

An Overview of Thermal Distortion Modeling, Analysis, and Model Validation for the JWST ISIM Structure

John Johnston
NASA Goddard Space Flight Center
Mechanical Systems Analysis and Simulation Branch Code 542
Greenbelt, MD

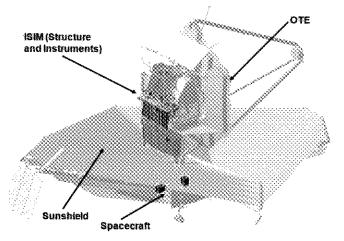
Emmanuel Cofie SGT, Inc. Seabrook, MD

4/7/2011

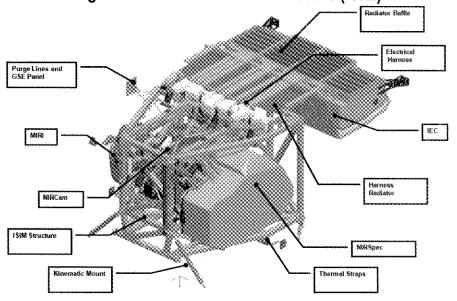
Topics

Introduction

- ISIM Structure Overview
 - Performance Requirements
 - Development and Verification Approach
- Thermal Distortion Modeling, Analysis, and Model Validation
 - Modeling and Analysis Approach
 - Preliminary Model Validation: Joint and Subassembly Cryo Tests
 - Final Model Validation: Flight Hardware Cryo Test
- Summary



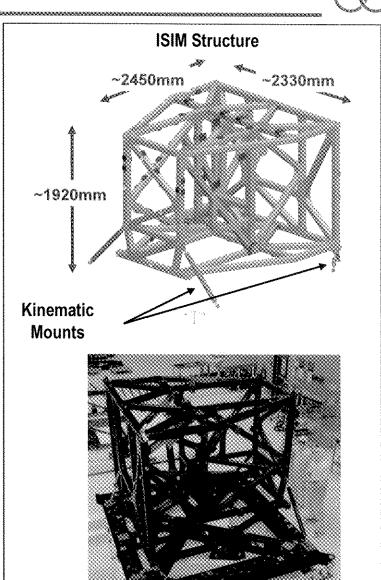
Introduction



- The James Webb Space Telescope (JWST) is a large, infrared-optimized space telescope consisting of the following elements:
 - Optical telescope element (OTE)
 - Integrated science instrument module (ISIM)
 - Spacecraft
 - Sunshield
- The Integrated Science Instrument Module (ISIM) consists of the JWST science instruments (NIRCam, MIRI, NIRSpec), a fine guidance sensor (FGS), the ISIM Structure, and thermal and electrical subsystems.
- JWST's instruments are designed to work primarily in the infrared range of the electromagnetic spectrum, and the instruments and telescope operate at cryogenic temperatures (~35 K for the instruments).

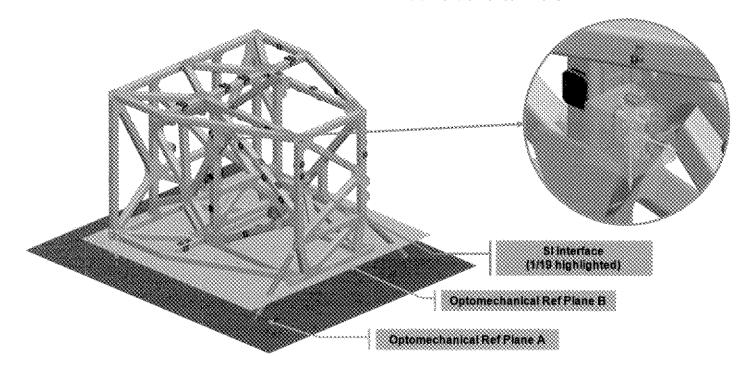
James Webb Space Telescope (JWST)

Integrated Science Instrument Module (ISIM)



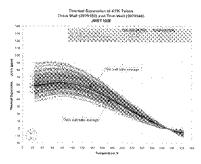
ISIM Structure Overview

- The ISIM Structure is a large, bonded composite frame that serves as the metering structure between the instruments/guider and the telescope.
- The ISIM Structure interfaces to the telescope via kinematic mounts.
- Thermal distortion performance is critical to maintaining the alignment of the instruments to the ISIM Structure.
- Significant effort has been expended on the development of capabilities to predict and measure cryogenic thermal distortion.
- This presentation provides an overview of the ISIM Structure focusing on thermal distortion performance related topics:
 - Optomechanical performance requirements
 - Development and verification approach
 - Thermal Distortion Modeling and Analysis
 - Thermal Distortion Testing and Model Validation



Optomechanical Performance Requirements

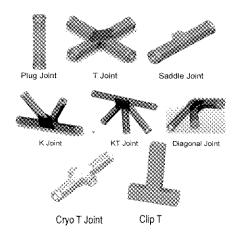
- Driving thermal distortion performance requirements for the ISIM Structure relate to cooldown from ambient to cryogenic operating temperature.
- Two optomechanical coordinate systems are referenced in these requirements:
 - Optomechanical Coordinate System A/ACG (OTE Interface = Bottom of Kinematic Mounts)
 - Optomechanical Coordinate System B/BCG (Top of Kinematic Mounts)
- Optomechanical performance requirements are in terms of
 - Rigid body motion of ISIM Structure on KMs: BCG relative to ACG
 - Internal Distortion of ISIM Structure: SI Interfaces relative to BCG


ISIM Structure Development and Verification

COMPLETE

Material Characterization Tests Stiffness, Strength, and CTE

Coupons for Composites, Adhesive, & Metals



ISIM Structure development and verification follows a building block approach with testing at the coupon, joints, sub-assembly, and finally the protoflight ISIM Structure levels.

Joint Development Tests
Ambient and Cryo Strength
Thermal Distortion

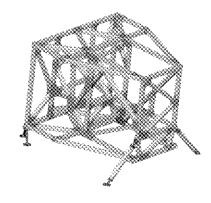
COMPLETE

Basic Joints: Plug, T, Saddle, Clip Higher order Joints: K, KT, Diagonal 2nd Structure Items: Click Bonds, Platelets

Sub-element Development Tests

Modal Survey

Modal Survey
Thermal Distortion


COMPLETE

Breadbox

IN PROCESS

ISIM Structure Verification Tests
Cryo Set (Thermal Distortion)
Cryo Proof (Cryo Strength)
Modal Survey
HCC and Static Pull Tests
(Ambient Strength)

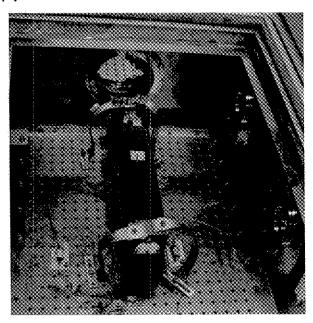
Protoflight ISIM Structure

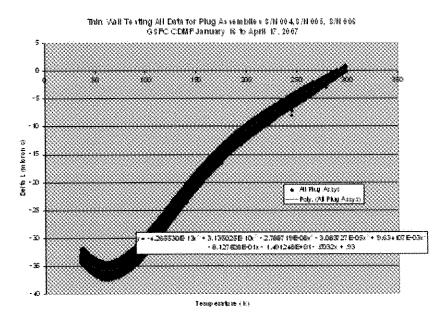
Joint and sub-element test articles incorporate the same major joint types/features as the flight ISIM Structure. Provides confidence that successful development test model validation is applicable to the flight structure.

Thermal Distortion Modeling and Analysis

- The ISIM Structure thermal distortion models are high fidelity (>2 million DOF for the flight structure model) NASTRAN structural models.
 - The composite frame structure is modeled using solid elements to capture fine details such as bond lines and bond shapes.
 - A key aspect of the models is their linkage to materials data specifically generated for the program.
 - The model utilizes temperature-dependent CTE and stiffness properties to accurately predict thermal distortion behavior in terms of both cooldown from ambient to cryogenic temperatures and stability at operational cryogenic temperatures.
- Initial mesh convergence studies were used to establish the mesh size for the global thermal distortion model.
 - During this effort, high fidelity models of representative bonded joints served as the reference standard against which successive thermal distortion model mesh sizes could be compared.
 - Ultimately, a balance between model accuracy and model size defined the final mesh sizes.

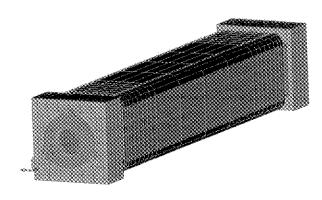
Thermal Distortion Modeling and Analysis - cont.

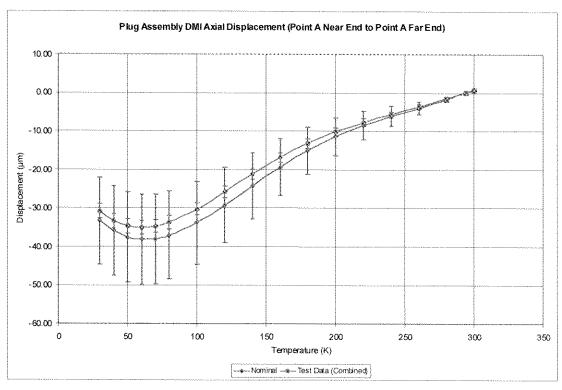

- There are two analysis approaches used in ISIM Structure thermal distortion modeling and analysis:
 - Nominal model approach
 - Stochastic model approach.
- The stochastic model is used to predict the model uncertainty due to factors such as material property (e.g. variability and uncertainty in material property values) and geometric (e.g. bondline thickness) variability. Provides a mean prediction and an uncertainty band determined by multiplying the 95% confidence interval by a modeling uncertainty factor (MUF).
- As per project guidelines, modeling uncertainty factors are used to provide conservatism and margin in thermal distortion predictions.
 - For nominal model predictions, the model validation goal is for predictions multiplied by the 1.6 MUF to bound the measured performance.
 - For stochastic model predictions, the model validation goal is for the predicted uncertainty bandwidth to envelop measured performance including measurement error.
 - Model validation criteria are tied to these analysis approaches and their associated modeling uncertainty factors.



Basic Joint Thermal Distortion Tests

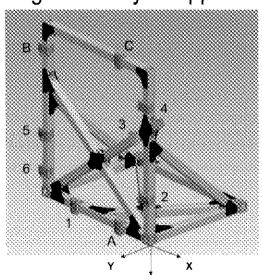
- Joint-level thermal distortion tests characterized cooldown distortion of basic constituent joint types:
 - Plug (Invar fitting: Corner joint)
 - T (Gusset and Clip joint)
 - Saddle (Invar fitting: Instrument Interfaces)
- Test articles were cooled from room temperature to cryogenic operating temperature (~40 K) and distortions were characterized via interferometers.
- Test measurements were compared with analytical predictions to validate modeling and analysis approach.

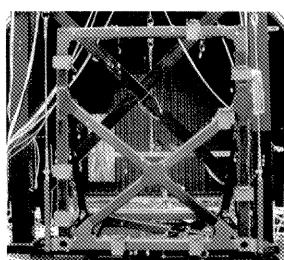




Basic Plug Joint Model Validation

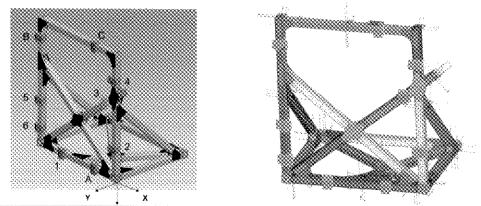
- Thermal distortion models of the test articles were generated using the final mesh sizing from the mesh refinement study.
- Compared measured and predicted axial cooldown distortion of plug joint test articles.
- Model validation successful:
 - Stochastic model predictions envelop the test measurements including measurement uncertainty.
 - Additionally, the nominal model prediction multiplied by the nominal model uncertainty factor of 1.6 bounds the test measurement.
 - Similar validation achieved for T and Saddle basic joints.

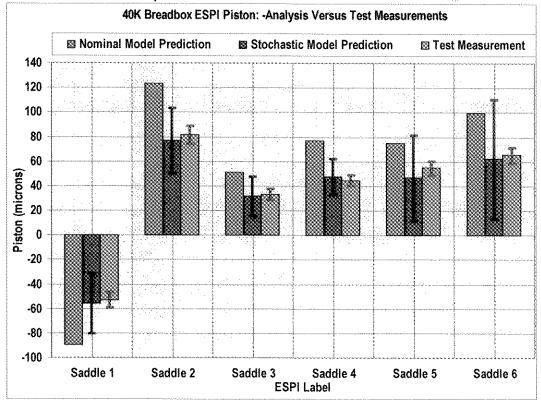




Subassembly Thermal Distortion Test

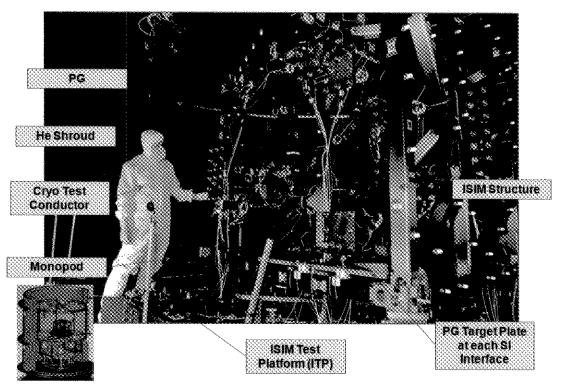
- A 3-D frame structure, the "breadbox", representative of a subassembly from the ISIM Structure and consisting of all the basic joint types was also designed, manufactured, and tested using the lessons learned and approaches developed during the basic joint level testing.
- Subassembly thermal distortion test characterized cooldown and cryogenic stability:
 - Out-of-plane distortion between instrument interface saddles (Targets 1-6)
 - In-plane distortion between instrument interface saddles (Targets A-C)
- Test article was cooled from room temperature to cryogenic operating temperature (~40 K) in NASA MSFC XRCF facility and distortions were characterized via interferometers.
- Test measurements were compared with analytical predictions to continue incremental validation of modeling and analysis approach.





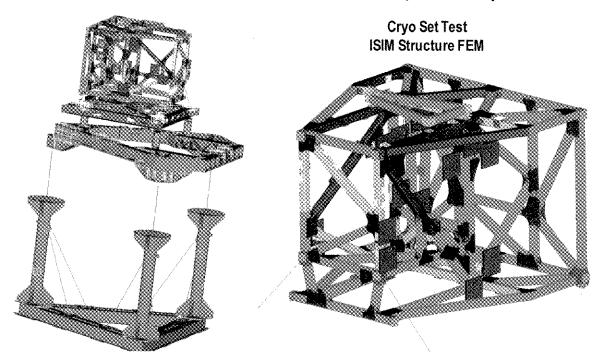
Subassembly Model Validation

- Thermal distortion model of the breadbox was generated using the same mesh as the basic joint test articles.
- Compared measured and predicted out-of-plane (piston = Y) and in-plane (X,Z) cooldown distortions to validate modeling and analysis approach.
- Model validation successful:
 - Nominal model prediction multiplied by the nominal model uncertainty factor of 1.6 bounds the test measurement.
 - Stochastic model predictions envelop the test measurements including measurement uncertainty.



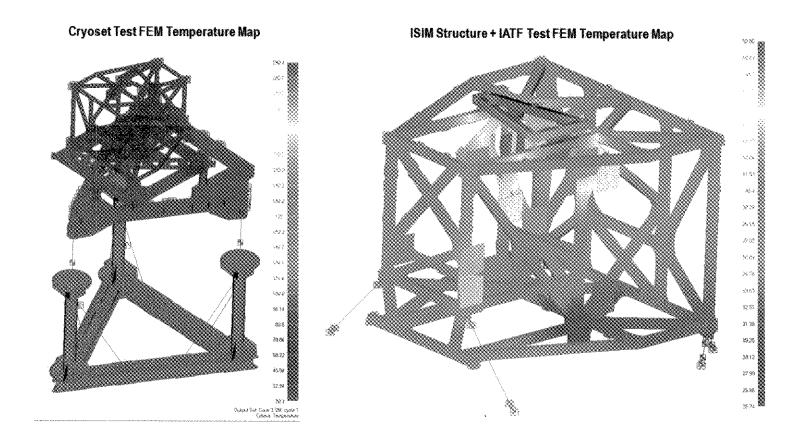
Flight ISIM Structure Cryoset Thermal Distortion Test

- The flight ISIM Structure successfully completed a cryogenic thermal distortion performance test in Spring 2010 in the Space Environment Simulator (SES) facility at NASA GSFC.
- Structure cooled from ambient to cryogenic temperature (~30 K).
- Distortions characterized using custom photogrammetry system:
 - Measurements verified that performance meets optomechanical requirements
 - Additionally, measurements used for final thermal distortion model validation



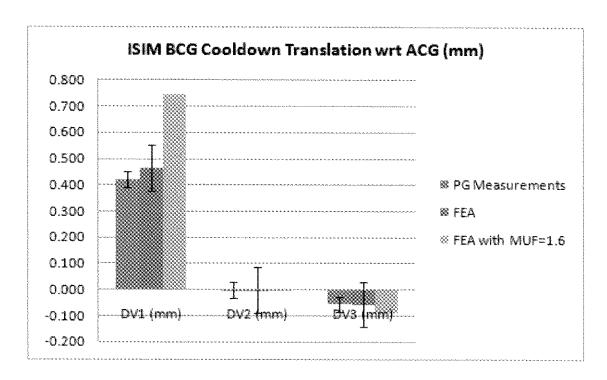
Cryoset Test Modeling and Analysis

- Detailed model of the ISIM Structure Cryoset test setup was generated to predict thermal distortion performance:
 - Flight hardware (bare ISIM Structure)
 - Mechanical ground support equipment (MGSE)
- ISIM Structure Model:
 - Bare flight structure model with the addition of metrology tooling and targets
 - Flight structure modeled using the validated mesh from the preliminary model validation studies



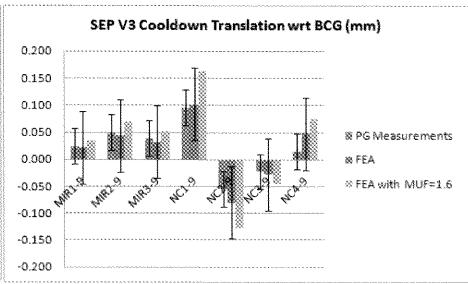
Cryoset Test Modeling and Analysis - cont

- Temperature sensor measurements taken during the test were used to generate temperature maps for the flight hardware and MGSE following the test.
- The average temperature of the flight ISIM Structure under test was 38 K with a 25 K gradient.



Flight Structure Model Validation

- Compared measured and predicted performance for rigid body motion of ISIM Structure on kinematic mounts (BCG to ACG motions).
- Nominal/mean motions for BCG-to-ACG show excellent agreement with measurements (Translations agree to within 50 microns).
- Model validation criteria satisfied:
 - Nominal predictions with MUF=1.6 bound the measured performance
 - Stochastic model predictions including 2-sigma uncertainty bandwidth with MUF=1.4 envelop measured performance



Flight Structure Model Validation - cont.

- Compared measured and predicted performance for internal distortion of ISIM Structure (science instrument interface to BCG motions).
- Example shown below for seven (out of nineteen) of the science instrument interfaces for out-of-plane (V2) and in-plane (V3) translations with respect to reference BCG.
- Model validation criteria satisfied:
 - Nominal predictions with MUF=1.6 bound the measured performance
 - Stochastic model predictions including 2-sigma uncertainty bandwidth with MUF=1.4 envelop or overlap measured performance

Flight Structure Model Validation - cont.

- Compared measured and predicted performance for internal distortion of ISIM Structure (science instrument interface to BCG motions).
- Table below provides values for measured and predicted cooldown translations in the V1, V2, V3 directions at all nineteen interface locations.
 - In all cases, the measured performance meets requirements.
 - Maximum cooldown motions are on the order of 200 microns.
- Significant motions were defined as translation greater than the 3-sigma photogrammetry error bar of 50 microns (see values in bold in the table). For significant motions, the nominal model predictions without modeling uncertainty factor agree with test measurements to within 50 microns.

**************************************		Significant res	icologicalis	Megennenene		FEA + bitle No 385.77			FEA GUIS ASI F-1.0°			Difference (PG - 41.4 × 9.38.3)		
Node	FESI Norio Naces	PG TGT Name	AV Lean	5.39 K. Audo AV2 (suppl	ent) AND NOO	AVI (exec)	AV2 (is su)	(man) CAD	AFI (sees)	4V2 (max)	AVAsmin	MT (202)	AVI (min)	A371 (same)
12525	03E1-5	49940	1 8005 I	8 643 6 8	3.535	898	5.246	A 222	3.92	16 16 16 16 16 16 16 16 16 16 16 16 16 1	*******			Allanderseller allander der Allanderseller allander der
13179	1 Van 2 V	14657		Rase	100.5	328	8.86	4.044	2,000	97% 97%	228	***************************************		gan tarbatan artarta artarta
13178	MR2-\$	W253-4		10 TEC		42350	8386	5.033	2.00	9338	3 48E	2000		X
******	901-6	1401-0	i con c	A 100	00.00000000000000000000000000000000000	8438	0.385	75 TOO	2.23	\$338	0.000			
14179	1002/4	P4G2-9	110	8116	6066	8.107	9,994	42.000	10.100	6 M2	83108			
73379	nc)-s	1403/5	1 3 200 3	100	0.000	0.004	5.000	A 000	A 62	6 20% 5	28.63			
19283	404.5	NO44	1000	0.262	200	X 103	0.373	100 ACA	200	\$273	2.0			
53379	NG1/8	0.150	1	0.212	200	2.10	0.300	4.10		3.6	3.165			
13328	1656	NSS	1 300	0.00	8.00	2114	033	0.119			A (4)	1		
77338	1253-6	9826	100000	9.00			\$333	**************************************	3.46		6.46			
1,000	163.5	1555-0 0-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2	1000000	9 69		8888		\$ 13°		arterialist et a versjong til entyrsteine varjout	0216			
	1253×8	Albertelen de Meneralden von belee		4.03		200	V. 311	200	8.0	cializate in the international services	A COLUMN TO THE PARTY OF THE PA	NAME OF STREET,		AND THE PROPERTY OF THE PARTY O
1786 	1000	3456-F		449		350	11							X
53449	P@81-0	F051-0	7 - State	11 (2)		0.130	\$ CK	2.88						
	F3520	F052.0	T = 30 = 1	9666	1004	0.880	X 956	2.083		2000 2000	X 454			
13495	F063-0	F088-9	1 3 3 3 3 3	a te		\$366	3881	3.0%		\$ 455	300	10000000		
tissés	F0540	F\384-5	J = 50.60 = 1	14.68		636%	100	2000	2008	212	8.08			
19455	60354	\$1006.9	: 0 0 m € 0	9.46	O. O. O. O. O.	6,1%	· 1845/4	火砂之	0.00	00000000000000000000000000000000000000				
13439	F958-9	F-386-9	3000	9111	698	3300	-0.504	3.03	100000000000000000000000000000000000000	E 3 1800	1000000			
		SMRX	0.1493	0.1966	0.14537	0.1506	0.2660	0.1650	and the second second		REAR	0.031	6.029	0.032
		0G#;	-0.0566	-0.2120	-0.3031	-0.0600	-0.2016	4.1105			65543	-0.024	-0.048	-0105
											255%	0.010	0.017	0.017

Summary

- The development and validation of a thermal distortion modeling and analysis capability for the JWST ISIM Structure was successfully completed.
- The modeling and analysis approach was grounded in initial constituent materials testing and benchmarked to test results at the composite bonded joint, subassembly, and fullscale flight hardware levels.
- Comparison of analysis predictions and test results from this series of incremental cryogenic thermal distortion tests demonstrates that the model validation goals are achieved.
- Status and future plans:
 - The ISIM Structure is currently completing ambient verification testing:
 - Modal survey test for dynamic model validation
 - High capacity centrifuge and static pull testing for ambient strength verification
 - Once the science instruments are integrated to the ISIM Structure, an ISIM Element level Cryovac test will be performed to characterize optical and thermal performance at cryogenic operating temperatures.
 - At the JWST level, a final cryo thermal vacuum test of the combined ISIM and OTE (telescope) system will be performed to characterize optical and thermal performance for the observatory.