Improved Situational Awareness **Produced by the Space Shuttle Cockpit Avionics Upgrade**

April 16, 2004

William T. Smithgall **United Space Alliance**

LOCKHEED MARTIN

CAU Operational Objective

To increase situational awareness and reduce cockpit workload resulting in the execution of more accurate and timely decisions

note: crew error reportedly responsible for the majority of civil and military aeronautical accidents

Background

The Shuttle has complex flight regimes:

- Launch rocket for approximately 9 minutes
- Orbital spacecraft for 10-14 days
- Hypersonic plane for an hour
- Subsonic glider about 5 minutes

Large operational flight envelope is further complicated by an extremely large set of monitoring tasks and procedures over 10 major subsystems

- Propulsion, Guidance & Navigation, Flight Control, Hydraulics
- Power, Thermal, Environmental
- Data Processing, Communications
- Payloads

NASA chooses the "Best of the Best" for its astronauts

- Experienced test pilots with thousands of hours in 40+ aircraft

Minimum time required to train a shuttle pilot is 2-3 years!

Improved Situational Awareness

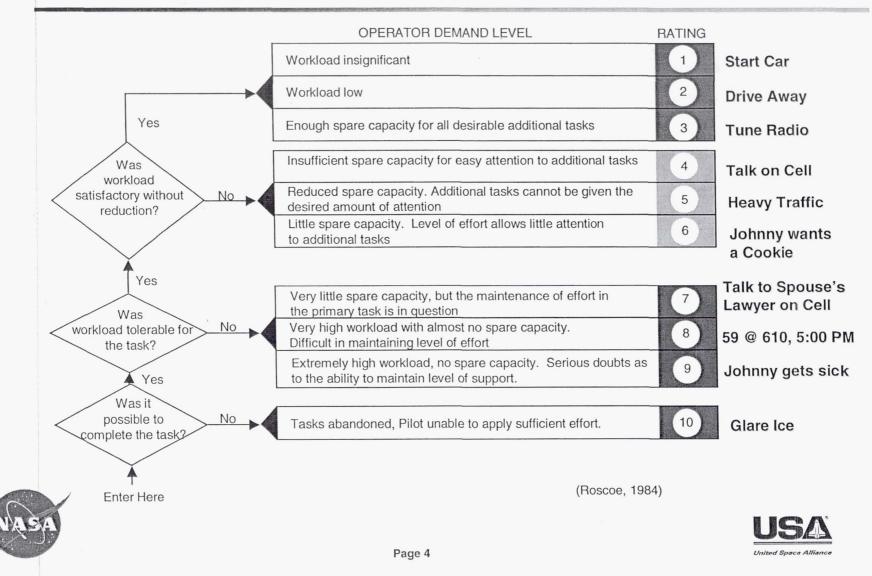
- Situational Awareness (SA) is an understanding of the state of the environment
 - It provides the PRIMARY basis for subsequent decision making and performance in the operation of complex, dynamic systems
- What detracts from situational awareness?
 - Too much data High workload
 - Too little time

Malfunctions

- Lack of information

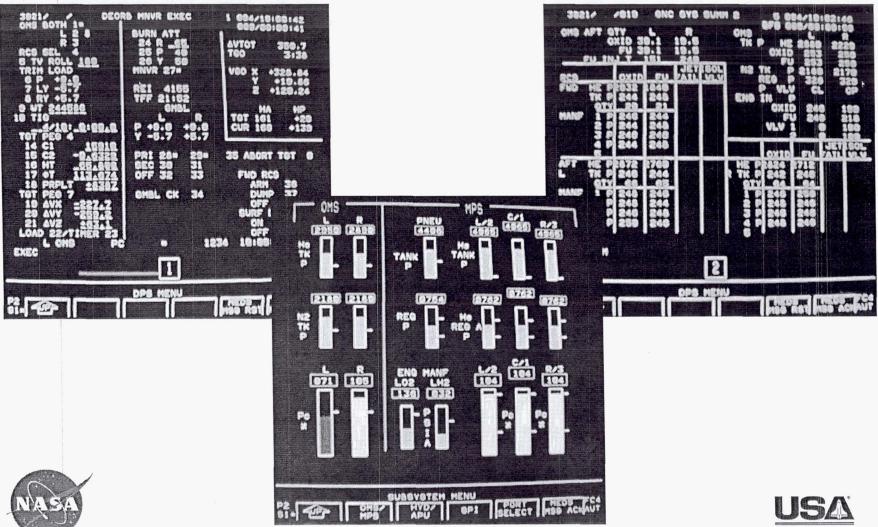
- Environmental distractions (noise, vibration, visibility, etc.)
- What are the consequences when these come together?

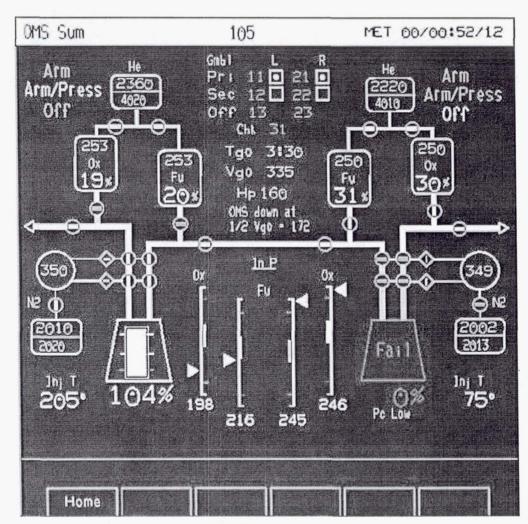
Errors can be, and are, made


- Display navigation/command inputs
- Problem diagnosis and resolution

Bedford Workload Scale

Shuttle Cockpit is a Complex Work Environment

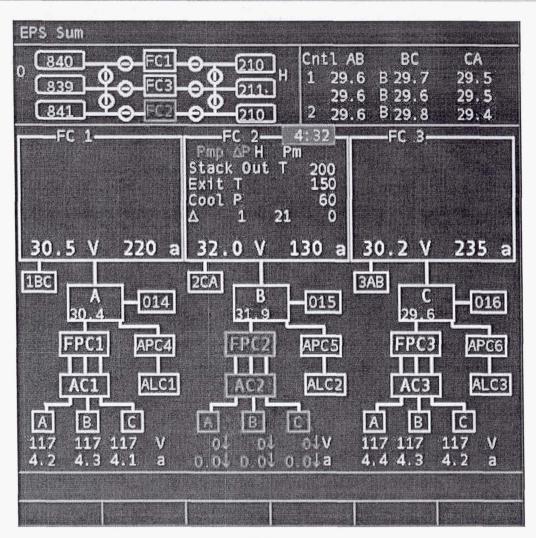

- 100+ time/safety critical dynamic flight procedures
 - Aborts to KSC, East Coast, Spain, Africa, Orbit
- ~1000 on orbit procedures
 - Systems, Payloads, Mission Objectives
- On orbit in-flight maintenance procedures designed in real-time
 - Problem diagnosis and repair
- Signature Recognition required for almost every procedure
 - Obscure problems are recognized by specific 'Christmas Tree' warning light patterns
- Rote memorization required in display navigation and problem diagnosis
 - Backed up by hundreds of pages of printed manuals


Legacy Displays to support OMS Burn Task

CAU Display to support OMS Burn Task

Legacy Electrical Monitoring Displays

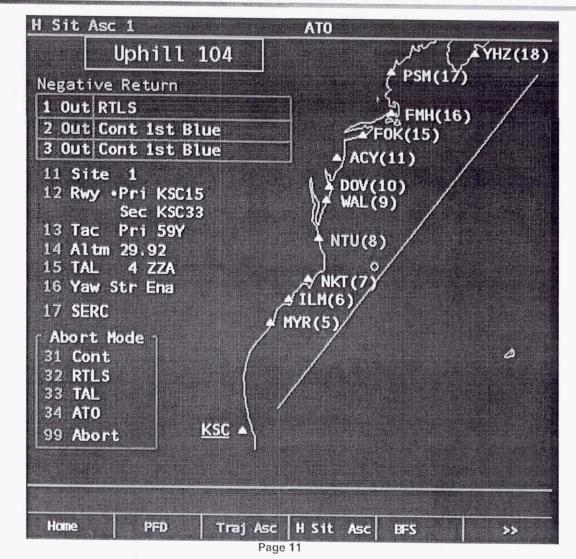
0001/ /078 BH E SMOKE 1/A 2/B CABIN 0.0 2.0.0 L/R FD 0.0 0.0 2 0.0 0.0 3 3 0.0 0.0 3 CABIN 0.0 0.0 PRESS 14.0 0.0 BU/EQ 0.00 4.00 PRESS 14.0 0.0 BU/EQ 0.00 4.00 PRESS 14.0 0.0 BU/EQ 0.00 4.00 PRESS 14.0 0.00 BU/EQ 0.00 4.00 PRESS 1.0 0.00 FAN AP 5.00 4.00 M2 FLOW 0.0 0.00 AV FC1 FC2 FC3 SB1 22 CL 23 SB3 23 0L 21 TOTAL AMPS 034 KU	VB SUMM 1 S GGG/GG16G16G16G DC VOLTB 1/A 2/A 3/C FC 30.2 0.0L 28.3 28.3 MAIN 30.2 28.4 28.4 28.4 CNTL AB 28.6 28.6 28.6 28.6 BC 28.6 28.6 28.6 28.6 CA 28.6 28.6 28.6 28.6 AC CA 28.5 28.8 28.6 VOLT +A 118 116 117 AC
SYO GUMM	2
[®]	B MENU


6001/ /070 CRVO TK 1 H2 PRESS 210 O2 PRESS 630 HTR T1 -164 -	CH 6VS 81 210 239 629 652 164 -137	UHH 2 5 604 670 609 4 230 230 651 651 -137 -137	/10:04:10 /00:00:00 ANF1 MANF2 230 230 202 852
APU 1 TEMP EOT 0 0/U EOT 0 01L IN 0 OUT 0		HYD 1 PRESS 0 Acum P 0 Rovr T 0 GTY 0	2000
OG BED G INJ G SPEED R G FUEL GTY G PHP LK P G OIL OUT P G		H28 GTY 8 BYP VLV BYP	BYP BYP
FU TK VLV A T Φ AT Φ Δ Φ AV BAY 1 Ξ Ξ TEMP CO CO 0.00 0.00	2 3 2 3 00 0.00	THERH CNTL H20 PUMP P FREON FLOW EVAP OUT T	1 2 50 59 2000 2000 50 2000
SYS SUMM	2		

CAU Electrical System Summary Display

Legacy Ascent Horizontal Situation Display

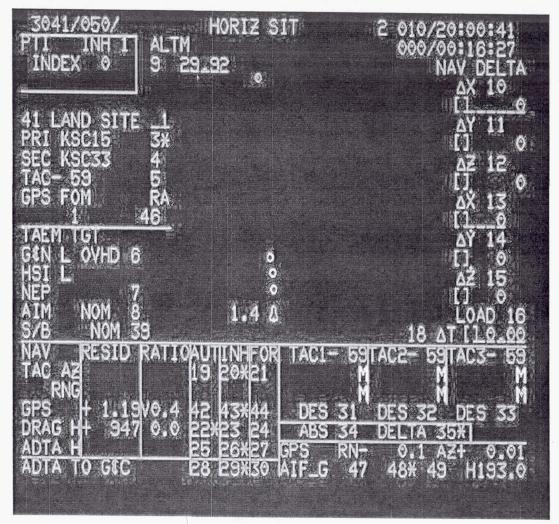
1011/050/ PTI INH 1 INDEX 0 9	HORIZ SIT M 29_92	1 217/06:22:56 000/00:01:33 NAV DELTA
40 TAL SITE _4 41 RTLS SITE _1 PRI KSC15 3 SEC KSC33 4*		$\begin{array}{c} \Delta X & 10 \\ 1 & 0 \\ \Delta Y & 11 \\ 1 & 0 \\ 1 & 0 \end{array}$
TAC- 59 5 GPS FOM RA <u>1 46</u> TAEM TGT		ΔΖ 12 [] 0 ΔΧ 13 []_0 ΔΥ 14
GIN OVHD 6 HSI NEP 7 AIM NOM 8	۵	[] 0 AZ 15 [] 0
S/B NOM 39 NAV RESID RATI TAC AZ RNG		LOAD 16 18 AT [10.00 0TAC2 0TAC3 0
GPS DRAG H ADTA H	22#23 24 ABS 25 26#27 GPS	31 DES 32 DES 33 34 DELTA 35*] RN AZ
ADTA TO GIC	28 29*130 AIF_G	47 48¥ 49 H



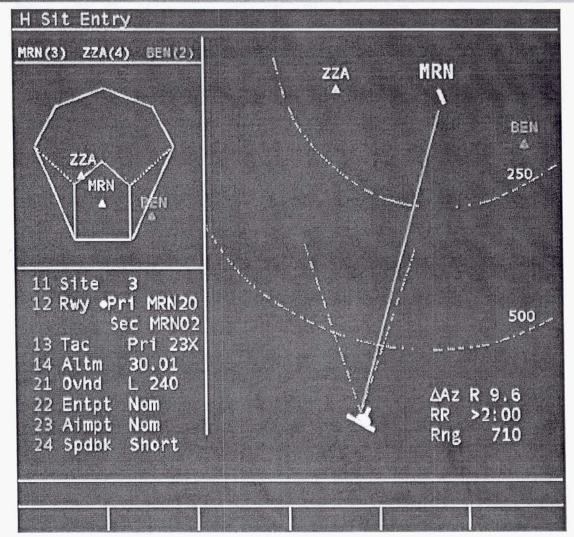
CAU Ascent Horizontal Situation

COCKPIT AVIONICS UPGRADE

with Shuttle Abort Flight Management Application



Legacy Entry Horizontal Situation Display



CAU Entry Horizontal Situation Display

The CAU Safety Payback

Decisions and actions are more timely and accurate

- Improved crew interface for display navigation and vehicle command and control
 - Execute commands from any display via the existing keyboards
 - Consolidate information from / commanding to multiple sources on single display
 - Fewer keystrokes, less rote memorization, and better encoding of display parameters
 - New mobile scratchpad and improved keyboard
 - Generate multi-color graphics and logical information & command groupings on any display format

