Cynthia C. Thomas et al.: The Composition of the Master Schedule, IVS 2010 General Meeting Proceedings, p.85–89 http://ivscc.gsfc.nasa.gov/publications/gm2010/thomas.pdf

# The Composition of the Master Schedule

Cynthia C. Thomas, Dirk Behrend, Daniel S. MacMillan

NVI, Inc./NASA Goddard Space Flight Center

Contact author: Cynthia C. Thomas, e-mail: Cynthia.C.Thomas@nasa.gov

### Abstract

Over a period of about four months, the IVS Coordinating Center (IVSCC) each year composes the Master Schedule for the IVS observing program of the next calendar year. The process begins in early July when the IVSCC contacts the IVS Network Stations to request information about available station time as well as holiday and maintenance schedules for the upcoming year. Going through various planning stages and a review process with the IVS Observing Program Committee (OPC), the final version of the Master Schedule is posted by early November. We describe the general steps of the composition and illustrate them with the example of the planning for the Master Schedule of the 2010 observing year.

## 1. Introduction

One of the major tasks of the IVS Coordinating Center (IVSCC) is the creation and maintenance of the yearly observing plan—the Master Schedule. The Master Schedule is the central tool for coordinating and optimizing the usage of available resources such as station observing time, correlator time, and recording media. Given the importance of the observing plan, the Master Schedule is prepared for an entire calendar year well in advance of the start of the year. The IVSCC commences work for a new Master Schedule in early July of the preceding year by sending a request to the IVS Network Stations for their available station time as well as for their holiday and maintenance schedules. Furthermore, a request is sent to the IVS Correlators for their loading potential. After going through several planning phases and a review process with the IVS Observing Program Committee (OPC), the final version is made available on the IVS Web site by early November. However, the Master Schedule continues to require maintenance, because updates during the year need to be made for stations going "down", for additional or canceled sessions, or for correlator changes.

### 2. Master Schedule Creation Process

The IVS observing program follows the overall structure as outlined in the general guidelines of the IVS Working Group 2 report. It consists of several series of 24-hour observing sessions and daily 1-hour Intensive sessions. The program is planned by the OPC, coordinated by the IVSCC, and executed by the Network Stations, Operations Centers, and Correlators. The result of the observing program is data held in the Data Centers, which is then available for analysis.

The general steps involved in creating the Master Schedule for a new observing year are illustrated in Figure 1. The IVSCC contacts each station about their availability for the upcoming observing year and each correlator about how much data they can process. The acquired information is used to formulate the Station Usage Chart and the Correlator Projection Report. The

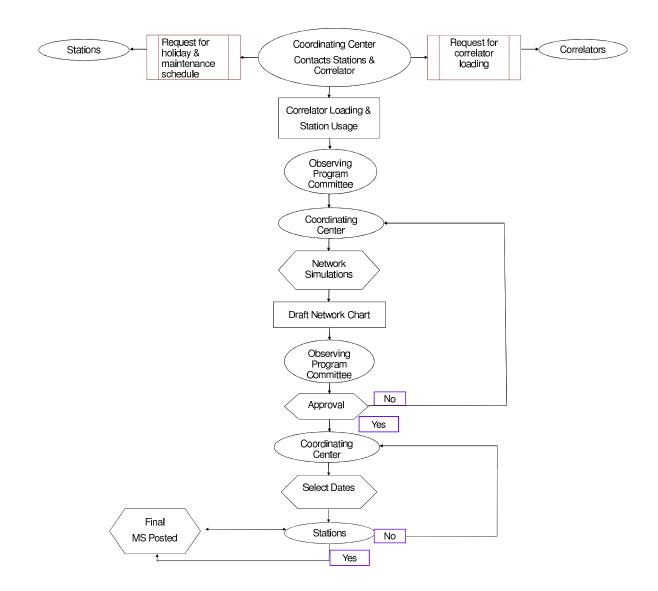



Figure 1. Flowchart showing the general steps of how the master schedule is created.

Station Usage Chart (Figure 2) displays each station's availability for the upcoming year and the number of times each station will participate in various session types. The Correlator Projection Report (Figure 3) displays which sessions will be processed at each correlator, the number of sessions processed at each correlator, and the estimated processing factor for each session. After the report and the chart are produced, the information is presented to the OPC for review. At that time the IVSCC asks the members of the OPC for any additions or changes for the next oberving year. Any suggested additions or changes are taken into consideration when formulating the next year's observing schedule.

The IVSCC organizes the available station time into the various networks. Then simulations are done for the IVS-R1 and IVS-R4 networks to ensure that the EOP guidelines are met. The simulation results along with the various networks are incorporated into the Draft Networks Chart

| NETWORK SIZE                                           | 9-STN    | 12-STN | 8-STN  | 15-STN | 384-STN | 2-STN       | 6-STN   | 8-STN | 7-STN | 16-STN | 9-STN    |         |             | 2010         | 2009  |                          |
|--------------------------------------------------------|----------|--------|--------|--------|---------|-------------|---------|-------|-------|--------|----------|---------|-------------|--------------|-------|--------------------------|
| Number of Sessions                                     | 52       | 2      | 6      | 7      | 6       | 3           | 12      | 6     | 10    | 6      | 52       |         |             |              |       |                          |
|                                                        | Mon      | Tue    | Tue    | Tue    | Tue     | Tue         | Tue     | Tue   | Wed   | Wed    | Thu      | TOTAL   | %           | Availability | Actua |                          |
| STATIONS                                               | IVS-R1   | APSG   | EUROPE | IVS-T2 | CRF     | CRFMS       | AUSTRAL | COHIG | R&D   | RDV    | IVS-R4   |         |             |              | Usade |                          |
| Aira                                                   |          | 2      |        | 7      |         |             |         |       |       |        |          | 9       | 100%        | 9            | 10    |                          |
| Badary - M5B                                           |          | _      | 2      | 1      |         |             |         |       |       |        | 39       | 42      | 100%        | 42           |       | Availability early Nov.  |
| Chichiima                                              |          | 2      |        | 7      |         |             |         |       |       |        |          | 9       | 100%        | 9            | 10    |                          |
| DSS13                                                  |          |        |        | 4      |         | 3           |         |       |       |        |          | 7       | 100%        | 7            | 5     |                          |
| DSS15                                                  |          |        |        | 2      | 3       |             |         |       |       |        |          | 5       | 100%        | 5            | 3     |                          |
| DSS45                                                  |          |        |        | 2      |         |             | 6       |       |       |        |          | 8       | 100%        | 8            | 3     |                          |
| DS965                                                  |          |        | 6      | 2      |         |             |         |       |       |        |          | 8       | 100%        | 8            | 5     |                          |
| Effelsberg                                             |          |        | 2      |        |         |             |         |       |       |        |          | 2       | 100%        | 2            | 2     |                          |
| Fortaleza                                              | 32       |        |        | 4      | 3       | 3           |         | 6     |       |        | 52       | 100     | 100%        | 100          | 81    |                          |
| HantRAO - EVN                                          | 26       |        |        | 1      | 3       |             | 12      | 6     |       | 4      |          | 52      | 100%        | 52           | 0     |                          |
| Hobart 26m                                             | 6        |        |        | 1      |         |             | 3       | 3     |       |        | 4        | 17      | 100%        | 17           | 62    |                          |
| Hobart 12m                                             | 33       | 2      |        | 2      | 3       |             | 12      | 6     |       | 2      | 23       | 83      | 100%        | 83           | 0     |                          |
| Ishigakijima                                           |          |        |        | 7      |         |             |         |       |       |        |          | 7       | 100%        | 7            | 3     |                          |
| Kashima-34m                                            |          |        |        | 1      | 3       |             |         |       |       | 6      |          | 10      | 100%        | 10           | 11    |                          |
| Kathenine                                              | 13       | 2      |        | 2      |         |             | 12      | 3     |       |        | 16       | 48      | 100%        | 48           | 0     |                          |
| Kokee                                                  | 26       | 2      |        | 1      | 3       |             |         | 6     | 10    | 4      | 52       | 104     | 100%        | 104          | 104   |                          |
| Matera                                                 | 13       |        | 2      | 1      |         |             |         |       | 2     | 1      | 33       | 52      | 100%        | 52           | 50    |                          |
| Mediicina EVN                                          |          |        | 2      | 1      |         |             |         |       | 2     |        | 19       | 24      | 100%        | 24           | 23    |                          |
| Metsahovi - 3mm                                        |          |        | 4      | 3      |         |             |         |       |       |        |          | 7       | 100%        | 7            | 6     | Prefer multiple sessior  |
| Mizusawa                                               |          |        |        | 7      |         |             |         |       |       |        |          | 7       | 100%        | 7            | 3     |                          |
| Noto - EVN                                             |          |        | 6      | 3      | 3       |             |         |       |       |        |          | 12      | 100%        | 12           | 7     |                          |
| Ny Allesund - M5A & B                                  | 52       |        | 2      | 2      |         |             |         |       | 10    | 6      | 15       |         | 100%        | 87           | 79    |                          |
| O'Higgins                                              |          |        |        | 2      |         |             |         | 6     |       |        |          | 8       | 100%        | 8            | 11    |                          |
| Onsalia - EVN & 3mm                                    | 13       |        | 3      | 2      |         |             |         |       | 8     |        |          | 26      | 100%        | 26           | 23    |                          |
| Parkes M5B                                             |          | 2      |        |        | 1       |             | 4       |       |       |        |          | 7       | 100%        | 7            | 3     |                          |
| Seshan - EVN                                           | 13       | 2      |        | 5      |         |             |         |       |       |        |          | 20      | 100%        | 20           |       | Only 10 sessions from    |
| Simeiz                                                 |          |        | 6      | 6      |         |             |         |       |       |        |          | 12      | 100%        | 12           | 12    |                          |
| Shintotsukawa                                          |          | 2      |        |        |         |             |         |       |       |        |          | 2       | 100%        | 2            | 3     |                          |
| Svetlice                                               | 13       |        | 2      | 1      |         |             |         |       |       |        | 26       | 42      | 100%        | 42           | 60    | Availability early Nov.  |
| Syowa                                                  |          |        |        |        |         |             |         | 6     |       |        |          | 6       | 75%         | 8            | 6     |                          |
| Tigo                                                   | 46       |        |        | 7      |         |             |         | 6     | 8     |        | 52       |         | 99%         | 120          | 115   |                          |
| Tsukuba                                                | 52       | 2      |        | 7      |         |             |         |       | 10    | 6      |          | 77      | 74%         | 104          | 51    |                          |
| Urumqi<br>Warkworth                                    | 13       | 2      |        | 7      |         |             | 12      | 3     |       |        | 11       | 9<br>47 | 75%         | 12<br>47     | 9     |                          |
| Wankworth<br>Westford - M5B                            | 13       | 2      |        | 6      |         |             | 12      | 3     | 10    |        | 11       | 47      | 100%<br>91% | 47           | 46    |                          |
| Wettzell                                               | 52       |        | 6      | 7      |         |             |         |       | 10    |        | 52       |         | 99%         | 134          | 131   |                          |
| Yarraqadee                                             | 52<br>13 | 2      |        | 2      |         |             | 12      | 3     | 10    |        | 52<br>16 | 48      | 99%         | 48           | 131   |                          |
| Yebes - M5B & EVN                                      | 13       |        | 4      | 4      |         |             | 12      | 3     |       |        | 13       | 40      | 100%        | 40           | 16    |                          |
| Zelenchukskava                                         |          |        | 4      | 1      |         |             |         |       |       | -      | 39       | 42      | 100%        |              | 58    | Availability early Nov.  |
| # OF SESSIONS                                          | 52       | 2      | 6.0    | 7.7    | 5.5     | 3.0         | 12.2    | 6.8   | 10    | 6.0    | 57.8     | 168.8   | 100/6       | 42           | 50    | Availability Colley NOV. |
| Total Davs                                             | 468      | 24     | 48     | 115    |         | 6           | 73      |       | 70    | 36     | 462      |         |             | 1418         | 1093  |                          |
| Targeted Stn Days                                      | 468      | 24     | 48     | 105    | 24      | 6           | 72      |       | 70    | 36     | 468      |         |             |              |       |                          |
| Extra Stn Days                                         | 0        | 0      | 0      | 10     | -2      | 0           | 1       | 6     | 0     | 0      | -6       |         |             |              |       |                          |
| 1. The numbers listed in t<br>2. The black and red num |          |        |        |        |         | it networks |         |       |       |        |          |         |             |              |       |                          |

#### 2010 STATION USAGE CHART 23-Sep-09 C. Thomas

Figure 2. Station Usage Chart. The total station days at the bottom of the chart show which networks utilize most of the station resources.

| 2010 CORREL                                            | ATOR PRO                   | JECTIC                       | IN REPOR                                | त                                      | 20                                       | 10 C                                                     | :0 | RRI            | ELA    | TC           | R P                 | RO                 | JEC                      | TIC                    | DN F                          | REPO         | DR           | T                  | 9/7/2010          | -C. THOM            |
|--------------------------------------------------------|----------------------------|------------------------------|-----------------------------------------|----------------------------------------|------------------------------------------|----------------------------------------------------------|----|----------------|--------|--------------|---------------------|--------------------|--------------------------|------------------------|-------------------------------|--------------|--------------|--------------------|-------------------|---------------------|
|                                                        | ESTIMATED CORRELATOR USAGE |                              |                                         |                                        |                                          |                                                          |    |                | ACK US | AGE          |                     | 1                  | VASHING                  | TON US                 |                               |              | BONNL        | ISAGE              |                   |                     |
| EXPERIMENT                                             | NO.S                       |                              | OBS.<br>DAYS *                          | P<br>FACT=                             | CORR<br>DAYS                             |                                                          |    | OBS.<br>DAYS * |        | CORR<br>DAYS | NO.S                | #OF<br>STNS        | OBS.<br>DAYS *           | P<br>FACT=             | CORR<br>DAYS                  |              |              | OBS.<br>DAYS *     | P<br>FACT=        | CORR<br>DAYS        |
| NS-R1<br>APSG<br>NS-T2<br>NS-CRFMS<br>NS-CRF<br>EUROPE | 52<br>2<br>7<br>3<br>6     | 9<br>10<br>14<br>2<br>4<br>9 | 52.0<br>2.0<br>7.0<br>3.0<br>6.0<br>6.0 | 1.0<br>1.0<br>7.0<br>1.0<br>1.0<br>1.0 | 52.0<br>2.0<br>49.0<br>3.0<br>6.0<br>6.0 | 1                                                        | 14 | 1.0            | 7.0    | 7.0          | 2<br>3<br>3<br>6    | 10<br>14<br>2<br>4 | 2<br>3.0<br>3.0<br>6.0   | 1.0<br>7.0<br>1<br>1.0 | 2.0<br>21.0<br>3.0<br>6.0     | 52<br>3<br>6 | 9<br>14<br>9 | 52.0<br>3.0<br>6.0 | 1_0<br>7_0<br>1_0 | 52.0<br>21.0<br>6.0 |
| NS-OHIG<br>AUSTRAL<br>R&D<br>NS <del>-R</del> 4        | 6<br>12<br>10<br>52        | 8<br>6<br>9                  | 6.0<br>12.0<br>10.0<br>52.0             | 1.0<br>1.0<br>1.9<br>1.0               | 6.0<br>12.0<br>19.0<br>52.0              | 10                                                       | 6  | 10.0           | 1.9    | 19.0         | 12<br>52            | 6<br>9             | 12.0<br>52.0             | 1.0<br>1.0             | 12.0<br>52.0                  | 6            | 8            | 6.0                | 1_0               | 6.0                 |
| Total IVS<br>VLBA                                      | 156<br>88%                 |                              | 156<br>88%<br>6.0                       | 0.0                                    | 207<br>95%<br>VI BA                      | 11<br>100%                                               |    | 11<br>100%     |        | 26.0<br>100% | 78<br>89%           |                    | 78<br>89%                |                        | 96.0<br>91%                   | 67<br>97%    |              | 67<br>97%          |                   | 85.0<br>98%         |
| Total RDV                                              | 6<br>3%                    | 17                           | 6.0<br>3%                               | 0.0                                    | VLBA<br>0<br>0%                          |                                                          |    |                |        |              |                     |                    |                          |                        |                               |              |              |                    |                   |                     |
| NTENSIVES<br>IN110<br>IN110<br>IN210<br>IN310          | 213<br>24<br>104<br>49     | 2<br>3<br>2<br>3             | 8.9<br>1.0<br>4.3<br>2.0                | 1.0<br>1.0<br>0.0<br>1.0               | 8.9<br>1.0<br>GSI<br>2.0                 |                                                          |    |                |        |              | 213<br>24           | 2<br>3             | 8.9<br>1.0               | 1.0<br>1.0             | 8.9<br>1.0                    | 49           | 3            | 20                 | 1_0               | 2.0                 |
| Total Intensives                                       | 16.25<br>9%                |                              | 16.3<br>9%                              |                                        | 11.9<br>5%                               |                                                          |    |                |        |              | 9.88<br>11%         |                    | 9.9<br>11%               |                        | 9.9<br>9%                     | 2.04<br>3%   |              | 2.0<br>3%          |                   | 2.0<br>2%           |
| Total Planned SGP<br>Total Actual SGP                  | 178.3                      |                              | 178.3                                   |                                        | 218.9<br>218.9                           | 11                                                       |    | 11             |        | 26           | 87.88               |                    | 87.9                     |                        | 105.9                         | 69.04        |              | 69.0               |                   | 87.0                |
|                                                        | Maximur<br>(•              |                              | ling is 25<br>• 202 <b>.</b> 5)         | i0-5 days                              |                                          | 24.0 hrs/wk @ 52 wks = 52.0 days<br>(Haystack Allowance) |    |                |        |              | 80.0 hrs/w<br>(Wash |                    | 2 wks = 13<br>n Allowand |                        | 2700 hrs per year = 112.5days |              |              |                    |                   |                     |
|                                                        | Washington can expand u    |                              |                                         |                                        |                                          |                                                          |    |                |        |              |                     | pand up to         | 120 hours                | per week i             | fneeded                       |              |              |                    |                   |                     |

Figure 3. Correlator Projection Report. With the advent of the Mark IV correlator, the IVS observing program is no longer driven by available correlation time but rather by station time and media.

and presented to the OPC for approval. The Draft Networks Chart (Figure 4) displays the various networks with simulated EOP results and other schedule information. There are several networks within each session type; for instance, there are 52 IVS-R1 sessions with five different networks. If the upcoming observing program is not approved, suggested changes and/or comments are used to run additional simulations. This process is iterated until the OPC approves the upcoming observing schedule.

2010 DRAFT NETWORKS Tuesday, September 29, 2009

|                     |              |                    |          |          |          | C. Thomas                                                                         |              |                |              |                |              |                        |              |              |              |          |              |                         |                |
|---------------------|--------------|--------------------|----------|----------|----------|-----------------------------------------------------------------------------------|--------------|----------------|--------------|----------------|--------------|------------------------|--------------|--------------|--------------|----------|--------------|-------------------------|----------------|
|                     | <b>D</b> (   |                    |          |          |          |                                                                                   | 1            | -              | r            |                |              |                        |              |              |              |          |              |                         |                |
| <u> </u>            | Day of       |                    | # of     | # of     | # of     | N                                                                                 |              |                |              |                |              |                        |              | _            | _            |          |              |                         |                |
| Session             | Week         | Week               | Stations | Sessions | Smuays   | Network                                                                           |              |                |              | -              |              |                        |              |              | Tc⁄          |          | Avg          | Avg                     | Med            |
| R1370               | Mon          | \$09MAR16XA        | 8        |          |          | NvWfWzTsKkHoMaTc                                                                  | X<br>342     | Y              |              | PSI            | EPS          | Comments<br>Simulation |              | Hrs          |              | San      | GB           | SNR                     | SNR            |
| R1370<br>R1370      | Mon          | \$09MAR16XA        | 8        |          |          | NyWfWzTsKKHoMaTc                                                                  | 34.2<br>40.0 |                |              | 58.1<br>73.0   | 23.9<br>31.0 | Actual                 | 3994<br>3994 |              | 11.0         | 96<br>96 | 1174<br>1174 | 53.3/28.7               | 40/25          |
| R12010B             | Mon          |                    | 9        | 6        | 54       | NyTsWfWzFtHbKtYgKk                                                                |              |                |              |                |              | Actual                 |              |              | 11,0         |          |              |                         | 40/25          |
| R12010B<br>R12010C  | Mon          | Random<br>Random   | 9        | 7        | 54<br>63 | NyTsWfWzTcHbKtYgKk                                                                |              | 39.02<br>38.83 |              |                | 17.9<br>15.8 |                        | 8288         | 25.0<br>24.0 | 110          | 58<br>69 | 2218<br>2478 | 82.3/48.4<br>89.8/51.4  | 55/35          |
| R12010C             | Mon          | Random             | 9        | 7        | 63       | NyTsWIWZTCHORTIGRK                                                                |              |                |              |                | 15.8<br>16.9 |                        | 7399<br>5804 | 24.0         | 14.0<br>15.0 | 69<br>70 |              |                         | 50/35<br>45/35 |
| R12010D             | Mon          | Random             | 10       | 6        | 60       | NyTsWfWzFtHbKkTcMaHo                                                              | 51.40        | 30.96          | 1,61         | 41.30          | 16.9         |                        | 5804<br>6622 |              | 15.0         |          | 2131<br>1949 | 83.4/50.0               | 45/35<br>50/35 |
| R12010D1<br>R12010E | Mon          | Random             | 9        | 10       | 90       | NyTsWfWzFtHbHhTcWw                                                                |              |                | 4.50         | 55.90          | 14.5         |                        |              | 19.0         | 14.0         | 66       | 1949 2006    | 87.1/52.4<br>88.6/49.2  |                |
| R12010E             | Mon          |                    | 8        | 3        | 24       | NyTsWfWzFtHhTcWw                                                                  |              | 34.92          |              |                |              |                        | 5140         |              |              | 68       |              |                         | 50/35          |
| R12010F             | Mon          | Random<br>Random   | 0<br>9   | 13       | 117      | NyTsWfWzHhOnShSvTc                                                                |              | 35.22          |              | 44.80<br>56.80 | 16.6         |                        | 4318<br>6858 |              | 13.0<br>13.0 | 66<br>61 | 2064<br>1648 | 78.6/47.4<br>134.5/62.6 | 50/35<br>80/45 |
| APSG                | Tues         | Hanoom             | 9        | 2        | 24       |                                                                                   | 34.09        | 30.58          | 1.45         | 56,80          | 21.6         |                        | 6306         | 18.0         | 13.0         | 61       | 1646         | 134.5/62/6              | 80/45          |
| EUROPE              | Tues         | Every 2nd month    | 8        | 2        | 24<br>16 | AiChHoKtKkPaShS3TsUrWwYg<br>65NtSmWzMhYsOnBd                                      |              |                |              |                |              |                        |              |              |              |          |              |                         |                |
| EUROPE              | Tues         | Every 2nd month    | 0<br>8   | 2        | 8        | 65NtSmWzMhYsOnZc                                                                  |              |                | _            | _              |              |                        |              |              |              |          |              |                         | _              |
| EUROPE              | Tues         | Every 2nd month    | 0<br>8   | 1        | 8        | 65NtSmWzMhYsSvMa                                                                  |              |                | _            | _              |              |                        |              |              |              |          |              |                         | _              |
| EUROPE              | Tues         | Every 2nd month    | 0<br>8   | 1        | 8        | 65NtSmWzMcNvEbMa                                                                  |              |                |              |                | _            |                        |              |              |              |          |              |                         |                |
| EUROPE              | Tues         | Every 2nd month    | 8        | 1        | 8        | 65NtSmWzMcNyEbSv                                                                  |              |                |              |                | _            |                        |              |              |              |          |              |                         |                |
| EUROPE<br>IVS-T2    | Tues         | January            | 8<br>16  | 1        | 16       | AiChMzTcTsUrWzOhFt4513KkNtShSmMh                                                  |              |                |              |                |              |                        |              |              |              |          |              |                         |                |
| VS-12<br>VS-T2      |              | March              | 15       | 1        | 15       | AICHWZTCTSUTWZOTE(48T3KKN(STSTIWIT<br>AICHWZTCTSUTWZ1365H0MCNySvSmWw              |              | -              |              |                |              |                        |              |              |              |          |              |                         |                |
| VS-12<br>VS-T2      | Tues<br>Tues | May                | 15       | -        | 15       | AiChivz1c1s0/wz1365HbNyKbShSmWw                                                   |              | -              |              |                |              |                        |              |              |              |          |              |                         |                |
| VS-12<br>VS-T2      | Tues         | July               | 16       | 1        | 15       | AiChMzTcTsUrWzFtBd13KtWwNtShSmYg                                                  |              | -              |              |                |              |                        |              |              |              |          |              |                         |                |
| NS-12<br>NS-T2      | Tues         | September          | 15       | 1        | 15       | AiChivizi ci sui wize iba i skiw winten sinti g<br>AiChMzTcTsUrWz15FtMaMhOnSmWwZc |              | -              |              |                |              |                        |              |              |              |          |              |                         |                |
| VS-12<br>VS-T2      | Tues         | October            | 15       | 1        | 15       | AiChMzTcTsUrWz15FtMhOnSmWwYsSh                                                    |              | -              |              |                |              |                        |              |              |              |          |              |                         |                |
| VS-12<br>VS-T2      |              |                    | 16       | 1        | 15       | AiChMzTcTsUrWz0h45HhHbKtWwYgNtSh                                                  |              | -              |              |                |              |                        |              |              |              |          |              |                         |                |
| VS-12               | Tues<br>Tues | November<br>Random | 5        | 1        | 5        | 15HbKbKkPa                                                                        |              |                |              |                |              |                        |              |              |              |          |              |                         |                |
| VS-CRF              | Tues         | Random             | 5<br>4   | 2        | 2<br>8   | 15HbKbKk                                                                          |              |                |              |                |              |                        |              |              |              |          |              |                         |                |
| VS-CRF              | Tues         | Random             | 4        | 3        | 9        | FtHhNt                                                                            |              |                |              |                |              |                        |              |              |              |          |              |                         |                |
| VS-CRFMS            | Wed          | Random             | 2        | 3        | 6        | Ft13                                                                              |              |                |              |                |              |                        |              |              |              |          |              |                         |                |
| AUSTRAL             | Wed          | Random             | 7        | 3        | 21       | HhHbKtWwYgHo45                                                                    |              |                |              |                |              |                        |              |              |              |          |              |                         |                |
| AUSTRAL             | Wed          | Random             | 6        | 3        | 18       | HhHbKtWwYq45                                                                      |              | -              |              |                |              |                        |              |              |              |          |              |                         |                |
| AUSTRAL             | Wed          | Random             | 6        | 4        | 24       | HhHbktWwYgPa                                                                      |              | -              |              |                |              |                        |              |              |              |          |              |                         |                |
| AUSTRAL             | Wed          | Random             | 5        | 2        | 10       | HhHbKtWwYg                                                                        |              |                |              |                |              |                        |              |              |              |          |              |                         |                |
| IVS-OHIG            | Wed          | February           | 8        | 2        | 24       | FtHhHoHbKkOhTcSy                                                                  |              |                |              |                |              |                        |              |              |              |          |              |                         |                |
| VS-OHIG             | Wed          | November           | 10       | 3        | 30       | FtHhHbKkOhTcSyKtWwYg                                                              |              |                |              |                |              |                        |              |              |              |          |              |                         |                |
| B&D                 | Wed          | Bandom             | 7        | 6        | 42       | NyTsWfWzKkOnTc                                                                    |              |                |              |                |              |                        |              |              |              |          |              |                         |                |
| R&D                 | Wed          | Random             | 7        | 2        | 14       | NyTsWfWzKkMcMa                                                                    |              |                |              |                |              |                        |              |              |              | _        |              |                         |                |
| R&D                 | Wed          | Random             | 7        | 2        | 14       | NyTsWfWzKkOnTc                                                                    |              |                |              |                |              |                        |              |              |              | _        |              |                         |                |
| RDVE2               | Wed          | Every 2nd month    | 16       | 4        | 64       | VaKbNvTsWzHhKk                                                                    |              |                |              |                |              |                        |              |              |              |          |              |                         |                |
| RDVE2               | Wed          | Every 2nd month    | 16       | 4        | 16       | VakbNyTsWzHbZc                                                                    |              |                |              |                |              |                        |              |              |              |          | _            |                         |                |
| RDVI2               | Wed          | Every 2nd month    |          | 1        | 16       | VakoNyTsWZHozc                                                                    |              |                |              |                |              |                        |              |              |              |          |              |                         |                |
| R4382               | Thur         | \$09JUN10XE        | 8        |          | 10       | KkTcWzSvNyHoBdZc                                                                  | 41.7         | 44.9           | 22           | 87.3           | 30.8         | Simulation             | 3045         | 11.0         | 6.0          | 122      | 566          | 122.8/59.1              | 80/45          |
| B4382               | Thur         | \$09JUN10XE        | 8        |          |          | KkTcWzSvNyHoBdZc                                                                  | 48.0         | 49.0           | 20           |                | 35.0         | Actual                 | 3045         | 11.0         | 60           | 122      | 566          |                         | 80/45          |
| R42010A             | Thur         | Random             | 9        | 13       | 117      | FtKkTcWzBdHbKtMcYg                                                                | 48.0         | 49.L           | 20           | 60.8           | 23.8         | Cud                    | 3046         | 13.0         | 9.0          | 155      | 500<br>1548  | 122.8/59.1              | 80/45<br>50/35 |
| R42010A             | Thur         | Random             | 9        | 6        | 54       | FtKkTcWzBdMaNySvZc                                                                | 37.0         |                | 23           | 80.2           | 30.2         |                        | 4117         | 11.0         | 10.0         | 155      | 1387         | 112.6/51.8              | 50/35<br>70/35 |
| R42010B             | Thur         | Random             | 9        | 7        | 63       | FtKkTcWzBdMaSvYsZc                                                                | 39.6         | 54.9           | 25           | 88.0           | 30.2         |                        | 4117         | 11.0         | 10.0         | 157      | 138/         | 1364/64.4               | 70/35<br>80/45 |
| R42010C             | Thur         | Random             | 9        | 6        | 54       | FtKkTcWzBdHbMcSvZc                                                                | 39.8         | 55.8           | 25           | 81.9           | 29.6         |                        | 3562         | 11.0         | 9.0          | 153      | 1345         | 154.7/70.1              | 80/45<br>85/40 |
| R42010D             | Thur         | Random             | 8        | 7        | 56       | FtKkTcWzBdMaWwZc                                                                  | 40.1         | 55.9           | 23           | 63.1           | 23.0         |                        | 2539         | 11.0         | 10.0         | 164      | 1340         | 97.9/51.2               | 66/40<br>55/35 |
| R42010E             | Thur         | Random             | 9        | 3        | 27       | FtKkTcWzMaNyYsZcSv                                                                | 39.5         | 55.9           | 24           | 87.2           | 33.3         |                        | 4576         | 12.0         | 9.0          | 150      | 1374         | 97.961.2<br>125.8/67.6  | 75/45          |
| R42010F             | Thur         | Random             | 8        | 3        | 24       | FtKkTcWzWaNyYsZc                                                                  | 41.1         | 55.7           | 2.7          | o/∠<br>85.9    | 32.4         |                        | 40/6         | 11.0         | 9.0          | 168      | 13/4         | 106.6/55.4              | 75/45<br>60/35 |
| R42010G             | Thur         | Random             | 9        | 3        | 24       | FtKkTcWzKtMaNyZcYg                                                                | 37.7         | 47.4           | 22           | 59.8           | 23.1         |                        | 3583         | 12.0         | 9.0          | 161      | 1519         | 79.5/47.9               | 50/35          |
| R42010H             | Thur         | Random             | 10       | 4        | 40       | FtKkTcWzHbMaWwSvZcHo                                                              | 34.5         | 47.4           | 23           | 72.3           | 23.1         |                        | 4145         | 12.0         | 9.0          | 151      | 1433         | 79.5747.9<br>128.2/61.1 | 70/45          |
| 1420101             | THU          | T CO NOT 1         | 10       |          | 1434     |                                                                                   | 04.0         | 42.4           | - <i>C</i> u | 120            | 24.4         |                        | 4140         | 120          | 5.0          | 101      | 1460         | 1202/01.1               | 1040           |
|                     |              |                    |          |          | 14.24    |                                                                                   |              |                |              |                |              |                        |              |              |              |          |              |                         |                |

Figure 4. Draft Networks Chart. As the year progresses, the number of different networks within a particular session type can, and most often does, increase. This is due to different stations dropping out of the networks for various reasons.

After the IVSCC receives approval, dates are selected for each session based on the constraints of the sessions, stations, other networks, and campaigns. Then the data is entered into an Excel spreadsheet, reviewed for errors, and then posted to the IVS Web site as a draft Master Schedule. The IVSCC utilizes the "Search A Master File" script to pull out a list of sessions for each station. Each list is added to the request-for-antenna-time message that is sent to each station. Modifications are made to the observing schedule based on responses from the stations. The final Master Schedule is then posted to the Web site.

#### 3. Validation of Simulations

In order to ensure that the simulations for the IVS-R1 and IVS-R4 networks are representative of the actual results (or to properly scale the simulated EOP formal error estimates), for both the IVS-R1 and IVS-R4 series, a recent session is selected to compare simulated and actual EOP formal errors. In the example at hand the simulated EOP formal errors are too optimistic by about 10–20% for both sessions. For a more reliable statement with respect to the simulation results, we investigated the IVS-R1 and IVS-R4 sessions of the observing year 2009, for which we have simulated and actual results available. We selected only those IVS-R1 and IVS-R4 sessions that were observed, correlated, and analyzed with the fully scheduled network. We found that only eight IVS-R1 and fourteen IVS-R4 sessions fulfilled this requirement, because there were several stations that could not observe in their scheduled sessions and because some sessions had other problems which resulted in 'incomplete' data compared with the simulated data. Figure 5 displays the averaged values of the simulated vs. actual EOP formal errors from the selected 2009 sessions.

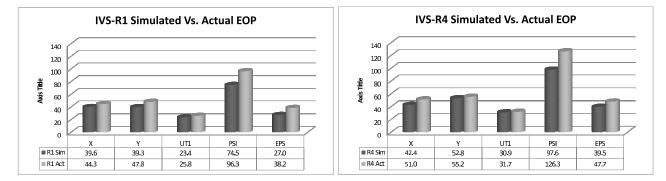



Figure 5. Averaged values of simulated and actual EOP formal errors from selected IVS-R1 (left) and IVS-R4 (right) sessions of the year 2009.

The results basically confirm the findings from the single session analysis: the simulation results are too optimistic by 10-20%. It can be seen that the simulated UT1 formal errors are very close to the actual values.

### 4. Conclusion

It takes about four months for the IVSCC to create the final version of the Master Schedule for a new observing year. The schedule composition accounts for the available resources of station time, correlator time, and media. The IVSCC gathers information from the stations and the correlators to create the schedule. The OPC and IVSCC work together to optimize network choices by generating test schedules and performing simulations. After the "final version" of the Master Schedule is posted, modifications continue to be made on an as-needed basis (sometimes even before the observing year starts) because of changes in the availability of resources; e.g., because a station has to change its availability for the year due to funding and/or personnel issues, because equipment failure requires a station to be "down" for a specific period, or because unscheduled maintenance becomes necessary at a station. Information about the IVS observing program can be found at http://ivscc.gsfc.nasa.gov/program/.