan boxes in Fig. 1 define the filter bands used to identify the equatorial 

waves in this study. These bands, other than the TD-band, are identical to those defined 

by Wheeler and Kiladis (1999). The TD-band is defined as wavenumbers from −18 to 

−10 (2200–4000 km) and periods longer than 2.5 days but shorter than the MRG wave 
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solution for an equivalent depth of 90 m (roughly 8 days). This range of wavelengths and 

periods is chosen to encompass previously observed characteristics of TD-type 

disturbances in the western Pacific (e.g., Reed and Recker 1971; Lau and Lau 1990; 

Takayabu and Nitta 1993; Dunkerton and Baldwin 1995; Chang et al. 1996). Kiladis et 

al. (2006) defined a somewhat different filter band for TD-type disturbances over West 

Africa. Their filter has been applied to TD-type disturbances in the Pacific Ocean (Serra 

et al. 2008), but it overlaps with the MRG band. The TD-band filter in Fig. 1 should 

distinguish TD-type disturbances from MRG waves. This filter may also be more 

appropriate for the western North Pacific where TD-type disturbances exhibit longer 

periods (Lau and Lau 1990).

3. Tropical cyclone-related anomalies

One possible method for investigating the influence of equatorial waves on 

tropical cyclogenesis is to composite many genesis events and look for evidence of the 

waves. Figure 2a presents a time–longitude composite of all warm season western North 

Pacific cyclone formations from 1998 to 2007. The shading shows the composite rainfall 

rates centered on the genesis time and location, which are then filtered for each equatorial 

wave (only the +1 mm day−1 contours are shown).

The most prominent feature in Fig. 2a is the tropical cyclone itself, which appears 

as a westward moving precipitation maximum. Even though this is a composite for 

genesis, the precipitation maximum dissipates with time. This dissipation is probably due 

to the tendency for tropical cyclones to move poleward away from the latitude at which 

they developed. 
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In addition to this sharp precipitation maximum, the unfiltered data in Fig. 2a 

indicate broad envelopes of weaker precipitation (8–16 mm day−1) moving eastward and 

westward. The eastward moving envelope coincides with the MJO anomalies (cyan 

contour), while the westward moving envelopes roughly correspond with positive ER 

wave and TD-type anomalies (orange and dark red contours, respectively). The unfiltered 

rainfall rates associated with these features are less than 16 mm day−1, which is much less 

than the 89 mm day−1 at the genesis location. 

The large precipitation maximum associated with the composite tropical cyclone 

can project onto many filter bands, as illustrated in Fig. 2b. Here the precipitation field 

(shading) is defined to be a stationary maximum with the same magnitude (89 mm day−1) 

as the composite tropical cyclone. The resulting anomalies are contoured for each 

equatorial wave filter band at the same contour level as in Fig. 2a. This stationary 

maximum should be completely unrelated to any propagating equatorial wave, yet it still 

projects strongly onto all of the filter bands except for the MJO. These artificial 

anomalies are generally weaker than those associated with the real composite, but the 

patterns are conspicuously similar. In addition to the positive anomalies centered on the 

stationary maximum, the filters also produce ripples with positive anomalies in regions 

where the unfiltered field is zero (e.g., the positive MRG anomalies centered at ±4 days 

and ±20° longitude). 

Figure 2 illustrates a significant obstacle to determining the influence of 

equatorial waves on tropical cyclones: It can be difficult to determine from filtered data 

which features are associated with equatorial waves and which are associated with the 

tropical cyclones themselves. The core dynamics of tropical cyclones produce large 
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amounts of rainfall that are essentially unrelated to the dynamics of equatorial waves. 

Nonetheless, this intense rainfall projects onto the filtered fields. 

Figure 3 uses an example from 0000 UTC 21 August 2000 to illustrate a method 

for isolating the tropical cyclone-related signals. At this time, a tropical depression that 

will later become Tropical Storm Kaemi has recently formed in the South China Sea. 

Meanwhile, Typhoon Billis lies to the east of the Philippines. Figure 3a shows a 

latitudinal cross-section of rainfall through the center of Billis. The storm is associated 

with intense rainfall of 261 mm day−1 (red line). This rainfall rate is in the 99.9th

percentile of the warm season precipitation data in the western Pacific (not shown). By 

contrast, the climatological rainfall rates (black line) are generally less than 10 mm day−1.

Because the data are only available for 10 years, the climatology has been calculated by 

summing the first four harmonics of the annual cycle at each grid box. This procedure 

minimizes the impact of individual events on the climatology. 

The tropical cyclone signal is removed by multiplying the anomalies from 

climatology by a Gaussian weighting function (dashed line in Fig. 3a),
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where r is the distance from the tropical cyclone’s center and R is the radius at half 

maximum of the weighting function. The resulting rainfall rates following the tropical 

cyclone removal are shown by the blue line in Fig. 3a. Anomalies at the storm’s center 

are assumed to be completely associated with the tropical cyclone, so the 261 mm day−1

in Billis’s core is reduced to near the climatological value of 8 mm day−1. Anomalies at 

large distances (e.g., > 1500 km) from the storm are virtually unchanged because they are 
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assumed to be completely associated with the larger scale environment (including 

equatorial waves). Anomalies at a distance R from the tropical cyclone are assumed to be 

half-associated with the storm and half-associated with the environment. We define this 

distance to be 500 km, but the results presented in this study are not sensitive to this 

choice (see the appendix). 

Figure 3b shows a map of the total precipitation, while the anomalies attributed to 

tropical cyclones are shown in Fig. 3c. The weighting is applied to positive and negative 

rainfall anomalies alike. The core dynamics of the tropical cyclones generate the positive 

anomalies associated with the storm, but tropical cyclones also create negative anomalies 

nearby through compensating subsidence. This subsidence manifests itself as the moat of 

negative rainfall anomalies surrounding each storm’s core. 

Figure 3d displays the modified precipitation field with the tropical cyclones 

removed. The tropical cyclone-related anomalies (Fig. 3c) are subtracted from the 

original data (Fig. 3a) to produce this modified rainfall. The precipitation in the cores of 

the tropical cyclones (within 500 km) has been greatly reduced, while the shield of light 

rainfall (< 10 mm day−1) has been expanded around the storms. Some remaining features, 

such as the cyclonically curved band of rainfall to the north of Borneo, could be 

attributable to the tropical cyclones. Without analyzing dynamical fields, it would be 

impossible to determine whether this feature is associated with the tropical depression. 

The rainfall rates in this band are weaker than those found in the cores of the storms, so 

they should exert a smaller influence on the filtered fields. The appendix shows that 

doubling the radius at half-maximum (R) of the tropical cyclone-related anomalies has a 

negligible impact on the results of this paper.
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Figures 4a and 5a show the warm season mean and variance, respectively, of the 

original precipitation data. Both fields are largest in a band that extends northwestward 

from the inter-tropical convergence zone (ITCZ) in the central Pacific. The striking 

similarity between the patterns of the mean and variance is typical for convective 

precipitation, which is highly variable by nature. This convection provides a preferred 

region for cyclogenesis although the storms (black dots) generally develop on the 

northern side of the convective maximum.

The general pattern of the precipitation mean and variance remains similar 

following the removal of the tropical cyclone signals (Figs. 4b, 5b). The most prominent 

difference is the weakened rainfall variance to the east of the Philippines. The ITCZ still 

dominates, but tropical cyclones seem to play an important role in extending the 

convective maximum to the northwest. This pattern is consistent with Rodgers et al. 

(2000) who found that the maximum tropical cyclone-related rainfall was 5°–10° latitude 

poleward of the maximum total rainfall.

The mean and variance of the tropical cyclone-related rainfall anomalies are 

shown in Figs. 4c and 5c, respectively. The tropical cyclones contribute strongly to the 

mean and variance of rainfall in the northwestern portion of the basin where the 

concentration of storms is greatest. In this region, the tropical cyclones are responsible 

for more than 20% of the mean rainfall, and up to 50% of its variance (Figs. 4d, 5d).

As illustrated by Fig. 2, the precipitation variance associated with tropical 

cyclones can contaminate the filtered fields that are frequently used to identify equatorial 

waves. Figure 6a quantifies the contamination by showing the wavenumber–frequency 

spectra for the tropical cyclone-related anomalies. This spectrum is calculated in the same 
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manner as Fig. 1a but only for those anomalies that have been attributed to tropical 

cyclones.

Upon first glance, Fig. 6a suggests a serious concern for previous climatologies of 

equatorial waves (e.g. Wheeler and Kiladis 1999): Tropical cyclones produce significant 

power in nearly all of the equatorial wave filter bands. However, the contours in Fig. 6a, 

which represent the base-10 logarithm of the variance, are smaller than in Fig. 1a. To 

illustrate the difference in magnitude, Fig. 6b shows the percentage of the total power that 

is associated with tropical cyclone-related anomalies. The strongest tropical cyclone-

related power falls within the MJO filter band (Fig. 6a), but the MJO power is much 

stronger in the total spectrum (Fig. 1a). Tropical cyclones contribute less than 6% of this 

peak (Fig. 6b). If the MJO were simply a manifestation of tropical cyclones, then we 

would expect this percentage to be much larger. A more likely explanation of the MJO 

peak in Fig. 6a could be that the MJO’s modulation of tropical cyclones is strong enough 

to appear in this type of analysis.

In addition to the MJO peak, a portion of the tropical cyclone-related variance 

propagates westward at roughly 5 m s−1 (Fig. 6a, thick dashed line). Tropical cyclones 

generally move westward at low latitudes, so this signal may be expected. This variance 

falls within the ER filter band and the lower frequency portions of the MRG and TD-type 

bands, but tropical cyclones only contribute a small percentage of the total variance 

within any filter band (Fig. 6b). 

The largest contribution by tropical cyclones to any portion of the spectrum is 

only 17%, and it is generally much smaller within the equatorial wave filter bands (Fig. 

6b). Figure 6 is calculated using a radius at half maximum of 500 km for the tropical 
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cyclone-related anomalies. Even if this radius is doubled, the maximum contribution 

from the tropical cyclones to any portion of the spectrum is still only 22% (not shown). 

These percentages are small in part because tropical cyclones are relatively uncommon, 

especially at low latitudes. The spectrum is calculated from the equator to 15°N, but the 

tropical cyclones primarily produce rainfall variance poleward of 10°N (Fig. 5c).

The low percentages in Fig. 6b suggest that tropical cyclone contamination 

probably did not overly affect previous climatologies of equatorial waves (e.g., Wheeler 

and Kiladis 1999; Yang et al. 2003; Roundy and Frank 2004). However, Fig. 2 

demonstrates that tropical cyclones can significantly alter the filtered fields at their own 

genesis location. This contamination must be accounted for in order to examine the 

influences of equatorial waves on tropical cyclones. The present study will mitigate these 

effects by removing the tropical cyclone-related anomalies before filtering. This removal 

is applied in all basins and to all tropical cyclone positions that meet the minimum 

intensity of 13 m s−1. Removing the anomalies associated with all tropical cyclones is 

important because Fig. 2 demonstrates that a storm can contaminate filtered fields at large 

distances in space and time.

4. Attributing tropical cyclones to equatorial waves

Figure 7 uses the genesis of Typhoon Lingling to illustrate the attribution method. 

The shading in Fig. 7 depicts the unfiltered rainfall rates following the removal of the 

tropical cyclone-related anomalies. In this example, the precipitation data are then filtered 

for MRG waves, and the resulting MRG anomalies are contoured in red. The MRG filter 

produces an anomaly of 3.97 mm day−1 in the 1° grid box containing Lingling’s genesis.
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This anomaly is positive, so the MRG waves appear to contribute favorably to genesis. It 

is unclear whether that anomaly is sufficient to attribute Lingling’s formation to these 

waves. An attribution threshold must be selected against which this anomaly will be 

compared.

To aid this selection, Fig. 8 shows the percentage of all warm season western 

North Pacific data points that exceed a given threshold. Only 145 tropical cyclones 

formed amongst the 2.6 × 106 total data points, so Fig. 8 essentially represents non-

genesis points. The curves in this figure can also be thought of as the inverted cumulative 

density functions for each wave type. As expected with Fourier filtering, approximately 

half of the filtered data are positive. This fraction decreases for higher thresholds, and 

less than 4% of the data exceed 6 mm day−1. 

Figure 9 reveals the results of the attribution measures. It shows the percentage of 

the 145 warm season western North Pacific storms that developed while the filtered 

anomaly at the nearest grid point exceeded a given threshold. These percentages can sum 

to more than 100% because a given storm may be attributed to more than one wave. The 

black line indicates the percentage of storms for which none of the five equatorial wave 

types met the threshold. The percentage of genesis points exceeding a given threshold 

(Fig. 9) is almost always greater than the percentage of total points exceeding that same 

threshold (Fig. 8). Within the range of thresholds shown, the only exception is the MJO 

for thresholds greater than 5.8 mm day−1. Even though Figs. 8 and 9 are calculated after 

removing the tropical cyclone-related signals, the genesis points are still associated with 

greater rainfall anomalies than the non-genesis points. 
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TD-type disturbances produced positive rainfall anomalies for 79% of the 145 

tropical cyclone formations (Fig. 9). The percentages are less for other equatorial waves, 

but each wave type generated positive anomalies for at least 62% of the storms. 

Liebmann et al. (1994) and Frank and Roundy (2006) found similar results using OLR 

data even though these past studies did not remove the tropical cyclone-related 

anomalies. Every tropical cyclone formed when at least one of the five equatorial waves 

yielded a positive anomaly, and 16% of the storms formed when all five were positive 

(not shown). For attribution, the threshold needs to discriminate between wave types that 

are active and those that are not. A small positive anomaly could be the result of “noise” 

projecting onto an equatorial wave’s filter band. 

As the threshold increases, the number of storms attributed to each wave naturally 

decreases. If 6 mm day−1 were chosen as the threshold, then 68% of the storms would 

have no equatorial wave precursor. In addition, TD-type disturbances would have only 

supported 19% of the tropical cyclone formations with lesser percentages for the other 

waves. Ritchie and Holland (1999) and Fu et al. (2007) each found that half of western 

North Pacific tropical cyclones were associated with TD-type disturbances, so the 6-mm 

day−1 threshold is too strict to be consistent with past research. 

We chose 3 mm day−1 for the threshold for two primary reasons. First, this 

threshold is relatively strict. It is greater than 87%–95% of all filtered data points

depending on the particular equatorial wave type (Fig. 8; the 90th percentile is indicated 

by the horizontal dotted line). Second, this threshold produces results that are consistent 

with previous synoptic studies. About one-half (51%) of the 145 western North Pacific 

storms are attributed to TD-type disturbances with this threshold (Fig. 9), which is 
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consistent with Ritchie and Holland (1999) and Fu et al. (2007). In addition, 29% of 

storms are attributed to ER waves, 26% to MRG waves, 23% to Kelvin waves, 13% to 

the MJO, and 19% are not attributed to any wave. 

Table 1 shows the number of tropical cyclones attributed to multiple equatorial 

wave types using the 3-mm day−1 threshold. Only 18 of the 145 storms are attributed to 

three or more equatorial waves. Unlike the zero threshold, no storms are attributed to all 

five wave types. Because more than two-thirds (99 of 145) of the storms are attributed to 

only one or two wave types, these attributions seem to distinguish meaningfully between 

the wave types. 

Table 2 shows how many tropical cyclones are attributed to each combination of 

two equatorial wave types. The small number of storms that have three or four equatorial 

wave precursors are counted under each combination of two of those wave types. For 

example, a storm attributed to ER waves, MRG waves, and TD-type disturbances would 

be counted as ER–MRG, ER–TD, and MRG–TD.

Approximately one-half (74 of 145) of all western North Pacific tropical cyclones 

are attributed to TD-type disturbances (Table 1). Just by chance, we might expect that 

about one-half of the storms attributed to any other equatorial wave would also be 

attributed to TD-type disturbances. Table 2 shows that this is indeed the case for ER 

waves (21 of 42) and the MJO (8 of 19). Only one-third (11 of 33) of the storms 

attributed to Kelvin waves are also attributed to TD-type disturbances. Kelvin waves and 

TD-type disturbances move in opposite directions with relatively short periods (generally 

2.5–9 days; Fig 1). It is possible that their positive rainfall anomalies do not coincide for 

long enough to jointly support cyclogenesis.
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Nearly two-thirds (24 of 37) of the storms attributed to MRG waves are also 

attributed to TD-type disturbances. Both wave types move westward with similar periods. 

This large fraction could indicate that the filters are not adequately separating the two 

wave types. If this is the case, then the same disturbance could appear simultaneously in 

both filters. The overlap could be physically meaningful, however. Dickinson and 

Molinari (2002) showed that tropical cyclogenesis could occur when MRG waves 

transitioned to TD-type structures. These transitioning systems could explain the 

relatively large fraction of storms attributed to both wave types.

Figures 10a–e show the genesis locations of the storms attributed to each 

equatorial wave with the 3-mm day−1 threshold. These locations are overlaid on the warm 

season variance of the filtered precipitation for each wave type, which are qualitatively 

similar to those found by Roundy and Frank (2004). The primary difference is that the 

variance maxima generally do not extend as far poleward in Fig. 10 because of the 

removal of the tropical cyclone-related anomalies.

The pattern of TD-type variance (Fig. 10a) resembles that of the total variance 

with the tropical cyclones removed (Fig. 5b), which is consistent with previous studies 

that have noted the prominence of TD-type disturbances in the western North Pacific 

(e.g., Reed and Recker 1971; Lau and Lau 1990; Takayabu and Nitta 1993; Dunkerton 

and Baldwin 1995; Chang et al. 1996). By contrast, the MRG wave variance peaks in the 

central North Pacific (Fig. 10b). These patterns are consistent with previous studies that 

have shown MRG waves transitioning to TD-type structures in the western North Pacific 

(Sobel and Bretherton 1999; Dickinson and Molinari 2002; Aiyyer and Molinari 2003; Fu 

et al. 2007).
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The MJO variance (Fig. 10e) is concentrated in the western North Pacific, while 

the Kelvin wave variance (Fig. 10d) is stronger in the central North Pacific ITCZ. This 

pattern is consistent with previous studies (e.g., Hendon and Salby 1994; Straub and 

Kiladis 2003) that observed Kelvin waves radiating to the east of the MJO as it dissipates.

The tropical cyclones attributed to the MRG waves typically formed farther 

equatorward than other storms. The mean genesis latitude for all western North Pacific 

tropical cyclones from the equator to 20°N is 13.4°N while the mean for the MRG-related 

storms is 11.8°N. This difference is significant at the 95% level using either a Student’s t-

test or a bootstrap test. Similarly, the mean latitude for storms attributed to the MJO is 

10.4°N, which is also significantly equatorward of the overall mean.

Figure 10f shows the genesis locations of storms for which none of the equatorial 

waves met the 3-mm day−1 threshold. Only one tropical cyclone developed equatorward 

of 10°N without an equatorial wave precursor, and the mean genesis latitude for these 

storms is 15.4°N. This mean latitude is significantly farther north than that for all western 

North Pacific tropical cyclones. Not surprisingly, these results indicate that equatorial 

waves are most likely to affect cyclogenesis close to the equator. 

5. Discussion

Previous studies (e.g., Liebmann et al. 1994; Bessafi and Wheeler 2006; Frank 

and Roundy 2006) have demonstrated that equatorial waves can significantly modulate 

tropical cyclogenesis. The current study has attempted to determine what fraction of

tropical cyclone formations can be directly attributed to each equatorial wave type. 

Tropical cyclones themselves contribute significantly to the convective variability in the 
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western North Pacific (Fig. 5), and tropical cyclone-related variance can contaminate 

equatorial wave-filtered fields. This study isolates the tropical cyclone-related anomalies 

to quantify and mitigate this effect.

a. Tropical cyclone signals

Tropical cyclones can produce intense rainfall at rates greater than 100 mm day−1

(Fig. 3). Such rainfall rates represent the 99th percentile of the precipitation data for the 

western North Pacific warm season 1998–2007 (not shown). The heavy precipitation 

associated with tropical cyclones accounts for more than 20% of the total warm season 

mean rainfall in some portions the western North Pacific (Fig. 4d). Tropical cyclones can 

also contribute as much as 50% of the rainfall variance (Fig. 5d). Consistent with 

previous studies (e.g., Rodgers et al 2000; Kubota and Wang 2009), tropical cyclones 

exert their greatest influence on rainfall near Taiwan and to the east of the Philippines 

(Figs. 4 and 5). The tropical cyclone-related rainfall also occurs poleward of the non-

tropical cyclone rainfall as in Rodgers et al. (2000). This pattern suggests that tropical 

cyclones extend the convection poleward from the ITCZ.

Much of the tropical cyclone-related rainfall variance falls within equatorial wave 

filter bands (Fig. 6a). The bands for ER waves, MRG waves, and TD-type disturbances 

are particularly vulnerable to contamination from tropical cyclones. These waves move 

westward at speeds that might be typical for low-latitude storms. The largest spectral 

peak associated with tropical cyclones falls within the MJO band. Tropical cyclones only 

contribute 6% of the total MJO spectral peak, however, so this signal is probably due to 

the modulation of tropical cyclones by the MJO. Tropical cyclone-related signals account 
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less than 17% of the total power in any portion of the spectrum and less than 12% within 

the equatorial wave filter bands (Fig. 6b). These percentages are small in part because 

tropical cyclones are relatively uncommon, especially at the low latitudes (≤ 15°) for 

which equatorial wave spectra are typically calculated. 

Previous studies of equatorial waves have generally ignored tropical cyclone-

related signals. As described above, tropical cyclones do not overly affect the broad 

climatology of equatorial waves (e.g., Wheeler and Kiladis 1999; Yang et al. 2003; 

Roundy and Frank 2004). However, tropical cyclones can significantly alter the wave-

filtered fields at their own genesis locations (Fig. 2). This contamination needs to be 

addressed in order to examine the role of equatorial waves in cyclogenesis. The current 

study achieves this by removing the tropical cyclone-related signals before filtering.

b. Equatorial wave attributions

After the tropical cyclone signals were removed, the remaining rainfall data were 

filtered for each equatorial wave type. Tropical cyclogenesis was attributed to an 

equatorial wave if the filtered anomaly exceeded a threshold value in the 1° latitude–

longitude box containing the genesis location. The attributions were sensitive to the 

choice of threshold (Fig. 9), so this selection was an important component of the 

research.

Simply requiring the rainfall anomalies to be positive (equivalent to a zero 

threshold) would attribute 16% of the western North Pacific tropical cyclones to all five 

equatorial wave types, which is not physically meaningful. This low threshold cannot 

discriminate between those waves that are active and those that are not. Setting the 
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threshold too high also yields unreasonable results. For a threshold of 6 mm day−1, 68% 

of the storms would have no wave precursor. These results would be inconsistent with 

Ritchie and Holland (1999) and Fu et al. (2007) who each attribute about half of tropical 

cyclone formations to TD-type disturbances alone.

Between these extremes, 3 mm day−1 was chosen as the threshold for this study. 

This value is near the 90th percentile of all western North Pacific data for each equatorial 

wave type (Fig. 8). It is also strict enough to distinguish between wave types because 

only 12% of tropical cyclones are attributed to more than two wave types (Table 1). At 

the same time, this threshold is low enough that 81% of the storms are attributed to at 

least one wave type. This threshold also attributed 51% of the tropical cyclone formations 

to TD-type disturbances, which is supported by Ritchie and Holland (1999) and Fu et al. 

(2007). The 3-mm day−1 threshold is relatively strict, and it yields attributions that are 

consistent with previous research. ER waves, MRG waves, and Kelvin waves were each 

associated with 20%–30% of tropical cyclone formations with this threshold, while only 

13% of storms were attributed to the MJO.

Contrary to these results, past studies (e.g., Liebmann et al. 1994; Maloney and 

Hartmann 2000; Hall et al. 2001; Bessafi and Wheeler 2006; Kim et al. 2008; Camargo et 

al. 2009) have shown that the MJO can produce significant modulations of tropical 

cyclogenesis. This disparity with past research is not sensitive to the threshold selection.

For any threshold greater than 1.2 mm day−1, fewer tropical cyclone formations are 

attributed to the MJO than any other wave type. The disagreement could stem from the 

differences between modulation and attribution. The MJO is a planetary scale feature that 

can produce a large envelope of favorable conditions. The size of this envelope creates 
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the basin-wide modulations of cyclogenesis found by past studies. By contrast, our 

method for attribution examined a more localized effect, specifically the wave-related 

anomaly at the actual genesis location. The MJO alone might not be able to dictate when 

and where a storm will form within the broad envelope of favorable conditions, which 

would explain why so few storms were directly attributed to it in Fig. 9.

About one-fifth of the tropical cyclones were not attributed to any equatorial wave 

using the 3-mm day−1 threshold. In the absence of an equatorial wave precursor, these 

storms could have been the product of upper-level trough interactions (Sadler 1976),

tropical transition (Davis and Bosart 2001), or localized mesoscale convective systems 

(MCSs) within the monsoon trough (Ritchie and Holland 1999). The storms with no 

equatorial wave precursor typically originated farther poleward than other storms (Fig. 

10f). Upper-level troughs and tropical transition are more common at higher latitudes, 

which would be consistent with this pattern.

The present study has examined the attribution of tropical cyclones to equatorial 

waves in the western North Pacific. These attributions were based solely on the rainfall 

anomalies at the genesis location. This method is consistent with previous studies using 

OLR (e.g., Liebmann et al. 1994; Dickinson and Molinari 2002; Bessafi and Wheeler 

2006; Frank and Roundy 2006; Molinari et al. 2007; Schreck and Molinari 2009) that 

have shown convection to be one of the primary ways in which equatorial waves 

influence cyclogenesis. For completeness, future attributions should also include 

dynamical fields. Low-level vorticity may be the most important of these fields, but 

equatorial waves can also modulate divergence and vertical wind shear. Attribution 

criteria should be developed to incorporate these influences along with the convective 
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anomalies used in this study. In addition, the attributions should be extended to other 

basins to quantify the importance of equatorial waves for cyclogenesis in those regions.

The results of this and future attribution studies should be relevant to forecasters. 

Equatorial waves can be identified and forecasted in real-time with statistical methods 

(Wheeler and Weickmann 2001; Roundy and Schreck 2009). Such forecasts could be 

combined with the attribution information in Fig. 9 to indicate where and when an 

equatorial wave might favor cyclogenesis. This approach would be complimentary to 

current regression models that forecast cyclogenesis based on equatorial waves (Frank 

and Roundy 2006; Leroy and Wheeler 2008).

Acknowledgments. This research has benefited greatly from conversations with 

Anantha Aiyyer, Paul Roundy, Adam Sobel, Chris Thorncroft, and Lance Bosart. We 

obtained the TMPA data from the NASA Goddard Distributed Active Archive Center 

(online at http://disc.sci.gsfc.nasa.gov/data/datapool/TRMM/). We are grateful to Dave 

Vollaro for his assistance in obtaining and interpolating this data. This work was 

supported by NSF Grant ATM0839991 and NASA Precipitation Measuring Mission 

Grant NNX07AD45G. 

APPENDIX

Sensitivity of attributions to radius of tropical cyclone removal

In this study, the anomalies associated with each tropical cyclone were removed. 

This procedure uses a Gaussian function (Eq. 1) centered on the storm to separate the 

anomalies associated with the storm from those associated with the larger scale 
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environment (including equatorial waves). Anomalies at a radius R = 500 km were 

considered half associated with each. The remaining data were then filtered to determine 

which tropical cyclones were influenced by equatorial waves. 

Figure A1 shows the percentage of the 145 western North Pacific storms 

attributed to each equatorial wave using five radii at half maximum (R) for the removal: 0 

km (no removal), 250 km, 500 km, 750 km, and 1000 km. This figure is analogous to 

Fig. 9 that showed the sensitivity to the attribution threshold. The attributions in Fig. A1 

use a threshold value of 3 mm day−1, but other thresholds produce similar results (not 

shown). 

Substantially fewer storms are attributed to each equatorial wave for a removal 

radius of 500 km compared with no removal (Fig. A1). For example, the percentage 

attributed to TD-type disturbances decreases from 76% to 51% (dark red curve). 

Conversely, the percentage of storms not attributed to any equatorial wave increases from 

5% to 19% (black curve). These differences illustrate the influences of the tropical 

cyclone-related signals and the need to remove them.

Figure A1 also demonstrates that the attributions are largely unaffected by 

expanding R beyond 500 km. For example, doubling the radius to 1000 km only

decreases the percentage of storms attributed to ER waves from 29% to 23% (orange 

curve). The differences are even smaller for the other equatorial waves. Some tropical 

cyclone-related signals might be left behind by the removal for R = 500 km (Fig. 3d), but 

Fig. A1 suggests that these remaining signals have a negligible effect on the attribution 

results.
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Figure Captions

Figure 1. (a) Total wavenumber–frequency power spectrum for warm season TMPA

precipitation from the equator to 15°N. The base-10 logarithm of the power has been 

plotted. (b) As in (a), but normalized by a red background as in Roundy and Frank 

(2004). Filter bands are indicated by the cyan boxes. Black lines denote shallow-water 

dispersion curves for MRG, Kelvin, ER, and inertio-gravity waves with equivalent depths 

of 8 m and 90 m.

Figure 2. (a) Time–longitude composite of western North Pacific tropical cyclogenesis. 

(b) Time–longitude plot of a prescribed stationary precipitation maximum. Shading 

indicates unfiltered fields, while filtered anomalies are contoured only at +1 mm day−1 for 

the MJO band (cyan), Kelvin band (blue), ER band (orange), MRG band (red), and TD 

band (dark red).

Figure 3. Rainfall rates from 0000 UTC 21 August 2000. (a) Latitudinal section along 

128°E of total rainfall (red), with tropical cyclones removed (blue), climatology (black), 

and the tropical cyclone weighting function. Maps of (b) total rainfall, (c) tropical 

cyclone-related anomalies, and (d) modified rainfall rates following the tropical cyclone 

removal. Black rings indicate the distance to the nearest tropical cyclone every 500 km.

Figure 4. Mean rainfall rate (mm day−1) for May–November 1998–2007: (a) total rainfall, 

(b) rainfall with the tropical cyclones removed, (c) tropical cyclone-related rainfall, and 
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(d) tropical cyclone contribution in percent. Black dots indicate cyclogenesis locations for 

the same period.

Figure 5. As in Fig. 4, but for rainfall variance [(mm day−1)2].

Figure 6. (a) As in Fig. 1a, but the spectrum for tropical cyclone-related anomalies. (b) 

Percent contribution of tropical cyclone-related anomalies to the total spectrum.

Figure 7. Latitude–longitude section of unfiltered rainfall rates following tropical cyclone 

removal (shading) and MRG-filtered rainfall anomalies (contours) for 0000 UTC 6 Nov 

2001. Contours drawn every 1 mm day−1 with the zero contour omitted and negative 

contours dashed. The hurricane symbol denotes the genesis location of Typhoon 

Lingling.

Figure 8. Percentage of all warm season western Pacific data points that exceed a given 

threshold for the MJO (cyan), Kelvin waves (blue), ER waves (orange), MRG waves 

(red), or TD-type disturbances (dark red).

Figure 9. Percentage of tropical cyclones that form associated with anomalies that exceed 

a given threshold for each filter band. Colors as in Fig. 8, except the black curve indicates 

the percentage of storms for which none of the waves exceeds the threshold.



-34-

Figure 10. Genesis locations for tropical cyclones attributed to (a) TD-type disturbances, 

(b) MRG waves, (c) ER waves, (d) Kelvin waves, and (e) the MJO overlaid on the warm 

season variance for the given filter band. (f) Genesis locations for tropical cyclones that 

were not attributed to any equatorial wave.

Figure A1. Percentages of storms attributed to the MJO (cyan), Kelvin waves (blue), ER 

waves (orange), MRG waves (red), TD-type disturbances (dark red), or no equatorial 

waves (black) as functions of the radius at half maximum for the tropical cyclone 

removal. All attributions use a threshold of 3 mm day−1.



-35-

Table 1. Number of tropical cyclones attributed to a particular number of equatorial wave 

types as broken down by wave type.

No. of 

Wave

Types

TD-type MRG ER Kelvin MJO Total

0 — — — — — 28

1 27 5 5 10 2 49

2 32 19 23 14 12 50

3 13 11 13 7 4 16

4 2 2 1 2 1 2

Total 74 37 42 33 19 145
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Table 2. Number of tropical cyclones attributed to each combination of two equatorial 

wave types. Storms attributed to three or more wave types are counted for each possible 

combination of two of those wave types. The table is symmetric about the diagonal.

TD-type MRG ER Kelvin MJO

TD-type — 24 21 11 8

MRG 24 — 14 5 4

ER 21 14 — 12 5

Kelvin 11 5 12 — 6

MJO 8 4 5 6 —
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Figure 1. (a) Total wavenumber–frequency power spectrum for warm season 
precipitation from the equator to 15°N. The base-10 logarithm of the power has been 
plotted. (b) As in (a), but normalized by a red background as in Roundy and Frank 
(2004). Filter bands are indicated by the cyan boxes. Black lines denote shallow-water 
dispersion curves for MRG, Kelvin, ER, and inertio-gravity waves with equivalent depths 
of 8 m and 90 m.
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Figure 2. (a) Time–longitude composite of western North Pacific tropical cyclogenesis. 
(b) Time–longitude plot of a prescribed stationary precipitation maximum. Shading 
indicates unfiltered fields, while filtered anomalies are contoured only at +1 mm day−1 for 
the MJO band (cyan), Kelvin band (blue), ER band (orange), MRG band (red), and TD 
band (dark red).
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Figure 3. Rainfall rates from 0000 UTC 21 August 2000. (a) Latitudinal section along 
128°E of total rainfall (red), with tropical cyclones removed (blue), climatology (black), 
and the tropical cyclone weighting function. Maps of (b) total rainfall, (c) tropical 
cyclone-related anomalies, and (d) modified rainfall rates following the tropical cyclone 
removal. Black rings indicate the distance to the nearest tropical cyclone every 500 km.
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Figure 4. Mean rainfall rate (mm day−1) for May–November 1998–2007: (a) total rainfall, 
(b) rainfall with the tropical cyclones removed, (c) tropical cyclone-related rainfall, and 
(d) tropical cyclone contribution in percent. Black dots indicate cyclogenesis locations for 
the same period.
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Figure 5. As in Fig. 4, but for rainfall variance [(mm day−1)2].
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Figure 6. (a) As in Fig. 1a, but the spectrum for tropical cyclone-related anomalies. (b) 
Percent contribution of tropical cyclone-related anomalies to the total spectrum.
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Figure 7. Latitude–longitude section of unfiltered rainfall rates following tropical cyclone 
removal (shading) and MRG-filtered rainfall anomalies (contours) for 0000 UTC 6 Nov 
2001. Contours drawn every 1 mm day−1 with the zero contour omitted and negative 
contours dashed. The hurricane symbol denotes the genesis location of Typhoon 
Lingling.
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Figure 8. Percentage of all warm season western Pacific data points that exceed a given 
threshold for the MJO (cyan), Kelvin waves (blue), ER waves (orange), MRG waves
(red), or TD-type disturbances (dark red).
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Figure 9. Percentage of tropical cyclones that form associated with anomalies that exceed 
a given threshold for each filter band. Colors as in Fig. 8, except the black curve indicates 
the percentage of storms for which none of the waves exceeds the threshold.
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Figure 10. Genesis locations for tropical cyclones attributed to (a) TD-type disturbances, 
(b) MRG waves, (c) ER waves, (d) Kelvin waves, and (e) the MJO overlaid on the warm 
season variance for the given filter band. (f) Genesis locations for tropical cyclones that 
were not attributed to any equatorial wave.
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Figure A1. Percentages of storms attributed to the MJO (cyan), Kelvin waves (blue), ER 
waves (orange), MRG waves (red), TD-type disturbances (dark red), or no equatorial 
waves (black) as functions of the radius at half maximum for the tropical cyclone 
removal. All attributions use a threshold of 3 mm day−1.


