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1. Introduction 
 
The objectives of the SMAP (Soil Moisture Active Passive) mission are global measurements of soil 

moisture and land freeze/thaw state at 10 km and 3 km resolution, respectively.  SMAP will provide soil 

moisture with a spatial resolution of 10 km with a 3-day revisit time at an accuracy of 0.04 m3/m3 [1].  In 

this paper we contribute to the development of the Level 2 soil moisture algorithm that is based on 

passive microwave observations by exploiting Soil Moisture Ocean Salinity (SMOS) satellite 

observations and products.  SMOS brightness temperatures provide a global real-world, rather than 

simulated, test input for the SMAP radiometer-only soil moisture algorithm.  Output of the potential 

SMAP algorithms will be compared to both in situ measurements and SMOS soil moisture products.  The 

investigation will result in enhanced SMAP pre-launch algorithms for soil moisture. 

 

2. Methodology and Approach 

 

ESA's SMOS mission has been designed to observe soil moisture and ocean salinity [2, 3].  SMOS is a 2-

D synthetic aperture microwave radiometer operating at 1.4 GHz and was launched in 2009.  Here, 

microwave observations from the SMOS mission will be used to simulate SMAP observations at a 

constant incidence angle of 40 degrees.  This will provide a brightness temperature data set that closely 

matches the observations that will be provided by the SMAP radiometer. 

 

These observations provide an opportunity to develop a testbed to evaluate different SMAP algorithms. 

Several algorithms are being considered for the SMAP radiometer-only soil moisture retrieval.  (a) The 

Single Channel Algorithm (SCA) is based on the radiative transfer equation and uses the channel that is 

most sensitive to soil moisture (H-pol).   In this approach, ancillary data are used to correct brightness 
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temperatures for the effects of physical temperature, vegetation (ancillary data base derived from MODIS 

data), roughness, and soil texture (static ancillary data sets) [4].  (b) The Land Parameter Retrieval Model 

(LPRM) is a two-parameter retrieval model (soil moisture and vegetation water content) for passive 

microwave data based on a microwave radiative transfer model.  It uses the microwave polarization 

difference index at 1.4 GHz and emissivity to parameterize vegetation water content and estimate soil 

moisture [5].  (c) The Dual-Channel Algorithm (2CA) uses multiple polarizations to iteratively solve for 

soil moisture and vegetation water content [6].  (d) The Reflectivity Ratio (RR) approach uses radar 

observations to correct for roughness and vegetation to estimate soil moisture from the radiometer 

measurements [7]. 

 

This work will also aid in the development and selection of the different land surface parameters 

(roughness and vegetation parameters) needed in the soil moisture algorithm.  The options for vegetation 

and surface temperature observations will also be evaluated.  Different approaches and ancillary datasets 

are being considered for the SMAP mission.  The use of the ancillary dataset is dependent on the choice 

of the soil moisture algorithm.  For example, the impact of using (a) SMOS estimated vegetation optical 

depth, (b) MODIS-based vegetation climatology data, or (c) actual MODIS observations on the 

performance of the soil moisture retrievals will be evaluated.  

 

The first step in this investigation will be implementation of the single channel algorithm.  This work will 

focus on development of a SMOS-based soil moisture product using the SCA.  The selection of different 

vegetation and surface temperature sources on the performance of soil moisture retrievals will be 

evaluated using the SCA. 

 

3. Evaluation of Results 

 

Several different datasets will be used to evaluate the performance of the SMAP soil moisture algorithm:  

(a) SMOS soil moisture estimates, (b) European Centre for Medium-Range Weather Forecasts (ECMWF) 

model-derived soil moisture estimates, (c) USDA ARS in situ watershed network observations, and (d) 

other international in situ soil moisture observations. 

 

The USDA ARS watersheds provide a dense network of soil moisture observations which are long-term 

and high quality soil moisture measurements at a passive microwave satellite spatial resolution scale.  

Four soil moisture networks (Walnut Gulch, Arizona; Little Washita, Oklahoma; Little River, Georgia; 



and Reynolds Creek, Idaho) were developed and used as part of the AMSR-E validation program [8].  

Table 1 provides a brief summary of the watershed characteristics. 

Table 1.   USDA ARS Watershed Characteristics. 

Watershed Size 
(km2) 

Soil 
Moisture 

Sites 
Climate 

Annual 
Rainfall 
(mm) 

Topography Land Use 

Little Washita, OK 610 16 Sub humid 750 Rolling Range/wheat 

Little River, GA 334 29 Humid 1200 Flat Row 
crop/forest 

Walnut Gulch, AZ  148 21 Semiarid 320 Rolling Range 
Reynolds Creek, ID 238 19 Semiarid 500 Mountainous Range 

 

In situ observations from other international locations (if available) will also be used to evaluate soil 

moisture results.  This would allow comparison over a greater range of climate, geographic, and 

vegetation conditions. 
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