KENNEDY SPACE CENTER Payload Processing

Ronnie Lawson
Ground Systems Division
ISS \& Spacecraft Processing

Agenda

- Payloads Processed at KSC
- Typical Payload Processing Tasks
- Payload Processing Facilities
- Payload Processing Capabilities and Customer Services

Payloads Processed at KSC

Expendable Launch Vehicle Payloads

- Since 1998 Launch Services Program has launched over 30 payloads from KSC on a number of launch vehicles including Atlas and Delta
- Pervious notable payloads include
- Mars Exploration Rovers $(2003,2004)$ - Explored Mars
- Stardust (1999) - Collected comet dust from comet Wild 2
- Genesis (2001) - Collected samples of solar wind
- Deep Impact (2005) - Study comet Tempel 1
- NOAA GOES weather satellites
- Tracking Data Relay Satellites
- Upcoming payloads
- GRAIL (Gravity Recovery and Interior Laboratory)(2011) - Moon interior structure through gravity
- Mars Science Lab (2011) - Mars Rover
- RBSP (Radiation Belt Storm Probes) (2012) - Study Sun's influence on earth
- MAVEN (Mars Atmosphere and Volatile Evolution) (2013)

Shuttle Launched Payloads

- International Space Station (ISS) Elements
- ISS Pressurized Elements
- US Laboratory (Destiny), Airlock (Quest), Nodes 1 (Unity), Node 2 (Harmony), Node 3 (Tranquility), Japanese Experiment Module (Kibo), ESA Columbus Laboratory, Canadarm 2, Multi-Purpose Logistics Modules (Leonardo, Raffaello), Cupola
- ISS Truss Elements Z1, P1, P3/P4, P5, P6, S1, S3/S4, S5 S6
- ISS Research Payloads (slide to follow)
- Non-ISS Shuttle Payloads
- Tracking and Data Relay Satellites (7) (1983-1995)
- Interplanetary Explorer Missions (1989-1990)
- Magellan (Venus), Galileo (Jupiter), Ulysses (polar regions of the Sun)
- Great Observatory Missions (1990-2011)
- Hubble Space Telescope (HST), Gamma Ray Observatory (GRO), Chandra X-Ray Observatory, Alpha Magnetic Spectrometer (AMS) (to be launched on STS-134)

ISS Research Payloads

- ISS Research includes every scientific initiative which utilizes the capabilities of the ISS as a multi-discipline research platform
- Multipurpose Facilities (multipurpose racks, freezers, and glove boxes
- Biological Research (incubators, growth chambers, centrifuges)
- Human Physiology Research (neuroscience, cardiovascular, musculoskeletal, exercise equipment, and radiation sensors)
- Physical Science and Materials Research (fluids physics, crystal growth, external test beds)
- Earth and Space Science (radiation, thermal, Solar, geophysics)

Alpha Magnetic Spectrometer

Previous Payloads

Hubble Space Telescope

Japanese Experiment Module

Mars Rover

Typical Payload Processing Tasks

Payload Processing Tasks

- Transportation and Receiving
- Delivery of the Payload from Developers Site to the Launch Site for final processing
- Post Delivery Checkout
- Inspection and testing of the payload upon arrival to the launch site to detect and address any damage to transportation
- Final Assembly/Processing/Integration -
- This could include the installation of solar panels, antennas, flight battery installation
- Payload Testing
- Payload systems tests to verify operation of the payload
- Payload to launch vehicle interface verification tests
- Simulated before payload installation or with launch vehicle after installation
- Payload end-to-end test to test command and data flow between payload and control center

Payload Processing Tasks (cont)

- Final Inspection and Close Out
- Verification that all final connections have been made and all non-flight equipment has been removed from the payload
- Inspection for cleanliness and foreign object debris
- Fueling
- Encapsulation
- Integration with Launch Vehicle

Typical Payload Processing Activitives

Payload Transportation

Encapsulation

Inspection and Closeout

Payload Testing

Payload Processing Facilities

Space Station Processing Facility

- High Bay
- $38,000 \mathrm{ft}^{2}$ Class 100 K clean work area
- 8 footprints, completely reconfigurable
- Available commodities include 208V/480V power, chilled water, $\mathrm{GN}_{2}, \mathrm{GHe}, \mathrm{LN}_{2}$
- Two 30-ton electrical bridge cranes with 50-ft hook height
- Intermediate Bay

- $\quad 17,000 \mathrm{ft}^{2}$ Class 100 K clean area
- Two 5-ton electrical bridge cranes with 25 -ft hook height
- Airlock
- $\quad 5000 \mathrm{ft}^{2}$ Class 300 K clean area
- 15-ton electrical bridge crane with 50-ft hook height
- Administrative Space
- Office Space for approximately 1000 employees
- 25 Conference Rooms
- Specialty Areas
- Off-Line Processing Rooms

(7 Science Labs, 2 Central Services Labs, 8 Hardware Labs)
- 9 control rooms located on raised floor areas
- Vapor Containment Facility to house liquid anhydrous ammonia
- Special Provisions
- Uninterruptable Power Supplies
- Redundant Power Feeds
- Dual Automatic Starting Backup Generators
- Portable Backup HVAC Chiller

SSPF Testing Capabilities

- Payload Rack Checkout Unit (PRCU)
- Provides ISS interface verifications which include Power, Command \& Data Handling, Video, Fluids, Vacuum, Fire Detection System, Impedance Analysis and GN_{2}
- Includes a connection to MSFC HOSC for commanding and data monitoring
- Testing Capabilities
- International Standard Payload Rack (ISPR)
- Sub-rack payloads
- Sub-pallet payloads (unpressurized) which will be mounted on a truss location or Express Logistics Carrier (ELC)
- Includes final flight configuration testing with an ELC Simulator and verification testing

- Fluids Servicing
- Spacecraft Fueling (Mono and Bipropellant)
- Gases up to $6000 \mathrm{PSI}\left(\mathrm{GN}_{2}, \mathrm{GH}_{2}\right.$, etc)
- O_{2} and NH_{3} Servicing
- Noble Gas servicing at lower pressures
- Cryo Servicing

SSPF Lab Capabilities

- Lab Capabilities Summary
- Class 300,000 clean rooms
- 7 Science Labs
- 8 Hardware Labs
- 2 Central Services
- Specialized Science Equipment
(e.g. laminar flow benches, incubators, microscopes, biological safety cabinets, portable fume hoods, water baths, etc.)
- Payloads Processing Support
- Skills, equipment and labs unique to pre/post mission support requirements at launch site for hardware integration, hardware/science integration, offline checkout, including life science \& biological payloads

Payload Hazardous Servicing Facility

- High Bay
- $38,000 \mathrm{ft}^{2}$ Class 100 K clean work area
- Available commodities include $208 \mathrm{~V} / 480 \mathrm{~V}$ power, compressed air, $\mathrm{GN}_{2}, \mathrm{GHe}, \mathrm{LN}_{2}$
- Two 50-ton electrical bridge cranes with $74.5-\mathrm{ft}$ hook height
- Airlock
- $4,250 \mathrm{ft}^{2} 300 \mathrm{~K}$ Clean Work Area
- 15 -Ton Bridge Crane 72.5 - ft hook height
- Hazardous Capabilities
- Hazardous fueling capability
- $20^{\prime} \times 40$ ' sloped floor for fuel servicing

- Emergency exhaust system
- Water deluge system
- Drain trenches for waste fuel and oxidizer disposal
- 7,500 gallon fuel and 1,500 gallon oxidizer stainless steel tanks
- Drain vents equipped with aspirators and scrubbers

Multi-Payload Processing Facility

- High Bay
- $\quad 7,920 \mathrm{ft}^{2}$ Class 100 K clean work area
- 20-Ton Bridge Crane 49 foot hook height
- Available commodities include compressed air, GN_{2}, GHe, LN_{2}
- Low Bay
- $1156 \mathrm{ft}^{2} 100 \mathrm{~K}$ Clean Work Area
- Equipment Lock
- 1,092ft² 300K Clean Work Area

- Hazardous Capabilities
- Hypergolic vent system (not activated)
- Propellant spill drain system (not activated)

Space Life Sciences Laboratory

- Building Information
- 73,000 ft ${ }^{2}$ available area
- Population: 140 residents, 38 visitors
- 25 Science Labs 8 Hardware Labs 6 Animal Holding Rooms
- Partnerships
- NASA/KSC: Manages Research \& Utilization

- Space Florida: Owner of SLS Lab and responsible for O\&M
- University of Florida and Florida Tech: Resident university partners
- Unique Agency Capabilities
- Provides infrastructure to enable ISS Research including non-exploration research and maturation of critical Exploration technologies
- Skills, equipment and labs unique to pre/post mission support requirements at launch site of life science and biological payloads
- Specialty Areas
- Animal Care Facility (ACF) provides animal husbandry \& support for space flight missions and meets all necessary Agency \& Federal cert/license requirements
- Controlled Environment Lab (CEL)
- Skills and infrastructure uniquely developed originally for biological sustainable systems (i.e. bio-regenerative life support systems), now serving multi-discipline investigations
- Orbit Environment Simulators for science 'control' of STS/ISS pressurized environment payloads (temp, humidity, CO_{2}, lighting)

SLS Lab Capabilities

Controlled Environment Lab

Animal Care
Experiment Processing Support
Flight Experiment Development
Flight Mission Support

15 Controlled Environment Chambers (CEC) Low Pressure Test Bed Lunar/Mars Vacuum Chamber

Rodent/Aquatic/Avian/Insect
Shuttle/Station/Unmanned
Design/Testing/Integration
Orbit Environment Simulators (OES) Experiment Monitoring Area (EMA)

SLS Lab Capabilities

Baseline Data Collection Facility

- BDCF Mission
- Optimize the completion of Human Life Sciences Research
- Series of laboratories designed to study astronaut response to spaceflight immediately upon return to Earth
- Experiment equipment
- Magnetic Resonance Imaging (MRI)
- Densitometers
- Cardiovascular devices
- Vestibular testing equipment
- Rotating chairs
- Treadmills
- Obstacle courses

Payload Processing Capabilities and Services

Payload Processing Capabilities

- KSC offers a wide range of payload processing capabilities including but not limited to the following
- Support Stands
- Element Rotation Stands (ERS)
- Express Logistics Carrier Rotation Stand (ELC RS)
- Cargo Element Work Stand (CEWS)
- Lifting Fixtures
- Cargo Element Lifting Assembly (CELA)
- Strongback
- Payload Lifting Slings
- Payload Transporter Canister
- Transportation and vertical Installation of Shuttle Payloads at the pad
- Vacuum Chambers
- Electromagnetics Laboratory
- Launch Equipment Test Facility

Vacuum Chamber

- Statistics

-Status: Existing
-Purpose: Simulate vacuum of space - leak check -payload elements
-Quantity: 2 - (1) deactivated 1975, (1) active from 1998
-Weight: N/A
-Load Capacity:
-Size: 50' tall, 33' wide

- General
- In 1998 the vacuum chamber's control system that
oversees pressure/vacuum functions, gas detection, temperature and humidity sensors, system integrity, and facility security, as well as pumping and equipment controls, control room components, were refurbished.
- The three-story, stainless steel chamber is one of two built by NASA in 1964 to test the Apollo program flight hardware. The 33 -foot-wide by 50 -foot-tall chambers were used to simulate a low-Earth orbit environment for the command and lunar modules. Both chambers were deactivated in 1975 when the Apollo-Soyuz project ended.
-Capabilities
- Can create a vacuum environment equivalent to 257,000 feet altitude or 48 miles.
- In addition to monitoring and controlling pressure sensor units, the Series 90-70 PLCs also monitor the chamber's residual gas analyzer for partial pressures of water, hydrocarbons, nitrogen, helium, and oxygen. Both PLCs are housed in the control room accompanied by a Windows NT server and master and slave stations.

ELC Rotation Stand

Payload Transporter/Canister

- Transporter Statistics

-Status: Existing

- Purpose: Transport the payload canisters from processing facilities to launch facilities
-Quantity: 2
-Weight: 136,600 lbs
-Load Capacity: 172,000 Ibs
-Size: 65' X 22'
-Speed: 5 MPH Loaded, 10 MPH Unloaded
-Built in 2000 to replace the two original transporters built in the 70's

-Canister Statistics

-Status: Existing

- Purpose: Provide environment protection for payloads during transportation from KSC processing facilities to KSC launch facilities
-Quantity: 2
-Payload Capacity: 65,000 lbs
-Payload Size: 15' D X 60'L
-Transportation Configuration: Horizontal or vertical
Cleanliness: 100,000

March 21, 2011
NASA KSC

Page 27

Cargo Element Lifting Assembly (CELA)

- Statistics

-Status: Existing

-Purpose: Rigid steel frame utilized to lift Space Shuttle payloads.
-Quantity: 1
-Load Capacity: 36,500 pounds
-Payload envelop: 15' dia. with trunnion spacing of 20'

- General

- Built to support Space Shuttle payloads program
- The CELA is designed to handle all types of Space Transportation System (STS) and Space Station horizontal payloads with standard trunnions. The CELA is utilized during payload installation/removal operations to and from payload work stands, MMSE canister or other payload containers

-Capabilities

- Max. payload envelope - 15 feet
- Single crane lift operation

March 21, 2011
NASA KSC
Page 28

KSC Customer Services

- Fabrication and Rapid Prototyping
- Machining
- Pneumatics Fabrication
- Thermal Protection Systems Manufacture and Repair
- Precision Measurement and Dimensional Analysis
- Materials Testing and Analysis
- Failure Analysis
- Precision Cleaning
- Chemical Sampling and Testing
- Nondestructive Evaluation
- Modeling and Simulation Support
- Ordnance Storage and Test
- Support Equipment Design and Fabrication
- Flight and Non-Flight Cable and Harness Development

Backup

KSC Life Science Expertise

- Areas of Expertise
- Processing biological payloads
- Biological payload development and Flight execution
- Developing life support systems \& flight hardware
- BRICs and ABRS flight facilities
- Maintaining commitments to Investigators
- Managing Labs to support space related research
- Managing Grants (e.g. ILSRA)
- Critical Skills
- Mission Integration
- Project Integration
- Payload Scientist
- Science Disciplines: Exploration Life Support, Molecular Biology, Plant Physiology, Analytical Chemistry, Microbial Ecology, Wet Solid Waste, Air Purification
- OES manager, engineer, and technician
- CMDS Software Manager
- Certified Animal Care Manager
- Engineering Disciplines: Optics, Communications, Electrical, Mechanical, Spacecraft Thermal, Fluids, Power Systems, Lighting, Structural
- Customers
- NASA HQ / ESMD \& SOMD
- International Space Station
- International Science Community
- Florida State Partnership
- ISS National Lab Community
- Commercial

BRIC Opti

NASA Science Laboratory "Rack" Facilities

What internal space is available for research?

Science Rack Topology

Research Payload Development

KSC ISS-Research Flight Hardware

BRIC-PDFU \& LED

BRIC-60/100

Inventory

-On ISS	1	4	0
-At KSC	1	70	1
-Certification	STS \& ISS	STS \& ISS	STS
-Planned Upgrades	BFP \& YFP imaging	none	ISS Cert

0
16 (60 mm) 15 (100 mm)

STS \& Progress
none

KSC Flight Payload History

March 21, 2011
NASA KSC
Page 36

