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Abstract—Source code level software defect detection has gone 
from state of the art to a software engineering best practice. 
Automated code analysis tools streamline many of the aspects of 
formal code inspections but have the drawback of being difficult 
to construct and either prone to false positives or severely limited 
in the set of defects that can be detected. Machine learning 
technology provides the promise of learning software defects by 
example, easing construction of detectors and broadening the 
range of defects that can be found. Pinpointing software defects 
with the same level of granularity as prominent source code 
analysis tools distinguishes this research from past efforts, which 
focused on analyzing software engineering metrics data with 
granularity limited to that of a particular function rather than a 
line of code. 
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I.  INTRODUCTION 

Automated source code analysis tools have matured to 
become industry standard in use. Popular compilers such as 
Microsoft Visual Studio[1], GCC[2] and javac[3] include 
options to perform what may be considered today more routine 
checks such as reporting uninitialized variables or unchecked 
type conversions. Standalone commercial products such as 
Polyspace[4] and Klocwork[5] detect numerous common run-
time issues such as memory leaks, bad references and misuse 
of well-known interfaces. 

Static source code analysis included in industry tools 
depends on rigorous control and data flow analysis. Such 
analyses depend on compiler construction techniques of lexing 
and parsing as precursors. Patterns matched in source code 
analyzers are hand-coded in high-level languages, as regular 
expressions or as state machines. Adding new rules require 
humans to identify specific instances of code that are 
considered defective, generalize a pattern that captures the 
defect, and encode the pattern into high-level language code, 
regular expressions or state machines. This research aims to 
take the work of generalizing and encoding defect patterns out 
of the realm of manual work by humans and into the realm of 
automated machine learning. 

The remainder of this paper is structured as follows.  
Section II outlines a defect detector framework giving 
descriptions of each stage of the framework as well as some 
practical concerns that exist at each stage. Section III discusses 

work done in the area of feature extraction for translating 
source code into forms usable by machine learners. Section IV 
considers techniques applicable to classification of portions of 
source code as defective or non-defective. Section V looks at 
current work in the area of automated source code defect 
detection that serves to move to the next level of granularity 
proposed by this research. Section VI paints a picture of the 
next steps in achieving the goals laid out for this work. 

II. DEFECT DETECTOR FRAMEWORK 

A. Framework Overview 

A general pattern recognition approach is to perform 
preprocessing, feature extraction, classification and post-
processing as is illustrated in Figure 1. 

 Figure 1: Pattern Recognition Pipeline 

The following sections will discuss how each of these 
stages applies to the problem of intelligent software defect 
detection. 

B. Preprocessing 

Preprocessing shapes data into a form more usable by the 
classification engine. If the input data is an image, 
preprocessing may include translating or rotating an image to 
place it in a standard position and orientation or sharpening of 
the image to simplify the feature selection processing. In other 
applications where vectors or records of data are inputs, the 
preprocessing step may filter out inputs based on some a priori 
criteria or a statistical property of the overall dataset. Further, 
preprocessing may fill in missing data elements or normalizing 
numeric data.  

While software engineering data is often in the form of 
metrics such as source lines of code (SLOC), defect count per 
function or per SLOC, cyclomatic complexity, or number of 
operators and operands different data is needed in order to 
make inferences about the presence or absence of specific types 
of defects for any given line of code. In this case, the 
recognition engine needs to ingest the source code in some less 
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abstract fashion than metrics. Simple approaches might use 
individual tokens or sets of tokens. More complex approaches 
would follow the control or data flow of the program. 

C.    Feature Extraction 

Feature extraction transforms preprocessed data into a form 
usable by the pattern recognition engine. Creating a form that is 
optimized to a given machine-learning algorithm is 
fundamental to the application of such technology to software 
engineering data[6]. Pattern recognition algorithms are quite 
sensitive to the form of data provided them. Perceptrons, which 
are very simple neural networks, only handle binary 0 or 1 as 
an output and thus need the same type of value as inputs to 
training along with real-valued vectors.  Support vector 
machines accept real-vectors with an associated class (integer). 
Association rule learning expects a set of binary attributes and 
a database of uniquely identified subsets of attributes. 

The problem of automated software defect detection must 
ultimately translate source code, which can be thought of most 
simply as a stream of characters or more commonly as a tree or 
graph of control structures, data stores and associated 
information, into something a perceptron, a support vector 
machine or an association rule learner would understand. The 
alternative is to default to the current state of practice, which is 
to hand-code recognition algorithms that operate on trees or 
graphs for each unique case or to remain at the token 
processing level with tools such as regular expressions. 

D. Classification 

Given that the translation problem can be solved, many 
classification algorithms exist today that can be customized to 
the task of machining source code tokens, fragments or flows 
to defect classes. Different classifiers have different strengths 
and weakness that may fit a certain needs. For example, 
association rule learners have been applied to use of related 
function calls in source code. The learners find sets of 
functions that are used in proximity and report when one of the 
function calls frequently in the set do not exist in some 
instance[7]. One instance of a rule learned in this manner is for 
programming with the C++ standard library. An association 
can be that, with some probability, each time the ifstream token 
is seen the open, read and a close tokens are also seen. The 
following figure shows sample code where the close token is 
missing, which results in a leaked file handle. 

 
Figure 2: Leaking a File Handle 

 

A classification problem endemic to software defect 
detection is that it is typical to have orders of magnitude more 
non-defective lines of code or tokens than defective ones. 
Classifiers that measure their training success by reaching some 
accuracy percentage appear to have good results by classifying 
all tokens or lines as non-defective when one defect exists per 
hundred lines of code. However, such a classifier is of no 
utility. To be effective in software defect detection, a classifier 
must learn the relatively rare cases that are defects without 
producing so many false positives that a developer cannot see 
through the noise.  

Jiang, Li and Zhou [8] claim to make improvements in 
dealing with imbalances in the number of defects with respect 
the volume of source code by implementing disagreement-
based semi-supervised learning. This learning technique uses 
multiple learners that ingest both labeled and unlabeled data for 
training. When a majority of learners strongly agree on a 
classification for unlabeled data, the majority learners teach the 
minority learners using the examples on which they strongly 
agree. 

E. Post-Processing 

The preprocessing and feature extraction phases of the 
framework go to pains to ensure that the classification can 
produce results of interest, however, those results must be in a 
form usable by developers. That is, at minimum a developer 
would expect to see a result that identified a particular defect 
type identified for a particular source file at a particular line 
and perhaps column number. Additionally, some trace back of 
the reasoning behind calling the item a defect or at least a 
probability of being a defect should be reported. A simple 
output might look as can be seen in Figure 3 where defects are 
reported for two source files.  

Figure 3: Automated Defect Detector Sample Output 
 

A more user friendly output would annotate code within an 
integrated development environment (IDE) or produce a 
hypertext markup listing of source code linked to defect 
definitions. 

III. FEATURE EXTRACTION 

Software source code can be represented in many forms. A 
most primitive representation is to think of source code as a 
stream of characters. This representation is the simplest to 
ingest but provides no syntactic, semantic or control and data 
flow information to the machine learner. A step up from 
character-by-character inputs is to work with lexical tokens as 
they appear in a source file. Further, lists of consecutive tokens 
can be constructed to serve as inputs, essentially giving a 



 

 

learner a sliding window of consecutive tokens. Such an 
approach, while requiring lexical analysis remains far simpler 
than the complex parsing, semantic analysis and inter-
procedural analysis necessary to hand-code automated source 
code analysis routines. Preliminary work by the researcher 
applied back propagation neural networks to streams of 
individual characters, lists of characters, individual lexical 
tokens, and list of lexical tokens with each character or token 
hashed into a unique integer for input into the neural network. 
The input characters/tokens were paired with an indication of 
defective (1) or non-defective (0) for each token. In the case of 
lists of tokens, anytime a list contained a character or token 
marked as defective, the list was marked defective. Otherwise 
the list was marked as non-defective. Figure 4 illustrates the 
source to hash translation. 

 

 

 

 

 

Figure 4: Source Code Hash Transformation 

 
This simplistic approach was applied to a C++ code base on 

the order of tens of thousands lines of source code with nine 
expert-validated defects. Different list sizes were applied in the 
experiments and typical experimentation with different learning 
rates that is typical with neural networks was performed. While 
some defects could be reproduced by the learner, consistent 
results were not achieved. A number of limitations exist that 
prevent good performance in this case. With small list sizes, the 
learner has very little context. To learn to detect memory leaks 
with the context of a method, a learner would need a large 
window in order to see both the memory allocation and 
deallocation (or failure to deallocate) or else no viable learning 
could take place.  

Another issue with this simple approach is that no semantic 
information is present nor is any generalization done. Suppose 
that a learner is being taught examples of off-by-one errors so 
non-defective examples might have conditions that look like x 
< n where defective examples may have conditions that look 
like x <= n. One instance might use the variables x and n, the 
next might use the variables y and k and another might use a 
and b. Each of the different variables has different 
representations to the learner and creating a correlation is 
difficult if not impossible. Additional preprocessing can help 
this situation if semantic information is included. For example, 
using semantic information and generalizing each variable into 
a pseudo-type like could transform each case into the form int-
var < int-var or int-var <= int-var. Here a learner can find 
patterns more effectively regardless of differently named 
variables. The tradeoff here is that no learning can take place 
that depends on the data flow of a particular variable. Varied 
approaches will be necessary based on the problem. 
Fortunately, a human need not select from the possible set of 
approaches after they are defined since a learner can train using 
each of the possible approaches and select the approach that 
provides the best results. 

This very lightweight approach, while ineffective in its first 
incarnation demonstrates that potential exists for transforming 
source code into a form that a machine learner can utilize. This 
contrasts with heavyweight approaches such as is found in [9] 
where the researchers modify the gcc compiler to perform 
interprocedural analysis that applies state machines hand-coded 
in a custom language to code samples to detect defects. Rather 
than using real instances of defects as examples or mutating 
known good code into defect samples, new types of defects 
require an error prone coding exercise in a unique 
programming language using a modified version of a compiler. 
Besides the complexity of hand-coding, this approach suffers 
from having to keep pace with the evolution of gcc. 

While having to directly modify a compiler or write a new 
one is problematic, making use of the products of existing 
parsing technology makes an approach much more compatible 
with real-world source code and of less magnitude to deploy. 
For example, gcc produces various products such as abstract 
syntax trees, preprocessed code files, and assembler 
representations that can be preprocessed to serve as input to the 
feature extraction process. 

One logical representation for source code is a tree or graph. 
Such structures map neatly to the syntactic structure or control 
and data flow of source code. Most machine learning 
algorithms cannot directly ingest a tree or graph, however, so a 
flattening or portioned approach to providing data to the learner 
must be taken. For example, walking a tree or graph via a depth 
first search, presenting scalar-valued nodes to the learner in 
sequence is a possible approach. The scalar-valued nodes may 
be formed by hashing tokens as previously described in this 
section.  

IV. CLASSIFICATION 

A wealth of publicly available classification engines are 
available in toolkits such as Weka[12]. Work has been 
performed at determining which apply well to software 
engineering data[14][15][16][17] and limitations of static 
analysis approaches and the difficulty in learning software 
defects have been reviewed[18]. Further, collections or 
ensembles of such standards learners have been formed to take 
advantage of the strengths and overcome the weaknesses of 
particular learners. Additionally, a comparison of approximate 
versus exhaustive application of such learners has been 
studied[19]. The vast body of research with these standard 
learners makes them a good starting place for application of 
automated defect detectors at the line of code level (rather than 
at the metric level) and the products of research in feature 
extraction should be exhausted before extensive work into 
customized classifiers is attempted. 

One unique area is where there exist algorithms that directly 
compare graphs or trees[13], which cannot typically be 
ingested by typical machine learners. Graph comparison 
algorithms may be an avenue for future endeavors in software 
defect classification[10]. 



 

 

V. BUILDING A FOUNDATION 

Hand-coded tools that address automated source code 
analysis frequently walk the execution paths of the software 
examining the possible states of variables for undesirable 
conditions such as dereferencing a null pointer or reference or 
writing past the end of an array. An approach using machine 
intelligence can model this approach of control and data flow 
analysis a number of ways. The current tactic in work for this 
research is to present to the machine learner a control flow 
graph. This graph is produced by requesting the gcc compiler 
produce an assembler code listing with full debug information. 
The GNU Compiler Collection (GCC) for which gcc is the 
driver program[11] is most useful because it accepts numerous 
different languages, all of which can be translated to assembler 
code. Providing the assembler level information to the learner 
makes it rather language neutral. The debug information allows 
the post-processing to map back from the assembler 
information to the high-level code that a developer will 
understand. 

The classification approaches currently being investigated 
are two-fold. One is to feed a widely available machine learner 
such as a back propagation neural network sequences of control 
flow elements that walk the graph along with indications of the 
defect class associated with sequence. There are large 
variations that can be applied here. The length of the sequences 
and the particulars of what exactly is presented in each node 
can be varied as was discussed in Section III in addition to 
parameters that exist for the machine learners themselves. The 
second classification approach is to use the a measure of graph 
edit distance to compare subgraphs extracted for a training set 
to subgraphs that have a known defect or are known to be non-
defective. Both approaches can be generalized by attempting to 
learn multiple classes of defects within a single knowledgebase 
or specialized such that a given learned knowledgebase only 
applies to a specific type of defect. Generalization provides 
versatility and potentially improved run-time performance. 
Specialization may provide improved correctness of the learner 
and shorter training cycles with fewer exemplars needed at the 
expense of run-time performance after training is complete 
(each specialized knowledgebase would need to be applied to 
the full code set). 

Outputs of the intelligent defect detectors are being 
compared against expert validated, documented issues with 
operational software as well as commercial automated source 
code analysis tools. Further, variations in learning parameters 
and representations are being documented and compared. 
Results will be provided in a future publication. 

VI. LOOKING FORWARD 

 
As researchers continue to advance the use of machine 

learning technology in the field of software engineering, they 
must keep in mind that such technology is only valuable if it 
can perform the same function that could be done by hand 
either more efficiently or in a manner that produces higher 
accuracy (or other relevant metric). In particular, for automated 
software defect detection care must be taken that the 
preprocessing and training by example is not so cumbersome 

that it is no easier than hand crafting a solution by coding in a 
high-level language. Similarly, if the results of the learning 
produce so many false positives or miss so many true defects 
then interest may wane in applying these technologies to this 
domain. 

With this in mind and knowing the numerous successes in 
applying machine learning to software metric ([20][21][22] are 
a few demonstrates of the reach of these techniques), 
researchers should look for opportunities to exploit other less 
than obvious metrics that may be of value. Some metrics that 
may produce correlations could be lexical distance between 
tokens or relative frequency of specific tokens in a compilation 
unit. Such simple metrics appear to have no relationship to the 
volume of code or the control flow of the code but such metrics 
are simple to compute and may have intrinsic value that none 
can predict. 

Researchers must continue to leverage available tools for 
preprocessing and the wide variety of available learning 
engines. Key to linking these well-known pieces is the feature 
extraction “glue” that bridges the gap between source code in a 
text file and (often) numeric data provided to a machine 
learner. 
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