

Toward Intelligent Software Defect Detection
Learning Software Defects by Example

Markland J. Benson
Ground Software Systems Branch

Software Engineering Division
NASA Goddard Space Flight Center

Greenbelt, MD
Markland.J.Benson@nasa.gov

Abstract—Source code level software defect detection has gone
from state of the art to a software engineering best practice.
Automated code analysis tools streamline many of the aspects of
formal code inspections but have the drawback of being difficult
to construct and either prone to false positives or severely limited
in the set of defects that can be detected. Machine learning
technology provides the promise of learning software defects by
example, easing construction of detectors and broadening the
range of defects that can be found. Pinpointing software defects
with the same level of granularity as prominent source code
analysis tools distinguishes this research from past efforts, which
focused on analyzing software engineering metrics data with
granularity limited to that of a particular function rather than a
line of code.

Keywords: software defects, machine learning

I. INTRODUCTION

Automated source code analysis tools have matured to
become industry standard in use. Popular compilers such as
Microsoft Visual Studio[1], GCC[2] and javac[3] include
options to perform what may be considered today more routine
checks such as reporting uninitialized variables or unchecked
type conversions. Standalone commercial products such as
Polyspace[4] and Klocwork[5] detect numerous common run-
time issues such as memory leaks, bad references and misuse
of well-known interfaces.

Static source code analysis included in industry tools
depends on rigorous control and data flow analysis. Such
analyses depend on compiler construction techniques of lexing
and parsing as precursors. Patterns matched in source code
analyzers are hand-coded in high-level languages, as regular
expressions or as state machines. Adding new rules require
humans to identify specific instances of code that are
considered defective, generalize a pattern that captures the
defect, and encode the pattern into high-level language code,
regular expressions or state machines. This research aims to
take the work of generalizing and encoding defect patterns out
of the realm of manual work by humans and into the realm of
automated machine learning.

The remainder of this paper is structured as follows.
Section II outlines a defect detector framework giving
descriptions of each stage of the framework as well as some
practical concerns that exist at each stage. Section III discusses

work done in the area of feature extraction for translating
source code into forms usable by machine learners. Section IV
considers techniques applicable to classification of portions of
source code as defective or non-defective. Section V looks at
current work in the area of automated source code defect
detection that serves to move to the next level of granularity
proposed by this research. Section VI paints a picture of the
next steps in achieving the goals laid out for this work.

II. DEFECT DETECTOR FRAMEWORK

A. Framework Overview

A general pattern recognition approach is to perform
preprocessing, feature extraction, classification and post-
processing as is illustrated in Figure 1.

 Figure 1: Pattern Recognition Pipeline

The following sections will discuss how each of these
stages applies to the problem of intelligent software defect
detection.

B. Preprocessing

Preprocessing shapes data into a form more usable by the
classification engine. If the input data is an image,
preprocessing may include translating or rotating an image to
place it in a standard position and orientation or sharpening of
the image to simplify the feature selection processing. In other
applications where vectors or records of data are inputs, the
preprocessing step may filter out inputs based on some a priori
criteria or a statistical property of the overall dataset. Further,
preprocessing may fill in missing data elements or normalizing
numeric data.

While software engineering data is often in the form of
metrics such as source lines of code (SLOC), defect count per
function or per SLOC, cyclomatic complexity, or number of
operators and operands different data is needed in order to
make inferences about the presence or absence of specific types
of defects for any given line of code. In this case, the
recognition engine needs to ingest the source code in some less

This work is funded by the National Aeronautics and Space
Administration (NASA) Goddard Space Flight Center (GSFC) Part-Time
Graduate Study Program (PTGSP).

abstract fashion than metrics. Simple approaches might use
individual tokens or sets of tokens. More complex approaches
would follow the control or data flow of the program.

C. Feature Extraction

Feature extraction transforms preprocessed data into a form
usable by the pattern recognition engine. Creating a form that is
optimized to a given machine-learning algorithm is
fundamental to the application of such technology to software
engineering data[6]. Pattern recognition algorithms are quite
sensitive to the form of data provided them. Perceptrons, which
are very simple neural networks, only handle binary 0 or 1 as
an output and thus need the same type of value as inputs to
training along with real-valued vectors. Support vector
machines accept real-vectors with an associated class (integer).
Association rule learning expects a set of binary attributes and
a database of uniquely identified subsets of attributes.

The problem of automated software defect detection must
ultimately translate source code, which can be thought of most
simply as a stream of characters or more commonly as a tree or
graph of control structures, data stores and associated
information, into something a perceptron, a support vector
machine or an association rule learner would understand. The
alternative is to default to the current state of practice, which is
to hand-code recognition algorithms that operate on trees or
graphs for each unique case or to remain at the token
processing level with tools such as regular expressions.

D. Classification

Given that the translation problem can be solved, many
classification algorithms exist today that can be customized to
the task of machining source code tokens, fragments or flows
to defect classes. Different classifiers have different strengths
and weakness that may fit a certain needs. For example,
association rule learners have been applied to use of related
function calls in source code. The learners find sets of
functions that are used in proximity and report when one of the
function calls frequently in the set do not exist in some
instance[7]. One instance of a rule learned in this manner is for
programming with the C++ standard library. An association
can be that, with some probability, each time the ifstream token
is seen the open, read and a close tokens are also seen. The
following figure shows sample code where the close token is
missing, which results in a leaked file handle.

Figure 2: Leaking a File Handle

A classification problem endemic to software defect
detection is that it is typical to have orders of magnitude more
non-defective lines of code or tokens than defective ones.
Classifiers that measure their training success by reaching some
accuracy percentage appear to have good results by classifying
all tokens or lines as non-defective when one defect exists per
hundred lines of code. However, such a classifier is of no
utility. To be effective in software defect detection, a classifier
must learn the relatively rare cases that are defects without
producing so many false positives that a developer cannot see
through the noise.

Jiang, Li and Zhou [8] claim to make improvements in
dealing with imbalances in the number of defects with respect
the volume of source code by implementing disagreement-
based semi-supervised learning. This learning technique uses
multiple learners that ingest both labeled and unlabeled data for
training. When a majority of learners strongly agree on a
classification for unlabeled data, the majority learners teach the
minority learners using the examples on which they strongly
agree.

E. Post-Processing

The preprocessing and feature extraction phases of the
framework go to pains to ensure that the classification can
produce results of interest, however, those results must be in a
form usable by developers. That is, at minimum a developer
would expect to see a result that identified a particular defect
type identified for a particular source file at a particular line
and perhaps column number. Additionally, some trace back of
the reasoning behind calling the item a defect or at least a
probability of being a defect should be reported. A simple
output might look as can be seen in Figure 3 where defects are
reported for two source files.

Figure 3: Automated Defect Detector Sample Output

A more user friendly output would annotate code within an
integrated development environment (IDE) or produce a
hypertext markup listing of source code linked to defect
definitions.

III. FEATURE EXTRACTION

Software source code can be represented in many forms. A
most primitive representation is to think of source code as a
stream of characters. This representation is the simplest to
ingest but provides no syntactic, semantic or control and data
flow information to the machine learner. A step up from
character-by-character inputs is to work with lexical tokens as
they appear in a source file. Further, lists of consecutive tokens
can be constructed to serve as inputs, essentially giving a

learner a sliding window of consecutive tokens. Such an
approach, while requiring lexical analysis remains far simpler
than the complex parsing, semantic analysis and inter-
procedural analysis necessary to hand-code automated source
code analysis routines. Preliminary work by the researcher
applied back propagation neural networks to streams of
individual characters, lists of characters, individual lexical
tokens, and list of lexical tokens with each character or token
hashed into a unique integer for input into the neural network.
The input characters/tokens were paired with an indication of
defective (1) or non-defective (0) for each token. In the case of
lists of tokens, anytime a list contained a character or token
marked as defective, the list was marked defective. Otherwise
the list was marked as non-defective. Figure 4 illustrates the
source to hash translation.

Figure 4: Source Code Hash Transformation

This simplistic approach was applied to a C++ code base on

the order of tens of thousands lines of source code with nine
expert-validated defects. Different list sizes were applied in the
experiments and typical experimentation with different learning
rates that is typical with neural networks was performed. While
some defects could be reproduced by the learner, consistent
results were not achieved. A number of limitations exist that
prevent good performance in this case. With small list sizes, the
learner has very little context. To learn to detect memory leaks
with the context of a method, a learner would need a large
window in order to see both the memory allocation and
deallocation (or failure to deallocate) or else no viable learning
could take place.

Another issue with this simple approach is that no semantic
information is present nor is any generalization done. Suppose
that a learner is being taught examples of off-by-one errors so
non-defective examples might have conditions that look like x
< n where defective examples may have conditions that look
like x <= n. One instance might use the variables x and n, the
next might use the variables y and k and another might use a
and b. Each of the different variables has different
representations to the learner and creating a correlation is
difficult if not impossible. Additional preprocessing can help
this situation if semantic information is included. For example,
using semantic information and generalizing each variable into
a pseudo-type like could transform each case into the form int-
var < int-var or int-var <= int-var. Here a learner can find
patterns more effectively regardless of differently named
variables. The tradeoff here is that no learning can take place
that depends on the data flow of a particular variable. Varied
approaches will be necessary based on the problem.
Fortunately, a human need not select from the possible set of
approaches after they are defined since a learner can train using
each of the possible approaches and select the approach that
provides the best results.

This very lightweight approach, while ineffective in its first
incarnation demonstrates that potential exists for transforming
source code into a form that a machine learner can utilize. This
contrasts with heavyweight approaches such as is found in [9]
where the researchers modify the gcc compiler to perform
interprocedural analysis that applies state machines hand-coded
in a custom language to code samples to detect defects. Rather
than using real instances of defects as examples or mutating
known good code into defect samples, new types of defects
require an error prone coding exercise in a unique
programming language using a modified version of a compiler.
Besides the complexity of hand-coding, this approach suffers
from having to keep pace with the evolution of gcc.

While having to directly modify a compiler or write a new
one is problematic, making use of the products of existing
parsing technology makes an approach much more compatible
with real-world source code and of less magnitude to deploy.
For example, gcc produces various products such as abstract
syntax trees, preprocessed code files, and assembler
representations that can be preprocessed to serve as input to the
feature extraction process.

One logical representation for source code is a tree or graph.
Such structures map neatly to the syntactic structure or control
and data flow of source code. Most machine learning
algorithms cannot directly ingest a tree or graph, however, so a
flattening or portioned approach to providing data to the learner
must be taken. For example, walking a tree or graph via a depth
first search, presenting scalar-valued nodes to the learner in
sequence is a possible approach. The scalar-valued nodes may
be formed by hashing tokens as previously described in this
section.

IV. CLASSIFICATION

A wealth of publicly available classification engines are
available in toolkits such as Weka[12]. Work has been
performed at determining which apply well to software
engineering data[14][15][16][17] and limitations of static
analysis approaches and the difficulty in learning software
defects have been reviewed[18]. Further, collections or
ensembles of such standards learners have been formed to take
advantage of the strengths and overcome the weaknesses of
particular learners. Additionally, a comparison of approximate
versus exhaustive application of such learners has been
studied[19]. The vast body of research with these standard
learners makes them a good starting place for application of
automated defect detectors at the line of code level (rather than
at the metric level) and the products of research in feature
extraction should be exhausted before extensive work into
customized classifiers is attempted.

One unique area is where there exist algorithms that directly
compare graphs or trees[13], which cannot typically be
ingested by typical machine learners. Graph comparison
algorithms may be an avenue for future endeavors in software
defect classification[10].

V. BUILDING A FOUNDATION

Hand-coded tools that address automated source code
analysis frequently walk the execution paths of the software
examining the possible states of variables for undesirable
conditions such as dereferencing a null pointer or reference or
writing past the end of an array. An approach using machine
intelligence can model this approach of control and data flow
analysis a number of ways. The current tactic in work for this
research is to present to the machine learner a control flow
graph. This graph is produced by requesting the gcc compiler
produce an assembler code listing with full debug information.
The GNU Compiler Collection (GCC) for which gcc is the
driver program[11] is most useful because it accepts numerous
different languages, all of which can be translated to assembler
code. Providing the assembler level information to the learner
makes it rather language neutral. The debug information allows
the post-processing to map back from the assembler
information to the high-level code that a developer will
understand.

The classification approaches currently being investigated
are two-fold. One is to feed a widely available machine learner
such as a back propagation neural network sequences of control
flow elements that walk the graph along with indications of the
defect class associated with sequence. There are large
variations that can be applied here. The length of the sequences
and the particulars of what exactly is presented in each node
can be varied as was discussed in Section III in addition to
parameters that exist for the machine learners themselves. The
second classification approach is to use the a measure of graph
edit distance to compare subgraphs extracted for a training set
to subgraphs that have a known defect or are known to be non-
defective. Both approaches can be generalized by attempting to
learn multiple classes of defects within a single knowledgebase
or specialized such that a given learned knowledgebase only
applies to a specific type of defect. Generalization provides
versatility and potentially improved run-time performance.
Specialization may provide improved correctness of the learner
and shorter training cycles with fewer exemplars needed at the
expense of run-time performance after training is complete
(each specialized knowledgebase would need to be applied to
the full code set).

Outputs of the intelligent defect detectors are being
compared against expert validated, documented issues with
operational software as well as commercial automated source
code analysis tools. Further, variations in learning parameters
and representations are being documented and compared.
Results will be provided in a future publication.

VI. LOOKING FORWARD

As researchers continue to advance the use of machine

learning technology in the field of software engineering, they
must keep in mind that such technology is only valuable if it
can perform the same function that could be done by hand
either more efficiently or in a manner that produces higher
accuracy (or other relevant metric). In particular, for automated
software defect detection care must be taken that the
preprocessing and training by example is not so cumbersome

that it is no easier than hand crafting a solution by coding in a
high-level language. Similarly, if the results of the learning
produce so many false positives or miss so many true defects
then interest may wane in applying these technologies to this
domain.

With this in mind and knowing the numerous successes in
applying machine learning to software metric ([20][21][22] are
a few demonstrates of the reach of these techniques),
researchers should look for opportunities to exploit other less
than obvious metrics that may be of value. Some metrics that
may produce correlations could be lexical distance between
tokens or relative frequency of specific tokens in a compilation
unit. Such simple metrics appear to have no relationship to the
volume of code or the control flow of the code but such metrics
are simple to compute and may have intrinsic value that none
can predict.

Researchers must continue to leverage available tools for
preprocessing and the wide variety of available learning
engines. Key to linking these well-known pieces is the feature
extraction “glue” that bridges the gap between source code in a
text file and (often) numeric data provided to a machine
learner.

ACKNOWLEDGMENT

The author would like to thank the management of the
NASA GSFC Space Network, Ground Software Systems
Branch, and White Sands Complex as well as his West Virginia
University examining committee for their guidance in the
relevance of this research and the resources to accomplish it.

REFERENCES

[1] http://msdn.microsoft.com/en-us/library/3z0aeatx.aspx

[2] http://gcc.gnu.org/onlinedocs/gcc-4.5.2/gcc/Warning-
Options.html#index-Wall-234

[3] http://download.oracle.com/javase/6/docs/technotes/tools/windows/javac
.html

[4] http://www.mathworks.com/products/polyspaceclientc/description3.html

[5] http://www.klocwork.com/products/documentation/current/Detected_C_
and_C%2B%2B_Issues

[6] M. Reformat, W. Pedrycz, and N. Pizzi, “Software Quality Analysis
with the use of Computational Intelligence,” in Proc. 2002 IEEE Int’l
Conf. Fuzzy Systems (FUZZ-IEEE’02), vol. 2, May 2002, pp. 1156-
1161.

[7] Z. Li and Y. Zhou, “PR-Miner: Automatically Extracting Implicit
Programming Rules and Detecting Violations in Large Software Code,”
in Proc. 2005 Joint 10th European Software Engineering Conf. (ESEC-
FSE’05), September 2005, pp. 306-315.

[8] Y. Jiang, M. Li, and Z. Zhou, “Software defect detection with ROCUS,”
Journal of Computer Science and Technology, in press.

[9] S. Hallem et al, “A System and Language for Building System-Specific,
Static Analyses” in Proc. Programming Language Design and
Implementation (SIGPLAN’02), ACM Press, 2002, pp. 69-82.

[10] S. Kim et al, “Automatic Identification of Bug-Introducing Changes,”
Proc. 21st Int’l Conf. On Automated Software Eng. (ASE’06), IEEE CS
Press, 2006, pp. 81-90.

[11] http://en.wikipedia.org/wiki/GNU_Compiler_Collection

[12] http://www.cs.waikato.ac.nz/ml/weka/

[13] M. Neuhaus and H. Bunke, “A Convolution Edit Kernel for Error-
tolerant Graph Matching,” in Proc. 18th Int’l Conf. Pattern Recognition
(ICPR’06), IEEE CS Press, 2006, pp. 220-223.

[14] E. Ceylan, F. Kutlubay, and A. Bener, “Software Defect Identification
Using Machine Learning Techniques,” in Proc. 32nd EUROMICRO
Conf. Software Eng. and Adv. Applications (EUROMICRO-SEAA’06),
IEEE CS Press, 2006, pp. 240-247.

[15] G. Boetticher, “Nearest Neighbor Sampling for Better Defect
Prediction,” in Proc. 2005 Wksp. Predictor Models Software
Engineering (PROMISE’05), ACM Press, 2005, pp. 1-6.

[16] T. Menzies et al, “Implications Of Ceiling Effects In Defect Predictors,”
in Proc. 4th Intl. Workshop Predictor models in Software Eng., ACM
Press, 2008, pp. 47-54.

[17] T. Menzies et al, “Assessing Predictors of Software Defects,” in Proc.
4th Int’l Workshop on Predictor Models in Software Eng.
(PROMISE’08), ACM Press, 2008, pp. 47-54.

[18] N. Fenton and M. Neil, “A Critique of Software Defect Prediction
Models”, in IEEE Trans.on Sofware. Eng., IEEE CS Press, 1999, pp.
675-689.

[19] M. Benson, “Report to the Qualifying Exam Committee,” unpublished

[20] S. Bibi et al, “Software Defect Prediction Using Regression via
Classification,” in Proc. IEEE Int’l Conf. Computer Systems and
Applications (AICCSA’06), IEEE CS Press, 2006, pp. 330-336.

[21] T. Khoshgoftaar and R. Szabo, “Using Neural Networks to Predict
Software Faults During Testing,” in IEEE Trans. Reliability, vol. 45,
Sep. 1996, pp 456-462.

[22] S. Heckman and L. Williams, “On Establishing a Benchmark for
Evaluating Static Analysis Alert Prioritization and Classification
Techniques,” in Proc. 2nd ACM-IEEE Int’l Symp. Empirical Software
Eng. and Measurement (ESEM’08), ACM Press, 2008, pp. 41-50.

