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ABSTRACT: On February 1st, 2010 u.s. President Barack Obama submitted to Congress his proposed budget 
request for Fiscal Year 2011. This budget included significant changes to the National Aeronautics and Space 
Administration (NASA), including the proposed cancellation of the Constellation Program. This change proved to be 
controversial and Congressional approval of the program's official cancellation would take many months to 
complete. During this same period an end-to-end discrete event simulation (DES) model of Constellation operations 
was being built through the joint efforts of Productivity Apex Inc. (PAl) and Science Applications International 
Corporation (SAIC) teams under the guidance of NASA. The uncertainty in regards to the Constellation program 
presented a major challenge to the DES team, as to: continue the development of this program-of-record simulation, 
while at the same time remain preparedfor possible changes to the program. This required the team to rethink how it 
would develop it's model and make it flexible enough to support possible future vehicles while at the same time be 
specific enough to support the program-of-record. This challenge was compounded by the fact that this model was 
being developed through the traditional DES process-orientation which lacked the flexibility of object-oriented 
approaches. The team met this challenge through significant pre-planning that led to the "modularization" of the 
model's structure by identifying what was generic, finding natural logic break points, and the standardization of inter
logic numbering system. The outcome of this work resulted in a model that not only was ready to be easily modified to 
support any future rocket programs, but also a model that was extremely structured and organized in a way that 
facilitated rapid verification. This paper discusses in detail the process the team followed to build this model and the 
many advantages this method provides builders of traditional process-oriented discrete event simulations. 

1. Introduction 

The Constellation Program was a human spaceflight 
program initiated by the NASA Exploration Systems 
Mission Directorate (ESMD) and first developed 
through the Exploration Systems Architecture Study 
(ESAS) in response to the Vision for Space 
Exploration announced by President George W. Bush 
on January 14,2004 and the NASA Authorization Act 
of 2005. The goal of this Program was to design and 
build a suitable replacement for the Space Shuttle to 
send astronauts to the International Space Station 
(ISS), and eventually towards missions to the Moon 

and Mars. To achieve these goals, the Constellation 
Program was developing the Ares I and Ares V 
rockets, which would carry the Orion Space Capsule 
and the Altair Lander, respectively, into space. The 
Ares I-Orion vehicle would have a dual use: alone it 
could transport Astronaut crews to the ISS or it could 
rendezvous with the Altair Lander-Earth Departure 
Stage (Altair-EDS) in Earth Orbit for a long duration 
mission to the Moon or Mars. The Altair-EDS would 
be launched using the Heavy Lift Ares V launch 
vehicle. Ares I consisted of a single 5-segment Solid 
Rocket Booster and a liquid-fueled second stage 
powered by a J-2X engine. Above the second stage, the 



Orion capsule would sit with a Launch Abort System 
attached to it. Ares V consisted of two 5-segment Solid 
Rocket Boosters and a liquid fueled Core' Stage 
powered by multiple RS-68 engines the Earth 
Departure Stage with the Altair Lander would be 
stacked above the Core Stage . Figure 1 shows images 
of the Constellation vehicles. 
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Figure 1. Ares I, Ares V, Orion, and Altair 

1.1 The Constellation Discrete Event Simulation 
Model 

To support the development of the vehicles used for the 
Constellation Program, a joint NASA, SAIC, and 
Productivity Apex Inc. (PAl) team was tasked to 
develop an end-to-end discrete-event simulation (DES) 
model (the CxDES Model) [1]. This model looked at 
Program operations from a NASA agency and cross
center (Level 2) perspective for the purpose of 
analyzing system-level performance (i.e., element 
production meets launch manifest demands, which 
must meet mission delivery expectations).The model 
was developed using the Discrete Event Simulation 
Arena (Rockwell Automation) software application and 
the supporting Ariana (PAl) graphical user interface. 
The first phase of the effort (May 2008 through April 
2009) focused upon development of the model for an 
Ares I-Orion architecture supporting the International 
Space Station (ISS). The effort was continued into a 
second phase from May 2009 - October 2009 to 

complete the model and collect task duration 
information from Constellation (Level 3) project 
offices. This effort led to a first round of analysis using 
the model for the Program's Integrated Design 
Analysis Cycle 5 (IDAC-5). The third phase, 
performed between November 2009 and August 2010, 
began the development of a simulation model of the 
Ares V -Altair architecture. 

The ultimate objective of the simulation models was to 
assess multiple performance indicators for. 
Constellation's Ares I-Ares V system including, but 
not limited to, the number of successful missions that 
could be achieved within a certain time frame. The 
required scope of the models involved the 
manufacturing of the Flight Hardware Elements 
(FHEs), assembly and integration, offline ground 
operations, integration in the Vehicle Assembly 
Building (V AB), transfer to the launch pad and pad 
operations (pad flow and launch countdown), ascent of 
the launch vehicle, mission ops, descent, recovery, and 
refurbishment where applicable. 

A custom Ariana Simulation Interface, using the PAl 
commercial software, was developed and delivered as a 
graphical user interface (GUT) for the Arena model. 
Ariana allows the users to define simulation scenarios, 
populate the model with new data, run the model, view 
the output, and compare the output. A master Microsoft 
Excel sheet was also developed and delivered as a way 
to read manufacturing lead time and launch manifest 
inputs and write the output data after a simulation run. 
Input data included FHE (e.g., Ares I, Ares V, Orion, 
and Altair components and their sub elements such as 
Interstages, Forward Assemblies, Solid Rocket Motor 
Segments, Aft Skirts) ordering differential times and a 
flight manifest. Output included mission-by-mission 
event occurrence time (e.g., integration start time in the 
V AB), weather and technical scrubs by mission, and 
waiting time in the V AB for each FHE per mission. An 
.automated graphing Excel sheet was also developed 
that included (among other things) output graphs and 
plots of planned versus simulated mission times. 

The Ares I model's level of detail was defined in the 
conceptual flow diagram (CFD) of the manufacturing, 
assembly, and the integration of the 5 main FHEs: 

1. Orion Launch Abort System (LAS) 
2. Cargo 
3. Orion 
4. Ares I Upper Stage 
5. Solid Rocket Booster (SRB) 



The Arcs V model ' s level of detail was similarly 
defined in the CFD of its 6 main FHEs: 

I . Composite Shroud 
2. Altair Cargo 
3. Altair Descent Modul e 
4. Earth Departure Stage (EDS) 
5. Core Stage 
6. Two Solid Rocket Boosters (SRB) 

1.2 A New Budget 

On February 1st, 20 I 0 U.S . President Barack Obama 
submitted to Congrcss hi s proposed budget request fo r 
Fiscal Year 20 II , whi ch proposed significant changes 
to NASA, including the cancellation of the 
Constellat ion Program. Thi s change proved 
controversial and Congressional approval of the 
program 's offi cial cancell ation would take many 
months to completc. This period of uncertainty was 
problemati c becausc offi cially Constellation was not 
cance ll cd until Congress approved the 20 II budget, but 
for all practi ca l purposes thc program was coming to an 
end. Additi onall y, it was unclear what new program 
would take the placc of the Constell ation program. This 
le ft the Cx DES team in a di fficult pos ition: 
deve lopment of the Ares V model had to continue but 
it would more than li kely never be uscd because the 
program it was supporting was ending. Thc challenge 
facing the team at this point was to develop a model 
that met the requirements of the current program, while 
also making it readily adaptable to support any future 
programs. 

2. Modeling Methodologies 

Di scrcte event simulati on is one of the most widely 
uscd methods for analyzing processes and systems with 
a provcn track record in process analys is and planning 
in many fi elds and industri es including manufac turing, 
aerospace, healthcare and transportati on. Simulati on 
mode ling has shown an advantage over other analyt ical 
approaches duc to its abili ty to assess thc effect of 
input variability on measures of perfo nnance. It also 
allows thc introduction of rare events that are not 
typica lly found in detemlinistic models. This may 
partly address thc prob lcms associa ted with poor 
estimati on of system performance (e.g. launch rates, 
tumaround time, and cost). 

There are sevcral modeling mcth odologies in the fi cld 
of di screte event simulation. The two most widely used 
methodologies arc the process ori ented and thc object 
orientcd. The process oriented simulation model is 
constructed by mainly employing the proccsses of the 
system modeled along with th eir interacti ons. The 

resulting model will consist of the end-to-end process 
fl ow of the system, along with other process ing 
modul es that are mainly used to capture the logic in the 
system being modeled. On the other hand, obj ect 
oriented simulation is constructed by building the 
objects present in the system being modeled. These 
objects contain all the fl ows and logic present in the 
system. The end model consists of all the objects in the 
system along with the interaction between these 
objects . The benefit of this method is that once the 
objects are developed, they can be reused or 
customized. In the process oriented approach, the 
reusability is possible, but requires additional 
customi zation effort to work in practice. 

3. Predicting the Future and other Launch 
Vehicle Programs 

When the CxDES project started, one of the fi rst steps 
the team took was to develop conceptual flow di agrams 
for both Ares I and Ares V opcrations. The Ares I 
CxDES model was built foll owing the original 
conceptual fl ow models and was modified as plans for 
the program changed. When it came time to start 
deve lopment on the Ares V model, the team started 
fo llowing thc same process; when the new NASA 
budget was proposed, reconsiderati on of the original 
conceptual fl ow di agram was required to max imize the 
utility of this soon to be built modcl, even if the Ares V 
rockct was cancelled. To do th is, all the possible 
futures for altemati ve launch vehi cles were fi rst 
considered based on the current policy environment. 
The fo llowing options were considered along with their 
impact on model development: 

Scenario Impact on CxDES 
I) Constellation Build the Ares V mode l as 
continues, as if the originally envisioned and 
President had never eventually intcgrate it with the 
cance lled the program Ares r model. 
in the FY 2011 
budget. 
2) Constellation Build the Ares V model as 
continues with an originally envisioned and 
enhanced test fli ght cventuall y integrate it w ith the 
program. Ares r model. Modify the 

ex isting Ares I model fo r 
analysis to support the 
proposed test fli ghts, as well 
as use the data from the test 
fli ght program to improve the 
fi deli ty of the data used in the 
models. 

3) Constellati on is Stop all work on the models, 
cancelled with no collect all work done up to 



NASA program to this point, and store the 
take its place. information for future use. 
4) Constellation is Archive the Ares I model and 
cancelled and a new develop a model for the new 
Heavy Lift Vehicle Heavy Lift Vehicle using the 
program takes its Ares I model as the basis or 
place. start completely from scratch. 
5) Constellation is Modify the existing Ares I 
cancelled but an Ares model to analyze the proposed 
I test flight program test flights as well as use the 
continues in order to data from the test flight 
test out a new program to improve the 
vehicle's common fidelity of the data being used 
components. in the models. Then, build a 

model for the new Heavy Lift 
Vehicle using the Ares I 
model as the basis or start 
completely from scratch. 

6) Constellation is Develop a model for the new 
cancelled and a Heavy Lift Vehicle using the 
modified test flight Ares I model as the basis or 
program is started to start completely from scratch. 
test out a new Use the relevant data learned 
vehicle's common from the test flight program to 
components. improve the fidelity of the 

data collected for the new 
model. 

Review of these alternatives showed there was overlap 
among most of them (Figure 2). 
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Figure 2. Venn Diagram of possible Constellation 
Program futures 

Because many of these options were equally possible, 
the team decided that the model needed to be flexible 
enough to allow us to fit into as many of these futures 
as possible. Based on the Venn diagram it seemed that 
the possibility that overlapped with the most other 

possibilities was option 6: Constellation is cancelled 
and a modified test flight program is started to test out 
a new vehicle's components. In terms of the model, 
this meant the model needed to be of a Heavy Lift 
Vehicle, specifically an Ares V vehicle, but flexible 
enough to support changes to similar vehicles. This 
could mean adding or removing FHEs and their 
corresponding logic. This also meant that this model 
would be built separately without integration with the 
Ares I model in mind. 

Since this new model would need to be able to support 
multiple vehicle types, the team decided it was 
necessary to build conceptual flow diagrams for 
multiple vehicle types. The team built conceptual flow 
diagrams for a Falcon 9-Heavy with a Dragon capsule, 
a theoretical Ares IV with an Orion capsule, and an 
Ares I model indicating how it differs from other 
rocket types. In addition, the Delta IV and Atlas V 
designs were reviewed, along with other Heavy Lift 
Vehicle designs NASA was considering at the time. 
This exercise helped understand the differences and 
similarities in the vehicles. From this ex~rcise it 
became clear that many of these vehicles had much in 
common from the level of detail required in the model. 
All vehicles had a section that would carry some form 
of cargo (human or not) and at least two or more 
stages. The major components would all integrate in 
one facility immediately before going to the launch 
pad. Any prior assembly of smaller FHEs would occur 
exclusively in each of the independent section's flows, 
and once these smaller parts were integrated they 
would rarely, if ever, de-integrate. Overall, the main 
differences were one extra or one less FHE. 

4. ANew Methodology 

Once this flexible approach to model development was 
decided, the next step was to determine how to make 
this possible. The previously developed model was 
built exclusively as an Ares I and Orion vehicle. 
Because of its complexity, it would have required 
extensive work to modify for another vehicle. The 
forthcoming Ares V model, on the other hand, would 
have to base itself on the Ares I model and at the same 
time be flexible enough to be changed quickly to 
another vehicle type. 

To better understand this new approach, the Ares I 
model was reviewed to determine the location of 
natural breaks in the model flow. These natural breaks 
were areas where the model could be "cut" so that 
entire sections could be removed without affecting 
other parts of the model. This "surgical analysis" of the 
model allowed the team to determine what areas of the 
model could be turned into "modules," which would be 



self-contained components of the model. For example, 
one module in the Ares I model would contain 
everything from LAS major component manufacturing, 
transportation to KSC, LAS Assembly, and LAS 
Storage before entering the Vehicle Assembly Building 
for final integration. This section of the model does not 
have any logic that directly connects to logic for any 
other FHE and is self-contained. 

Other modules, like those related to Orion, had to be 
grouped in module "families," which were made up of 
modules that were self-contained for the most part, but 
were associated with other modules in some way. One 
example of this was the Orion family of modules. In 
the Ares I model, Orion was made up of three different 
major components: the Crew Module (CM), the 
Service Module (SM), and the Spacecraft Adapter 
(SA). Each of these components could have comprised 
their own separate modules, but immediately after each 
individual module they would enter another module in 
which they would be assembled together. So, if the CM 
module was removed from the model, it would create a 
problem with the Orion Assembly module. As a result 
of this issue, the CM, SM, SA, and Orion Assembly 
modules would be considered as part of the Orion 
"family" of modules (see Figure 3). This would notify 
the developer that if the CM module was removed then 
some consideration would need to be given to the other 
members of its "family." This could mean removal of 
the other sections in the family as well, or at minimum 
a slight modification oftheir logic. 

Orton Modulo Family 

Figure 3. Module Families Example 

The other aspect of the Ares I model that became clear 
was the many signals used throughout the model could 
make it very difficult to easily change the model. These 
numerical signals were originally named based on the 
order they were created. This made it difficult to 
detennine either the source of the signal or the 
receiver. If a developer wanted to change out entire 
sections of logic, it would be very easy to leave signals 

hanging, which would cause havoc in the operation of 
the model. It also was apparent that documenting each 
section in the model (within the model itself) would be 
important to clearly understanding what was being 
changed. . 

From this exercise, it was detennined that a flexible 
Ares V model could only be developed with diligent 
attention to the following: 

• all signals were extensively documented 
• module "families" were identified 
• sections of internal logic were generalized so 

that they were not specific to one piece of 
hardware or another 

The model was developed taking these lessons in 
mind. The model was organized in the software 
application modeling area in a grid-like fonnat for 
easy access and reference (see Figure 4 and Table I). 
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Figure 4. Model Longitudinal Grid-like Sections 

For documentation purposes, every module was labeled 
with a brief description of what this section of the logic 
entailed. 

For the flexible Ares V model, the following seven 
module families were created: 

• Composite Shroud Family 
o Composite Shroud Module: From 

manufacturing to storage before Altair 
Hazardous Offline Processing 

• Altair-Cargo Family 
o Ares V Cargo Module: From production 

to storage after processing 
o Descent Module (DM) Module: From 

manufacturing to before Altair Assembly 
& Close-out 

o Altair Module: From Altair Assembly & 
Close-out to after transport to V AB 

• Integrated Earth Departure Stage (EDS) 
Family 



o Integrated EDS Module: From 
manufacturing of Altair Adapter, EDS 
components, J2X, and Interstage to after 
transport to V AB 

• Integrated Core Stage Family 
o Integrated Core Stage Module: From 

manufacturing of Core Stage components 
and RS-68B to after transport to V AB 

• Forward Assembly Family 
o Forward Assembly Module: From 

manufacturing to after transport to V AB 
• Solid Rocket Booster (SRB) Family 

o SRB Module: From SRB segment 
turnaround, SRB segment manufacture, 
and Aft Booster Buildup 

• Mobile Launcher (ML) Family 
o ML Module: From ML initial inventory 

station to before ML stacking preps 

A very specific methodology was developed for the 
model signal numbering system. Each signal was 7 
digits long with the first two digits representing the 
FHE number called by the signal (e.g. 08 represents the 
J2X engine). The middle two digits represented the 
direction of the signal, with the first of these numbers 
representing the "from" location and the second 
number representing the "to" location (e.g. 41 
represents a signal being sent from column 4 to column 
1) (see Figure 4). These numbers work like 
longitudinal sections on a grid. The last three digits 
represented a serial number of a signal of that specific 
type. So, for example, Signal 0543001 will call FHE #5 
(the Composite Shroud in Table 2), the signal is sent 
from column 4 (the integration section of the logic) to 
column 3 (the assembly & pre-Integration section), and 
it is signal number 1 of this type. The below tables 
show the columns used within the model and the FHEs 
represented by number. 

Table 1. Modeling Area Columns 
# Description 
I Manufacturing &: Ground Ops 

2 Assembly &: Ground Ops 
3 Assembly 8.: Pre-Imegration 
4 Imegrauon 
5 Launch and Space !I1ission 

Table 2. Numbering System for FHEs 
# FHI: # FHI: 

01 Compome Shroud 12 Core Stage C omponeDl5 

02 Cargo 13 RS-6SB 
03 Descent lI-1oduie 14 Integrated Core Stage 

04 Altair 15 Processed Integrated Core Stage 

05 CS AltaIr 16 Fwd Assembly 

06 Altair Adapter 17 SRB 
07 EDS Components IS Aft Skirt 

08 J2X 19 RSRM Segments!Att Booster 

09 Interstage 99 SRB 
10 Integrated fDS S8 Moblie Launch Platform 

11 Processed fDS 20 Integrated Launch VehIcle 

5. Findings from the Flexible Approach 

One of the detriments in following such a flexible 
methodology is that much more time is required for up
front planning. It is not a trivial effort in the modeling 
of a complex integrated system to determine what logic 
fits within a module, or what modules make up a 
family. In addition, developing a signal numbering 
system describing the origin, destination, and direction 
of a signal can also be difficult, and the layout of the 
model can help or hinder this. Also, while planning out 
the model, it is challenging to keep in mind many other 
possible configurations and ensure that the logic being 
implemented does not hinder modification into 
different forms. Fortunately, this up-front effort can be 
beneficial in the long run, and not only if changes to 
the model must be made to accommodate a new 
vehicle. It was found that this thorough planning, 
documentation, and modularization made the model 
extremely organized and easy to follow, which was 
extremely useful during the testing and verification of 
the model. The model's organization made it simple to 
compare what was modeled versus what was originally 
planned in the conceptual flow, making verification 
easier. 

The most obvious benefit is that it should now be a 
simpler task to modify the model from one vehicle 
representation to another. 

6. Conclusion 

The uncertainty in the future of NASA's Constellation 
Program presented a major challenge to modeling 
efforts required to continue the development of the 
current program-of-record, while remaining flexible for 
whatever future program replaced it. This required re
thinking the development of the model and making it 
flexible enough to support unknown future vehicle 
configurations, while at the same time remain specific 
to the program-of-record. The team met this challenge 
through significant pre-planning, including a "surgical 



analysis" on a previous model to better understand how 
the logic could most easily be sectioned off. This work 
led to the "modularization" of the model's structure by 
identifying generic natural logic break points, the 
standardization of its inter-logic signal numbering 
system, and extensive internal documentation. The 
outcome of this work resulted in a model that was more 
readily modified to support any future rocket programs, 
and extremely structured and organized in a way that 
facilitated rapid customization and verification. 
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