

Tutorial

Integrated Systems Health Management (ISHM) Enabling Intelligent Systems

Fernando Figueroa, NASA Stennis Space Center, USA

NASA/ESA Conference on Adaptive Hardware and Systems (AHS-2011) June 6-9, 2011 San Diego Convention Center San Diego, California, USA

Acknowledgements

The author would like to thank NASA for providing the opportunity to work on advancing the area of ISHM.

The author also expresses his profound appreciation to the many individuals that, through insightful discussions and interactions, have enriched his understanding of ISHM.

Outline

- Context of the Tutorial.
- ISHM Definition.
- ISHM Capability Development.
 - ISHM Knowledge Model.
 - Standards for ISHM Implementation.
 - Software to develop ISHM Domain Models (ISHM-DM's).
 - Intelligent Sensors and Components.
- Sensor Optimization and Placement for ISHM.
- ISHM in Systems Design, Engineering, and Integration.
- Intelligent/Adaptive Control for ISHM-Enabled Systems.
- Verification and Validation Considerations.

Context of the Tutorial

Adaptability from an Integrated System Perspective

- Intelligent/Adaptive System: Manages data, information, and knowledge (DIaK) to achieve its mission (Manage: storage, distribution, sharing, maintenance, processing, reasoning, and presentation)
- An attribute or quality of intelligent/Adaptive systems should be to posses a health management capability that:
 - Employs knowledge about the system embodying "systems thinking" (captures interactions among elements of the system).
 - Is continuously vigilant.
 - Is comprehensive in assessing health of each element of a system.
 - Is systematically evolutionary to achieve higher and higher functional capability levels (increasing effectiveness).
- In order to make this capability possible, the health management system needs to incorporate "intelligence."

ISHM Definition

- Its own discipline, or sub-discipline under Aerospace Systems Design, Systems Engineering, and Systems Integration.
- Management of data, information, and knowledge (DIaK) with the purposeful objective of determining the health of a system (Management: storage, distribution, sharing, maintenance, processing, reasoning, and presentation).
- ISHM is akin to having a broad-base team of experts who are all individually and collectively observing and analyzing a complex system, and communicating effectively with each other in order to arrive at an accurate and reliable assessment of the health of each element of the system.

Interrelationship Between Traditional Avionics Systems, Time Critical ISHM and Advanced ISHM

Time Critical ISHM System

Where traditional avionics systems become uncontrollably complex is in handling the interactions between multiple systems and in providing significant FDIR capabilities. Time Critical ISHM is a deterministic and verifiable method of handling first failure responses and intersystem interactions.

Humans

Direct mission and solve problems beyond the reach of automated systems with the help of automated, diagnostic and prognostic tools.

Advanced ISHM

Advanced ISHM provides toolsets designed to speed human-driven diagnostics of complex system failures and interactions. Relying on model-based and data mining techniques, it:

- isolates likely candidate failure causes
 - prognosticates possible
 workarounds and repairs
 - predicts degradation
 caused future failures

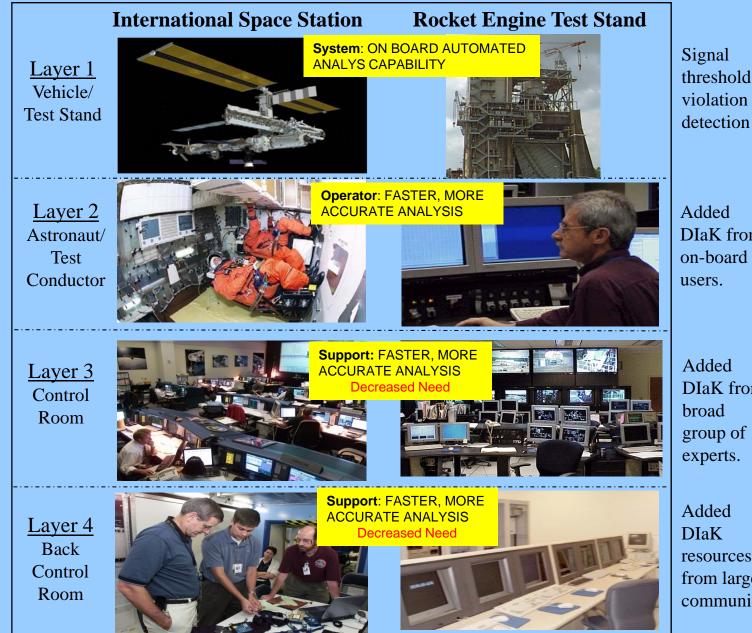
Traditional Avionics Systems

Traditionally designed subsystems form the basis of this architecture. This type of design has proven to be extremely reliable and predictable when used within its limits. Provided that the software complexity remains in a region where determinism is reasonably guaranteed, only evolutionary change is necessary.

AND

2

LEVELS


TOWARD

CAPABILITY

MOVE

DECREASE NEED FOR SUPPORT FROM LOWER LAYERS

People-Based ISHM is Being Done Today

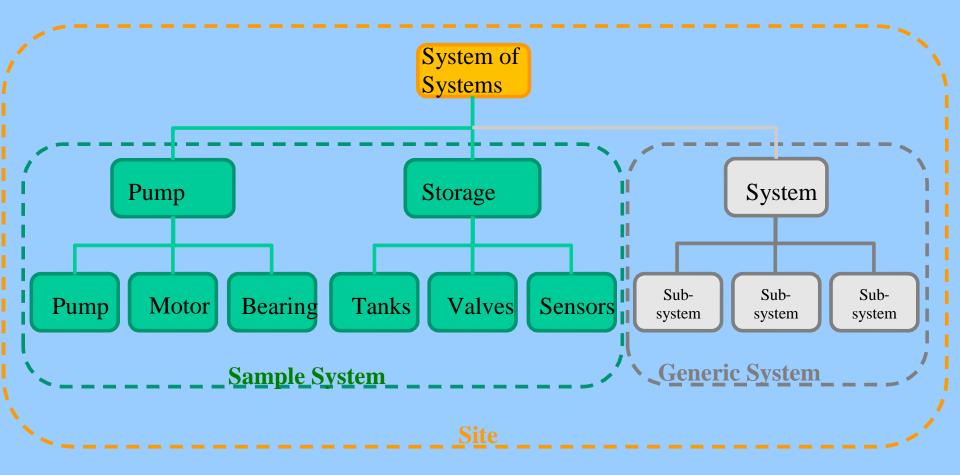
Added

DIaK from on-board users.

Added DIaK from broad group of experts.

Added resources from larger community

Determination of Health


- Use available SYSTEM-WIDE data, information, and knowledge (DIaK) to
 - Identify system state.
 - Detect anomaly indicators.
 - Determine and confirm anomalies.
 - Diagnose causes and determine effects.
 - Predict future anomalies.
 - Recommend timely mitigation steps.
 - Evolve to incorporate new knowledge.
 - Enable integrated system awareness by the user (make available relevant information when needed and allow to dig deeper for details).
 - Manage health information (e.g. anomalies, redlines).
 - Capture and manage usage information (e.g. thermal cycles).
 - Capture and manage design life and maintenance schedule.
 - Enable automated configuration.
 - Implement automated and comprehensive data analysis.
 - Provide verification of consistency among system states and procedures.

ISHM Capability Development ISHM Knowledge Model

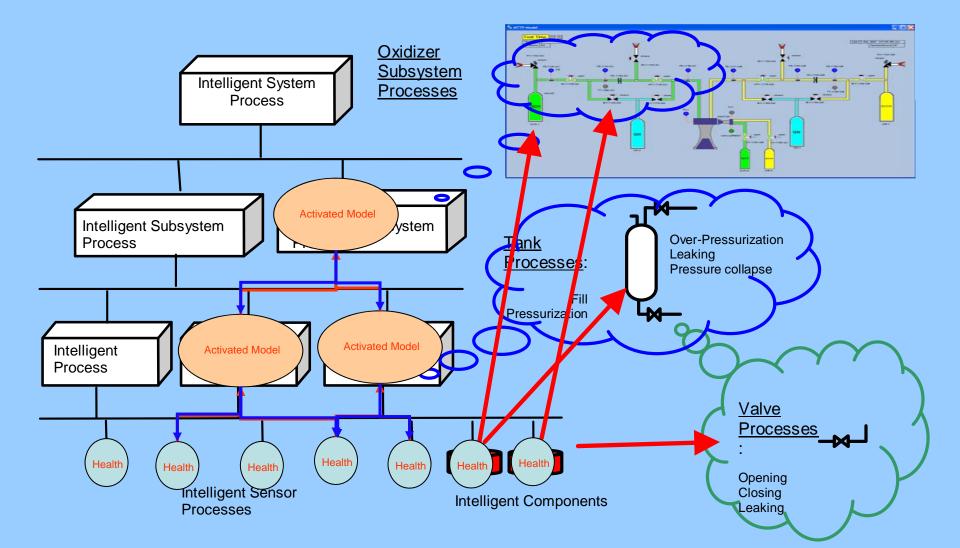
- A plethora of Data, Information, and Knowledge (DIaK) must be applied to achieve high functional capability level (FCL) health management.
- The ISHM Domain Model (ISHM-DM) encompasses DIaK and the tools to implement ISHM capability.

Classic architecture describing how systems are built

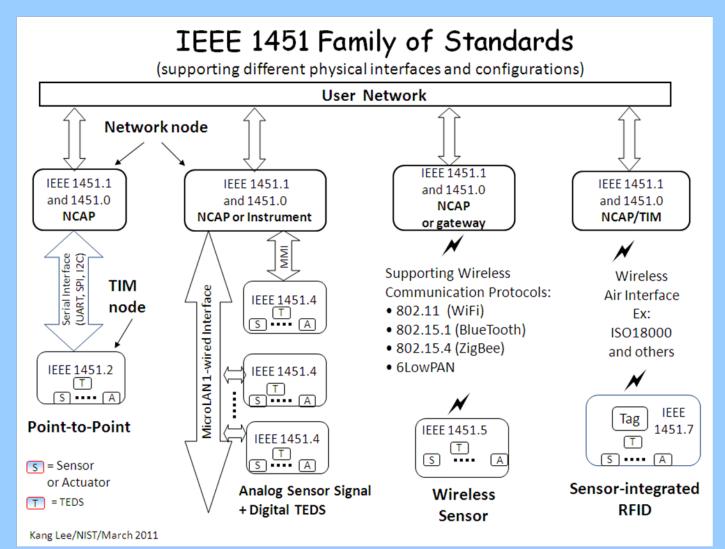
NASA

ISHM Capability Development ISHM Knowledge Architecture

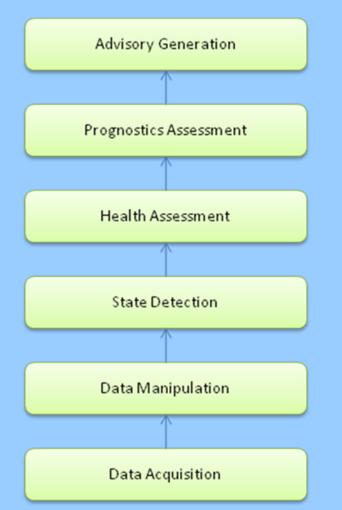
- DIaK in the ISHM-DM are associated with software objects that represent process models that take place in objects and/or collections of objects that encompass a system of interest.
- Process models are organized as objects in a hierarchical network (ISHM DIaK Architecture), to reflect levels of complexity as processes take place involving single elements, subsystems, or the entire system.
 - Local processes using local DIaK are at the bottom of the hierarchy.
 - Processes using increasing DIaK occupy higher levels in the network.



ISHM DIaK Architecture (DIaKA)



Detection and Confirmation of Anomalies Consistency Checking Cycle

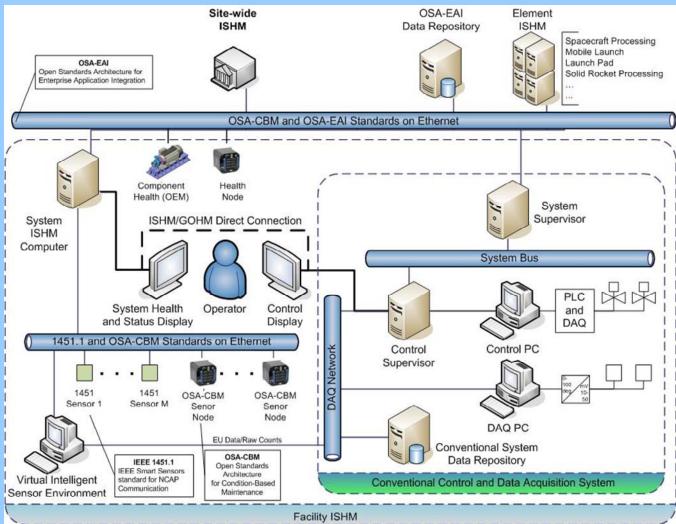


- IEEE 1451 Family of Standards for Smart Sensors and Actuators. Lead by NIST (Dr. Kang Lee).
- OSA-CBM (Open Systems Architecture for Condition Based Maintenance). Developed by industry and government, and transferred to the MIMOSA (Machine Information Management Open Standards Alliance) organization.
- OSA-EIA (Open Systems Architecture for Enterprise Application Integration). MIMOSA organization.

ISHM capability must integrate DIaK across physical, virtual, and discipline boundaries. This is not possible in an affordable manner unless standards are used to achieve plug&play and interoperability.

OSA-CBM (MIMOSA)

Operations and maintenance advisories, capability forecast assessments, recommendations, evidence, and explanation.

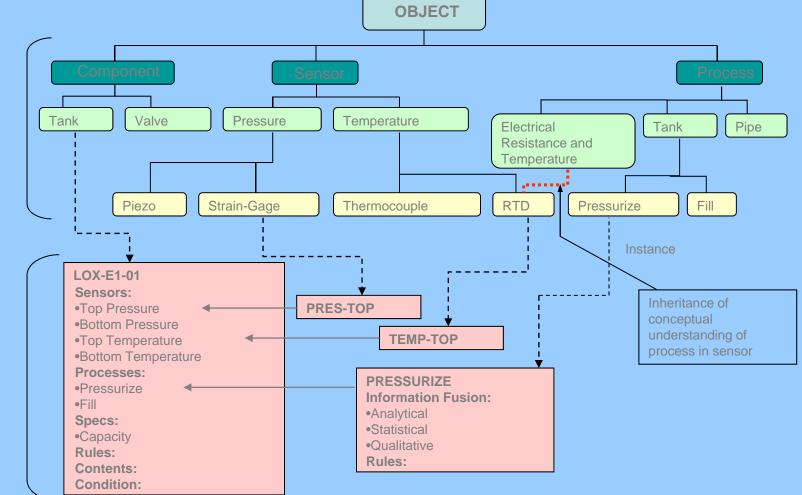

Future health grade, future failures, recommendations, evidence and Explanation.

Health grade, diagnosed faults and failures, recommendations, evidence and explanation.

Current enumerated state indicator, threshold boundary alerts, and statistical analysis data with timestamp and data quality

Descriptor data with timestamp and data quality.

Digitized data with timestamp and data quality.



Architecture for pilot ISHM system implemented at NASA Kennedy Space Center, Launch Complex 20 (LC-20) showing the use of IEEE 1451.1, OSA-CBM, and OSA-EAI standards

A software system for ISHM capability should support all core capabilities by integrating systematically DIaK through the ISHM-DM

- Object orientation: object representation of system physical elements and associated process models is the best way to embed DIaK in a systematic and in an organized manner.
- Distribution of ISHM-DM's within and across networks: ISHM-DM's might be distributed among processors connected to a network, simply because it is necessary to use parallel processing, and/or ISHM-DM's might be created by different people in various geographic locations

TAXONOMY/ONTOLOGY OF OBJECT ORIENTED IMPLEMENTATION

Classes

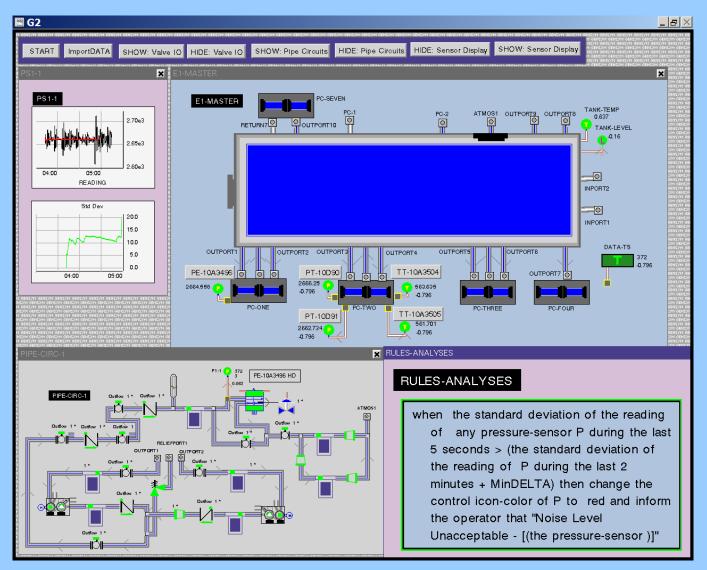
NASA

nstances

A software system for ISHM capability should support all core capabilities by integrating systematically DIaK through the ISHM-DM

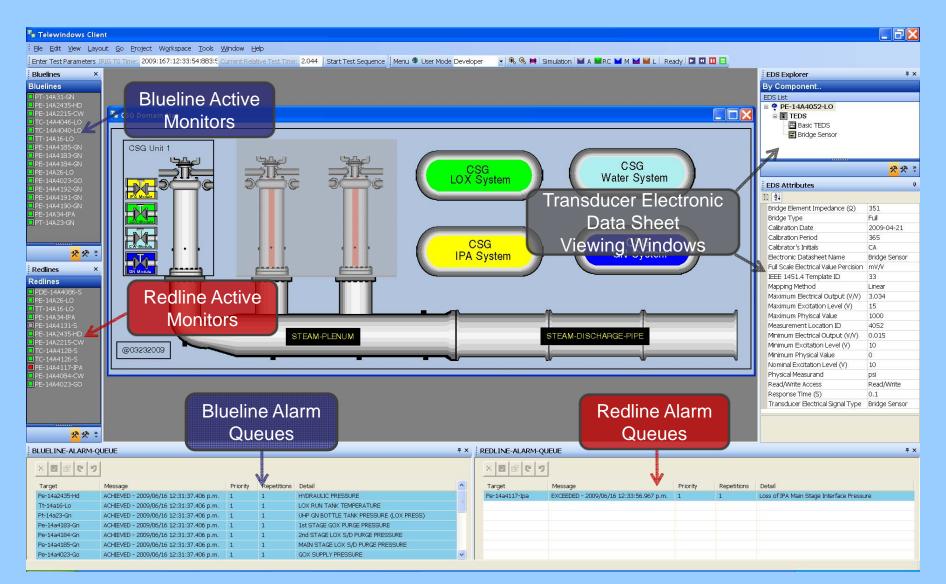
- **Distribution across processing units**: Since multiple process models are expected to be running at any given time, the software environments should support parallel processing.
- Inference engine: Many tasks require an inference engine. Reasoning and decision making leading to anomaly detection, diagnostics, effects, and prognostics; require contextual integrity and cause-effect analysis using heterogeneous data and information.

A software system for ISHM capability should support all core capabilities by integrating systematically DIaK through the ISHM-DM

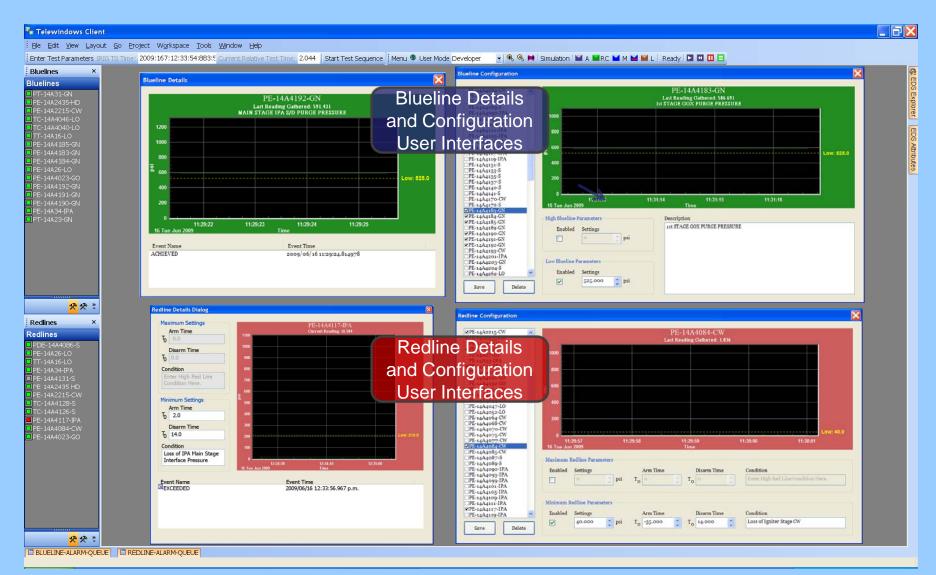

- Integrated management of distributed DlaK: DlaK must be managed in a way to allow embodiment of systems thinking across elements and subsystems. Often this is enabled by definitions of relationships among elements of systems that can be physically visible (i.e. attached to, belong to a system); or more abstracted relationships, as it relates to involvement by groups of objects in process models.
- **Definition of dynamic relationships among objects for use in reasoning**: Often, the framework for reasoning and application of process models changes dynamically with configuration changes, stages of operation, etc.

A software system for ISHM capability should support all core capabilities by integrating systematically DIaK through the ISHM-DM

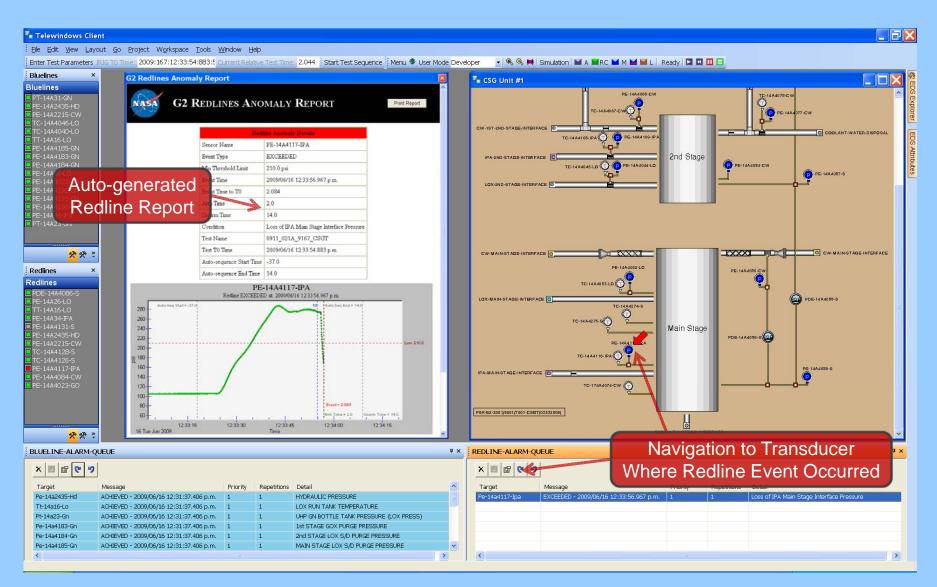
 Iconic representation of systems objects with visible and virtual links (relationships) used to provide intuitive representation of reasoning and context. The mix of object orientation and iconic representation of DIaK provides the ability to intuitively visualize interrelationships and dig deep into details of the ISHM system. As complexity increases, graphical programming and visualization become essential.



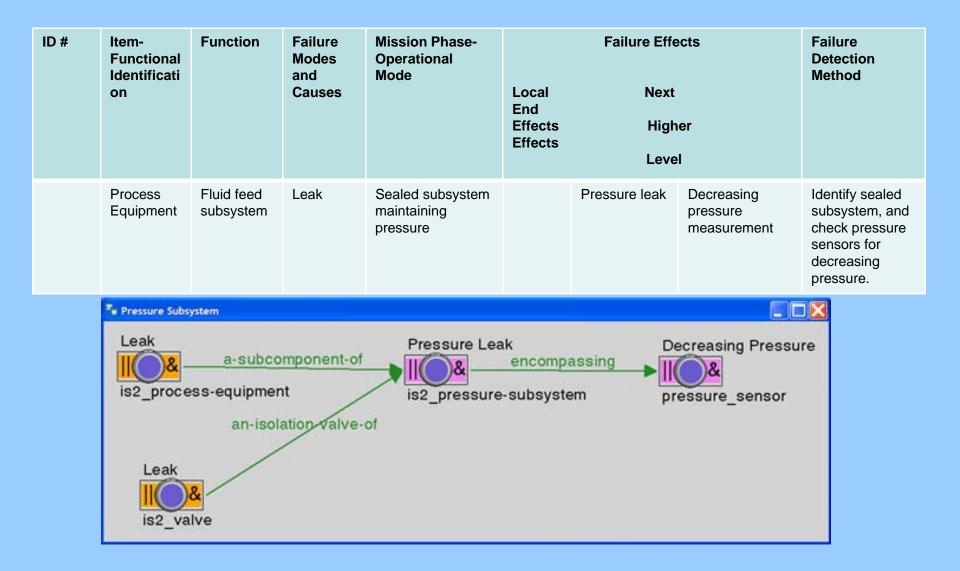
ISHM Domain Model of a Hydraulic System, including a Rule example



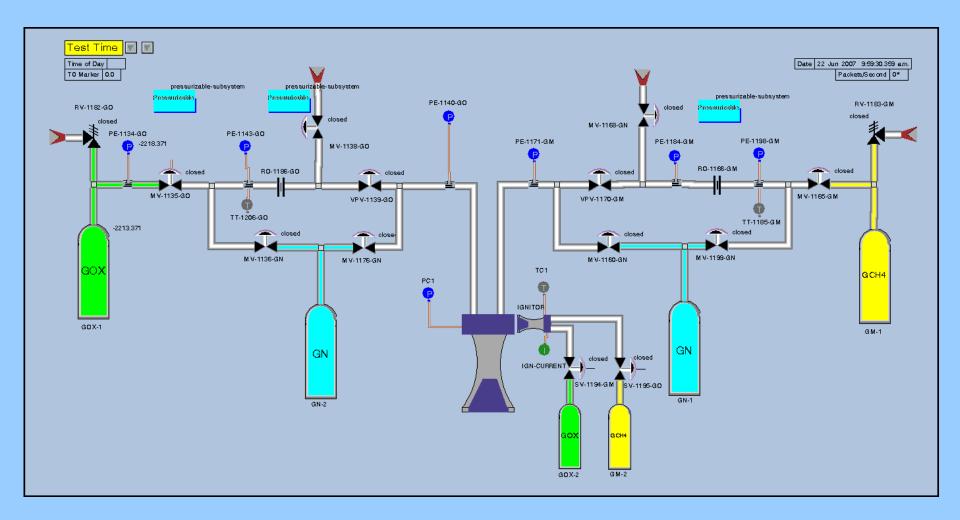
CSG ISHM Domain Model: User Interfaces



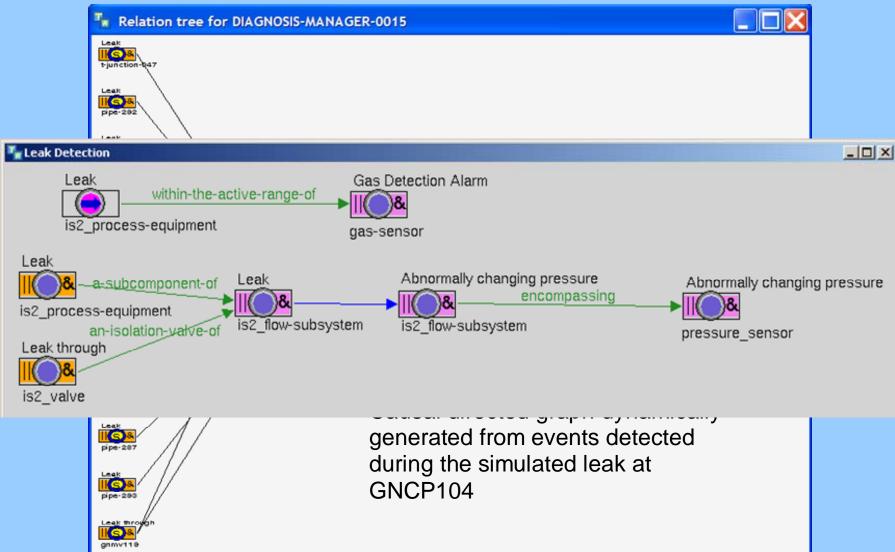
CSG ISHM Domain Model: Blueline/Redline User Interfaces



CSG ISHM Domain Model: Redline Event Handling



Failures Modes and Effects Analysis (FMEA) MIL-STD-1629A(2) NOT 3



Elements of an ISHM System: ISHM Model - Proximate Cause Analysis

Expanded causal-directed graph generated by the detection of a leak in the subsystem where a valve was opened manually (injected leak)

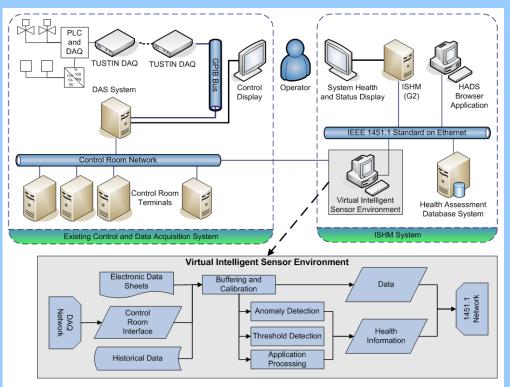
NASA

ISHM Capability Development Intelligent Sensors and Components Smart Sensor/Actuator (NIST)

"The IEEE (Institute of Electrical and Electronics Engineers) 1451 smart transducer interface standards provide the common interface and enabling technology for the connectivity of transducers to microprocessors, control and field networks, and data acquisition and instrumentation systems. The standardized TEDS specified by IEEE 1451.2 allows the self-description of sensors and the interfaces provide a standardized mechanism to facilitate the plug and play of sensors to networks. The network-independent smart transducer object model defined by IEEE 1451.1 allows sensor manufacturers to support multiple networks and protocols. Thus, transducerto-network interoperability is on the horizon. The inclusion of P1451.3 and P1451.4 to the family of 1451 standards will meet the needs of the analog transducer users for high-speed applications. In the long run, transducer vendors and users, system integrators and network providers can all benefit from the IEEE 1451 interface standards [1].".

"Intelligent Sensor" is a "Smart Sensor" with the ability to provide the following functionality: (1) measurement, (2) measure of the quality of the measurement, and (3) measure of the "health" of the sensor. The better the sensor provides functionalities 2 and 3, the more intelligent it is.

ISHM Capability Development Intelligent Sensors and Components


Typical Process Models for Sensors

- Noise Level Assessment and History
- Spike Detection and History
- Flat Signal Detection and History
- Response Time Characterization
- Intermittency Characterization and History
- Physical Detachment Characterization and History
- Regime Characterization and History
- Curve Fit on Identified Regimes

"Intelligent Sensor" is a "Smart Sensor" with the ability to provide the following functionality: (1) measurement, (2) measure of the quality of the measurement, and (3) measure of the "health" of the sensor. The better the sensor provides functionalities 2 and 3, the more intelligent it is.

ISHM Capability Development Intelligent Sensors and Components

Example Intelligent Sensor Implementations

The Virtual Intelligent Sensor Environment (VISE) converts all classic sensors installed in a rocket engine test stand into "intelligent sensors."

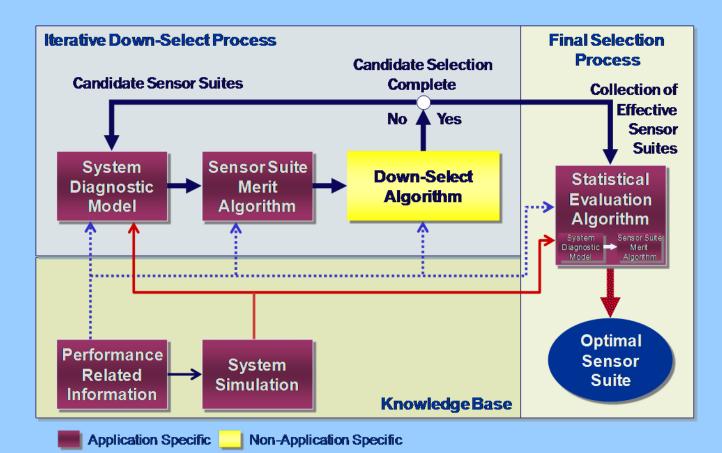
ISHM Capability Development Intelligent Sensors and Components

Example Intelligent Sensor Implementations

Strar Sensor Sensor Russes Sensor TrayTuru Russes Sensor Tensor Modula

> Smart Sensor Systems www.smartsensorsystems.com

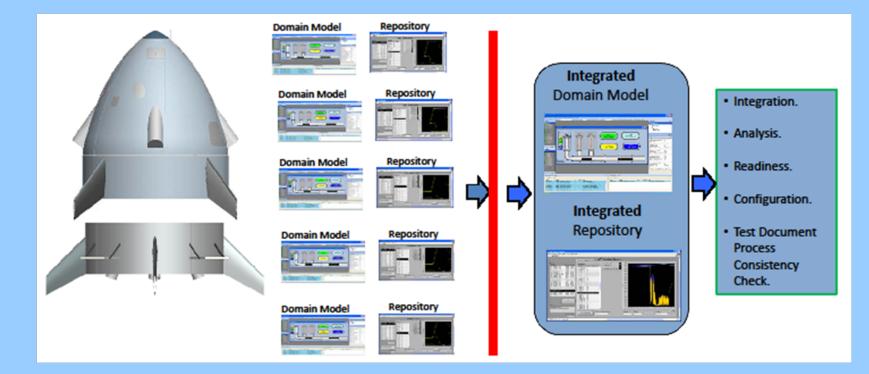
Mobitrum www.mobitrum.com Contraction of the second seco


Esensors www.eesensors.com NIST www.mel.nist.com

Sensor selection and Placement for ISHM

 When developing an ISHM capability from the ground up, one must optimize sensor suites to achieve maximum functional capability (anomaly detection, diagnosis, effects, prognostics).

Sensor selection and Placement for ISHM

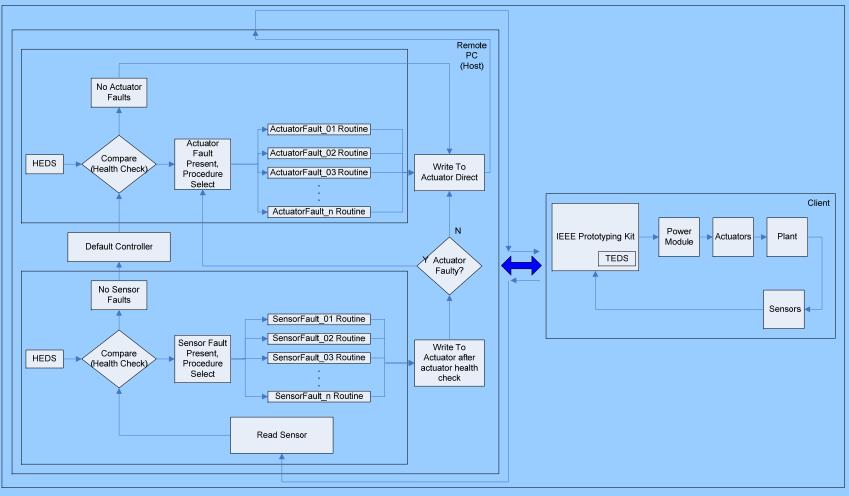

Systematic Sensor Selection Strategy (S4) is a model-based procedure for systematically and quantitatively identifying the sensor compliment that optimally achieves the health assessment goals of a system (Reference 14 of the paper).

ISHM in Systems Design, Integration, and Engineering (SDI&E)

- SDI&E practices are employed to build complex systems.
- SDI&E for aerospace systems has developed into its own discipline, although theories and concepts have not been adequately formalized in an academic sense.
- The role of ISHM in SDI&E is linked to the concept of ISHM-DM's, whereby every element that is part of a system comes with its own ISHM-DM that can be rolled-up into an overall system ISHM-DM in a plug&play approach.
- When two elements are assembled, the ISHM-DM of each element is incorporated into the ISHM-DM of the assembly. In this manner, DIaK compartmentalized in each element becomes immediately available and useful to the ISHM-DM of the assembly.

ISHM in Systems Design, Integration, and Engineering (SDI&E)

ISHM concept for systems integration of ISHM-DM's


Intelligent Control for ISHM-Enabled Systems

- Control of complex systems that are ISHM-enabled is a nascent area, simply because ISHM itself is also relatively new.
- The objective is for the control function to make use of system health information in order to achieve its objectives.

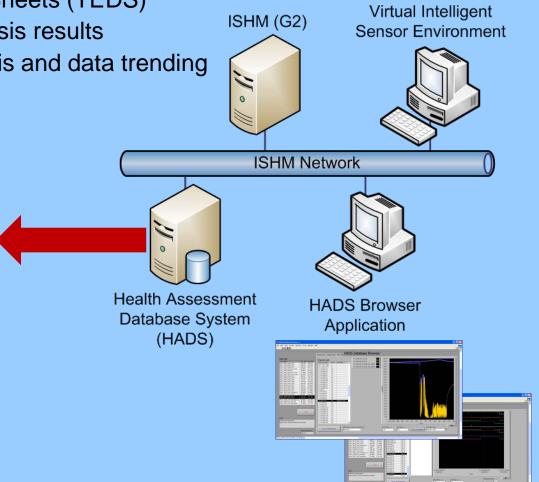
The paradigm implies that control systems become users of health information, while at the same time making use of actuators to help further improve determination of the system health

Intelligent Control for ISHM-Enabled Systems

Example Application (Reference 18 of the paper)

Verification and Validation Considerations for ISHM

The need to use knowledge, and hence inference engines; and the complexities of parallel processing and reconciliation of potentially inconsistent outcomes that lead to anomaly determination; requires advances in verification and validation of the ISHM capability itself


Backup Slides

Health Assessment Database System HADS

Health Electronic Data Sheets (HEDS)

VASA

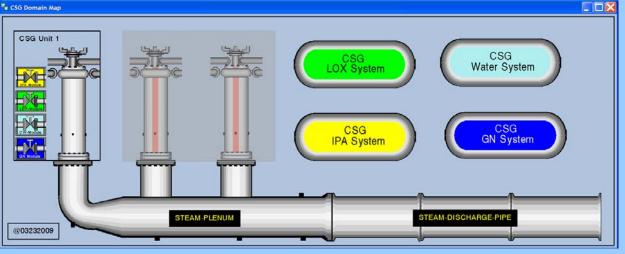
- Repository of anomalies and algorithms
- Transducer Electronic Data Sheets (TEDS)
- Historical test data and analysis results
- Provides ease of data analysis and data trending

HADS Browser Application

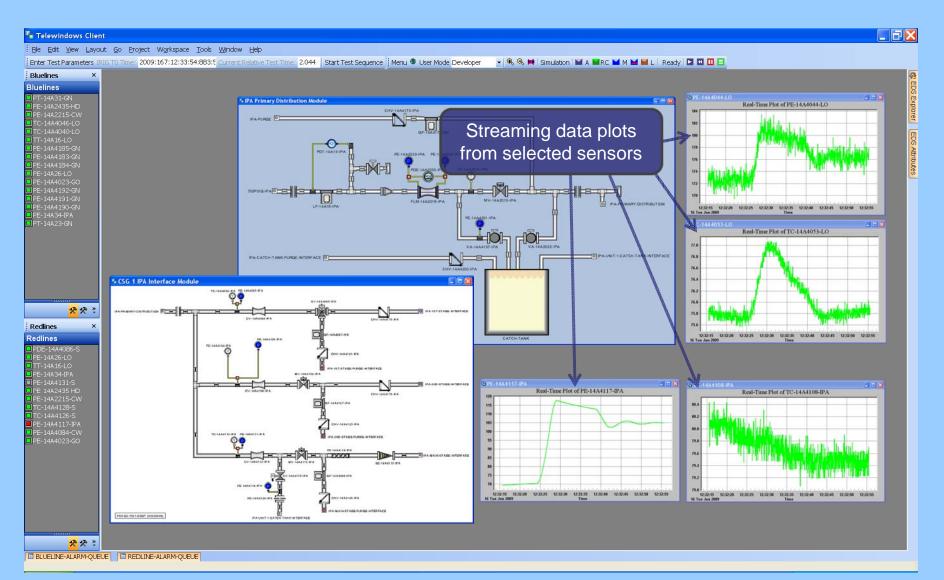
HADS Browser Capabilities

- Allows longitudinal analyses and comparisons with previous test results
- Viewing usage statistics on monitored elements
 - cycle times on valves
 - mean time to failure
- Viewing anomalous events/data trends
- Viewing TEDS

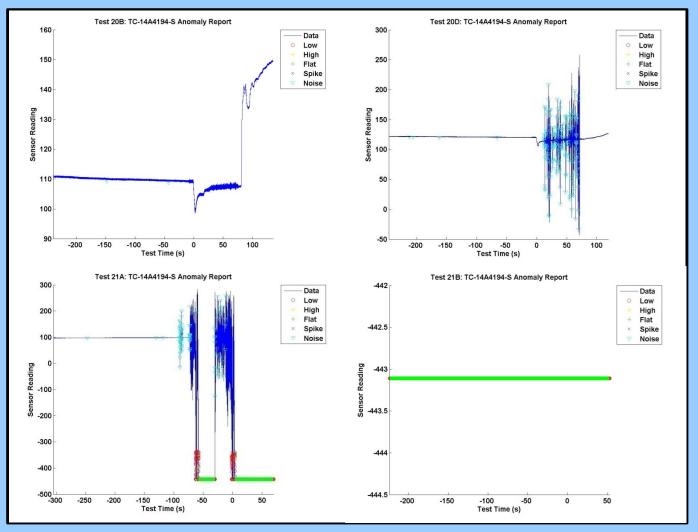
List Name Ref Time Draftme 1019. 2002 000 000 000 0000 000000000000000	Analog Data Digital Data TEDS	HADS Database	Browser		
Name Desk Time Desk Time <thdesk th="" time<=""> <thdesk th="" time<=""> <thdesk t<="" th=""><th>Haby Data Digtar Data Here</th><th></th><th></th><th></th><th></th></thdesk></thdesk></thdesk>	Haby Data Digtar Data Here				
Close 300_COT Society 600_COT Society 600_COT Society 600_COT Society 600_COT 1.959_2.100_COT -202_COT -202_COT <th></th> <th>ield TEDS Valu</th> <th>e</th> <th></th> <th></th>		ield TEDS Valu	e		
1936 3100 Cort 492 500 992 500 992 500 992 500 1938 4930 Cort 492 500 992 500 992 500 992 500 1938 4930 Cort 492 500 992 500 993 500 993 500 1938 4930 Cort 452 220 114 411 98 984 41390 401 993 414190 401 1938 4930 Cort 452 220 114 411 98 98 5144190 401 993 500 1938 4930 Cort 452 220 116 51 98 98 995 460 993 4100 1930 4902 Cort 492 500 97 5144190 401 98 993 566 993 566 993 566 1930 490 Cort 128 514 500 100 71 78 544190 401 71 78 544190 401 91 78 544190 401 91 78 544190 401 1930 490 Cort 128 516 500 71 78 544190 401 91 78 544190 401 91 78 544190 401 1930 490 Cort 28 544190 400 71 78 544190 401 91 78 5441490 401 91 78 544190 401 1930 490 Cort 28 550 74 53 500 45	PE-14A4109-IPA BASIC TE				
Logiestics Constraints Description Description Description 1059_Abram_Lun, Drev 2000 ESA44392.04 Model Namber 2000 1059_Abram_Lun, Drev 2000 ESA44392.04 Version Namber 121 1059_Abram_Lun, Drev 2000 ESA44392.04 Version Namber 121 1050_Abram_Lun, Drev 2000 ESA44392.04 Version Namber 121 1050_Abram_Lun, Drev 2000 ESA44392.04 Version Namber 121 1050_Abram_Lun, Drev 2000 ESA44392.04 Version Namber 120 1050_Abram_Lun, Drev 2000 Abram_Lun ESA44000.00 FE1444000.00 FE1444000.00 1050_Abram_Lun, Drev 2000 Abram_Lun ESA44000.00 FE1444000.00 FE1444000.00 1050_Abram_Lun 2000 Abram_Lun 2000 Abram_Lun D000 FE1444000.00 FE1444000.00 1050_Abram_Lun 2000 Abram_Lun 2000 Abram_Lun D000 FE1444000.00 FE1444000.00 FE1444000.00 FE1444000.00 FE1444000.00 FE1444000.00 FE1444000.00 FE1444000.00 </td <td></td> <td></td> <td>XIX.</td> <td></td> <td></td>			XIX.		
DB4_Newn Jun, Ore 20.0021 114.141 FE-1444191-04 Version Letter 6 DB5_Newn Jun, Two 22.1901 64.7203 FE-1444191-04 Version Letter 6 DB5_Newn Jun, Two 22.1901 64.7203 FE-1444191-04 Version Letter 9 DB5_Newn Jun, Two 22.1901 64.7203 FE-1444191-04 Version Letter 9 DB5_Newn Jun, Two 22.1901 64.7203 FE-1444191-04 Version Letter 9 DB5_Newn Jun, Two 22.1901 64.7402.728 FE-1444192-04 Period Letter 9 DB5_Newn Jun, Two 22.1901 64.7402.728 FE-1444292-00 Period Letter 9 DB5_Newn Jun, Two 22.1901 70.7500 FE-1444292-00 Period Letter 0 DB5_Newn Jun, Two 22.1901 70.7500 FE-1444292-00 Period Letter 0.007 DB5_Newn Jun, Two 23.100 22.7500 FE-144429-10 Period Letter 0.007 DB5_Newn Jun, Two 23.92.790 77.3500 FE-144429-10 Period Letter 0.017 DB2_Newn Jun, Two 23.92.790 77.3500 FE-144429-10 Period Letter 0.01 DB2_Newn Jun, Two 23.92.790 77.3500 FE-1444132-6 FE-144419-6	PE-14A4192-GN Model Num		-97		
0108_A0220 01.08.001 67.223 76.2444130-04 121 0108_A0220 04.796 04.796 121 0109_A0220 04.796 121.08 97.466 0100_A0120 04.796 121.08 0100_A0120 04.796 121.08 0100_A0120 04.796 121.08 0100_A0120 04.796 121.08 0100_A0120 04.796 110.798 0100_A0120 04.798 110.798 0100_A0120 110.798 110.798 0100_A0120 1	114.141 PE-14A4191-GN Version Le				
STRC/Porm Construction Provide PE-144/18/0-01 PE-144/18/0-01 STRC/Porm	45,2323 PE-14A4190-GN Version Na.				
0300_Jenz 0300_	R4 7965 PE-14A4189-GN Serial Nam				
STOP STOP STOP PS: 4420300.0 PS: 442030.0 PS: 444203.0 PS: 44420.0 PS:	84 7646 PE-14A4023-GO BRIDGE T				
2009 5102 520 5102	107.405 PE-14A2010-LO Transduce				
D000_5000_5000_5000 P8-144040-0.0 P8-144040-0.0 D000_5000_5000_5000_5000 P8-144040-0.0 P8-144040-0.0 D000_5000_5000_5000_5000 P8-144040-0.0 P8-144040-0.0 D000_5000_5000_5000_5000 P8-144040-0.0 P8-144040-0.0 D000_5000_5000_5000_5000 P8-144040-0.0 P8-144040-0.0 D000_5000_5000_5000_5000_5000_5000_5000	134.701 PDE-14A4273-IPA Physical M				
D200_D126_C03T 286.462 119.533 P8-144025-00 P8-144040-0 D210_D127_C03T 223.275 52.644 P8-144040-0 P8-144040-0 D210_D127_C03T 223.075 52.644 P8-144025-0 P8-14400-0 D210_D127_C03T 223.075 52.644 P8-14400-0 P8-14400-0 D210_D127_C03T 223.075 52.646 P8-14400-0 P8-14400-0 P8-14400-0 P8-14400-0 P8-14400-0 P8-14400-0 P8-14401-0 P8-14400-0 P8-14400-0 P8-1440-0 P8-14401-0 P8-14400-0 P8-1440-0 P8-1440-0 P8-14401-0 P8-1440-0 P8-1440-0	122 145 PE-1404047-LO Minimum P				
D22,0,207,2037 304,466 69,208 PE-344805020 PW/ D22,0,207,2037 228,507 59,2644 PM-34403620.0 PW-mman Biochrial / Value Pencion 0.007 D21,0,207,2037 228,507 59,504 PE-3448054.0 PW-mman Biochrial / Value Pencion N/W D21,0,207,2037 228,507 59,504 PE-3448054.0 PW-mman Biochrial / Value 0.007 D21,0,207,2037 228,507 59,509 PH-344803-60 N/W PM-34403450.0 D22,0,207,017 49,507 134,725 PE-344803-60 PM-44 PH-344803-60 D220,9107,0507 136,507 134,725 PE-544125-5 Exclution Level, Nmman 10 D220,9107,0507 135,709 PE-544125-5 Exclution Level, Nmman 10 D220,9107,007507 30,602 01,944 PE-544125-5 Exclution Level, Nmman 10 D220,9107,007702 30,022 01,944 PE-544125-5 Exclution Level, Nmman 10 D220,9107,007502 30,022 01,944 PE-544125-5 Exclution Level, Nmman 10	110 533 PE-1404026-GO Maarra m 6				
D228 D227 D22 D22 </td <td>69.3288 PE-1404032-60 Erd Sculp E</td> <td></td> <td></td> <td></td> <td></td>	69.3288 PE-1404032-60 Erd Sculp E				
D220_020_020_030T 228.0074 59.0204 PB: 4A4030-00 Magang Method 1.002 D220_020_020_03T -97.032.09 P2.80.004 PB: 4A4030-00 PB: 4A4030-00 D220_020_020_03T -97.032.09 P2.80.004 PB: 4A4030-00 PB: 4A4030-00 D220_020_020_03T -97.032.09 P2.80.004 PB: 4A4030-00 PB: 4A4030-00 D220_020_020_070_03T -98.07 134.725 PB: 4A4030-00 PB: 4A4030-00 D220_020_020_070_03T -135.709 PB: 4A4030-00 PB: 4A4030-00 PB: 4A4030-00 D220_020_020_070_03T -135.709 PB: 4A4030-00 PB: 4A4030-00 PB: 4A4030-00 D220_020_020_070_03T -135.709 PB: 4A4030-00 PB: 4A4030-00 PB: 4A4030-00 D220_020_070_03T -30.74422 127.745 E- 6144012-5 E- 6144012-5 E- 6144012-5 D220_020_070_070_070_070_070_070_070_070_	52 6444 PE-14A4044-LO Monmum F				
Size Size <th< td=""><td>56.9204 PE-14A4052-LO Magraum F</td><td></td><td></td><td></td><td></td></th<>	56.9204 PE-14A4052-LO Magraum F				
Stop Stop Stop Pi-14A315-GA Pidge Type Full Stop Job/ Norminal 415 552 40 4002 Pidge Strement Impodence 551.1 Pidge Strement Impodence 551.1 Stop Job/ Norminal 155 507 51.458 Pidge Strement Impodence 551.1 Pidge Strement Impodence 551.1 Stop Job/ Norminal 155 405 Pidge Strement Impodence 0.1 Pidge Strement Impodence 551.1 Stop Job/ Stop Job 155 405 Pidge Strement Impodence 0.1 Pidge Strement Impodence 0.1 Stop Job Job Print 1.55 405 Pidge Strement Impodence 0.1 Pidge Strement Impodence 0.1 Stop Job Print 0.3 Pidge Strement Impodence 0.1 Pidge Strement Impodence 0.1 Stop Job Print 0.3 Pidge Strement Impodence 0.1 Pidge Strement Impodence 0.1 Stop Job Print 0.3 Pidge Strement Impodence 0.3 Pidge Strement Impodence 0.3 Stop Job Print 0.3 Pidge Strement Impodence 0.3 Pidge Strement Impodence 0.3 Pidge Strement Impodence	46.1284 PE-14A4034-GO Manono M				
D220 D207 D214 D207 D214 D207 D214 D207 D214 D217 D214 D217 D217 <td< td=""><td>77.1566 PE-1404185-GN Ridge Tvr</td><td></td><td></td><td></td><td></td></td<>	77.1566 PE-1404185-GN Ridge Tvr				
D228, 9120, 0591 -985,07 1287,29 PE-1444135-00 Reporter Time 0.1 D228, 9120, 0591 -1355,700 128,700 PE-1444132-6 Enclation Level, Namual 10 D228, 9120, 0597 -1355,700 PE-1444132-6 Enclation Level, Namual 10 D228, 9120, 0597 -1355,700 PE-1444132-6 Enclation Level, Namual 10 D228, 9120, ADV/250 -80,052 60,14412-6 Enclation Level, Mamman 15 D229, 9120, ADV/250 -80,052 60,14412-6 Calibration Insis CA D229, 9120, ADV/250 -30,052 60,14410-5 FE-144412-6 Calibration Insis CA D229, 9120, ADV/250 -30,052 60,1440-6 FE-144412-6 Mosaumment Location ID 4022 FE-144412-5 FE-144412-5 FE-144412-6 Mosaumment Location ID 4022 FE-144412-5 FE-144412-6 FE-144412-6 FE-144412-6 FE-144412-6 FE-144402-5 FE-144402-5 FE-144402-6 FE-144402-6 FE-144412-6 FE-144402-5 FE-144402-5 FE-144402-6	40.4002 PE-14A4184-GN Bridge Flor				
2226 9170 554.768 192.484 192.	134.725 PE-14A4183-GN Response				
2025 9170 AVX25 PE-14A4132-5 Enclution Level, Memman 10 2025 9170 AVX250 380.0522 60.1424 Enclution Level, Memman 15 2026 9170 AVX250 380.0522 60.1424 FE-14A4132-5 Enclution Level, Memman 15 2026 9170 AVX250 380.0522 60.1424 FE-14A4127-5 Caletation Insigh CA 2026 9170 Memman 37.4482 137.745 FE-14A4127-5 Caletation Insigh CA 2026 9170 Memman 10 FE-14A4127-5 Caletation Insigh CA 5100 Memman 100 FE-14A4120-5 FE-14A4120-5 FE-14A4120-5 76-14A4105-5 FE-14A4120-5 FE-14A4120-5 FE-14A4120-5 FE-14A4120-5 76-14A4005-5 FE-14A4020-5 FE-14A4120-5 FE-14A4120-5 FE-14A4120-5 76-14A4005-5 FE-14A4005-5 FE-14A4005-5 FE-14A4005-5 FE-14A4005-5	151.485 PE-14A4131-S Excitation				
2026, 9170, NormPun_L, 0 36.6602 222,53 PE-14A1255 E-cutation Level, Mamman 15 2026, 9170, NormPun_2 39.7452 39.0522.6 39.0522.6 39.0522.6 214.7422.5 Calabrasion Unde 2/4/2009 2026, 9170, NormPun_2 39.74492 117.745 PE-14A127.5 Calabrasion Unde Calabrasion Preciding Calabrasion Preciding 180 2027, 9170, NormPun_2 STCOP FE-14A1245.5 Calabrasion Preciding 180 FE-14A1245.5 FE-14A1245.5 Calabrasion Preciding 180 FE-14A1245.5 FE-14A1245.5 PE-14A1245.5 PE-14A1245.5 STCOP FE-14A1245.7 Calabrasion Preciding 180 FE-14A1245.7 FE-14A1245.5 PE-14A1245.5 PE-14A1245.5 FE-14A1245.7 FE-14A1245.5 PE-14A1245.5 PE-14A1245.5 FE-14A1245.7 FE-14A1245.5 PE-14A1245.5 PE-14A1245.5 FE-14A1245.7 FE-14A1245.5 FE-14A1245.5 PE-14A1245.5 FE-14A1245.7 FE-14A1245.5 FE-14A1245.5 FE-14A1245.5	141.949 PE-14A4133-S Excitation				
222C 9120 HomPun2 37.4482 117.745 PE-14401245 Ciliabison inniai Ciliabison inniai </td <td>122.533 PE-14A4135-S Excitation</td> <td></td> <td></td> <td></td> <td></td>	122.533 PE-14A4135-S Excitation				
STOP STOP PE-144012-S PE-1440140-S PE-1440140-S PE-1440140-S PE-1440140-S PE-1440140-S PE-1440140-S PE-1440140-S PE-144010-S PE-1440-S PE-14400-S PE-1	60.1404 PE-14A4137-S Calbration				
PE-14A4141-5 Cabrison Period 180 PE-14A4140-5 Metasumment Location ID 4032 STOP PE-14A419-PA PE-14A419-PA PE-14A419-PA PE-14A419-PA PE-14A419-PA PE-14A4075-CW PE-14A4075-CW PE-14A4075-CW	117.745 PE-14A4172-S Calbration				
STOP PE-14/4100 S PE-14/428240 PE-14/428240 PE-14/4105 PA PE-14/428240 Measurement Location ID 4022 STOP PE-14/428240 PE-14/4105 PA PE-14/4005 PA PE-14/4005 PA PE-14/428240 PE-14/4105 PA PE-14/428240 PE-14/4105 PA	PE-14A4141-S Calbration				
STOP PE-14A020240 PE-14A0105-PM PE-14A0075-CW PE-14A0075-CW PE-14A0075-CW	PE-14A4140-S Monsurom				
STOP PE-14A110-PA PE-14A005-CW PE-14A0005-PA	PDE-14A4006-S				
PC-14A075-CW PC-14A075-CW					
PE-1444090-IPA					
PE-14A4201-IPA					
	PE-14A4201-IPA				
PDE-1442030-IPA					
drumning query	IGN1-CURR V				
took 37.100 seconds to execute.					
	ime (sec)				


ADigiogh Data -Dates so month ple channels

CSG ISHM Domain Model: Top Layer View



ISHM Domain Model Top Layer

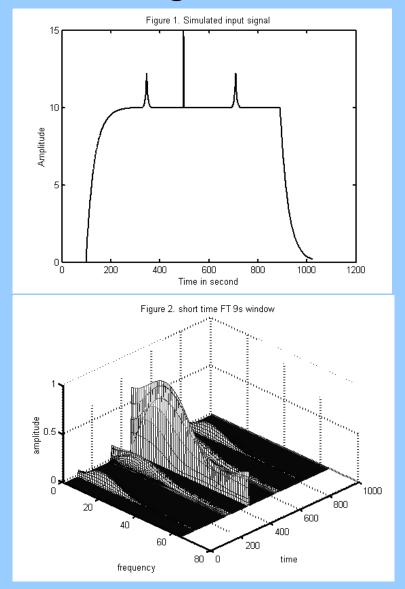


CSG ISHM Domain Model: Transducer Data Plots

CSG Anomalies Detected

- Evidence of TC degradation detected by VISE anomaly detection
- Advanced notification to determine the health of the whole system before beginning a test

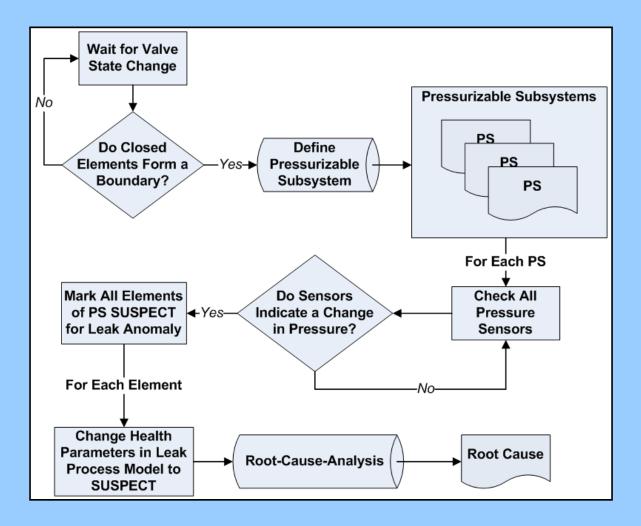
Transducer Anomaly Report Graphs for one sensor in four consecutive tests.



List of Anomaly Detection Capabilities

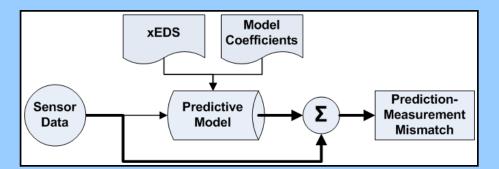
Anomaly/Behavior	Demonstrated Cause	Detection Approach
Leaks (pipes, valves, etc.)	Various	Checking for pressure leaks using the concept of Pressure Subsystems.
Valve state undetermined	Defective feedback sensor Controller failure	Determines valve state by checking consistency of command, feedback, open/close switches, and pressure conditions upstream and downstream.
Valve oscillation	Fluid contamination in hydraulic supply	Compare running standard deviation of command versus feedback.
Valve stuck	Fluid contamination in hydraulic supply Seat seizure	Feedback remains horizontal while command changes.
Excessive noise, spikes, etc.	Interference	Running standard deviation exceeds set limits. Thresholds violations during short time spans (compared to sensor time-constant).
Degradation	Wear, aging	Trend detection using curve fitting and determination of time-constants.
Prediction-Measurement mismatch	Various	Use predictive model (e.g. from Modeling & Analysis Group) to predict sensor values and compare with measurements.

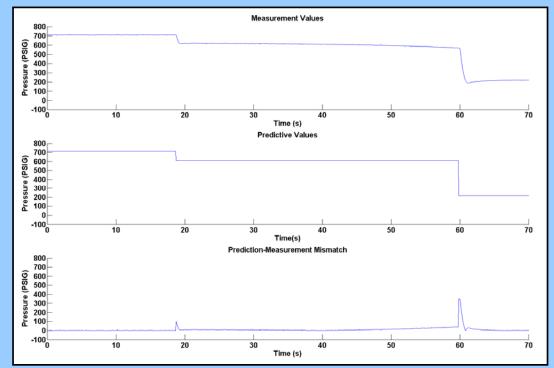
Short-Time Fourier Transform Segmentation

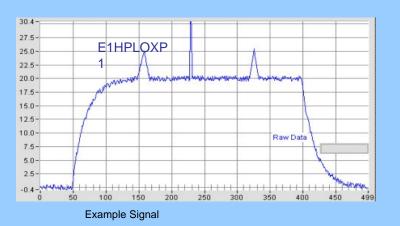


Determining Valve-State

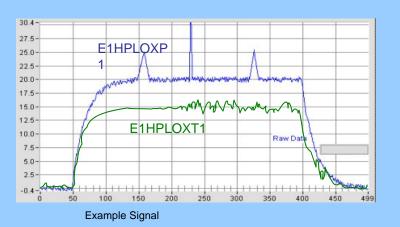
Valve State	Command	Feedback	Open limit	Closed Limit	Associated Sensors							
Open	Open	Open	True	False	Agree with model							
			He	althy								
Closed	Closed	Closed	False	True	Agree with Model							
	Healthy											




Checking for Pressure Leaks

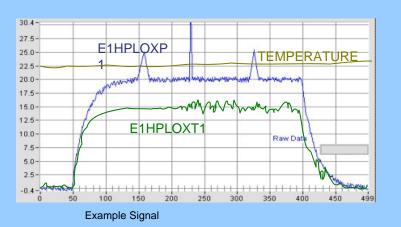


Runtime Predictive Modeling



Process: HP LOX - Start: 2/5/01, 13:08 End: 2/6/01, 8:45								
Sensors: E1HPLOXP1: Pressure, Strain-Gauge. Loc: Top								
E1HPLOXP2: Pressure, Piezoelectric. Location: Bottom								
E1HPLOXT1: Temperature, Thermocouple K, Loc: T								
E1HPLOXT2: Temperature, Thermocouple K, Loc: Bott								
E1HPLOXV1: Valve position, Loc: Bottom								
PROCESS RELATED CONDITION MONITORING								
Behavior discrepancies	E1HPLOXP1: spike							
	E1HPLOXP1: disturbance							

E1HPLOXP1: disturbance E1HPLOXT1: high noise


Sensor E1HPLOXP1: Pressure, Strain-Gauge - Process: HP LOX Start: 2/5/01, 13:08 End: 2/6/01, 8:45							
Condition Monitoring							
flat-with-noise	normal, occurrences: 5						
step-up	normal, occurrences: 2 Exp. time-constant:0.50s Spec. time-constant: 0.52s						
sensor-disturbance	occurrences: 5 Exp. time-constant:0.50s Spec. time-constant: 0.52s Limit-violation-count since 1/3/01, 3:45: 7						
flat-with-noise	normal, occurrences: 6						
spike	Spike-count since 1/3/01, 3:45: 35						
sensor-disturbance	Occurrences: 6 Exp. time-constant:0.55s Spec. time-constant: 0.52s Limit-violation-count since 1/3/01, 3:45: 8						
drift-with-noise	normal, occurrences: 3 drift-slope: -0.05 PSI/s expected drift with temp: -0.001 PSI/s expected-warm-up-drift: -0.005 PSI warm-up period: 2 hr. time-since-turn-on: 5 hr. 45 min expected-wear-drift: -0.005 PSI op-time-since-last-cal: 54 hr						
step-down	normal, occurrences: 2 Exp. time-constant:0.51s Spec. time-constant: 0.52s						

CLOSE

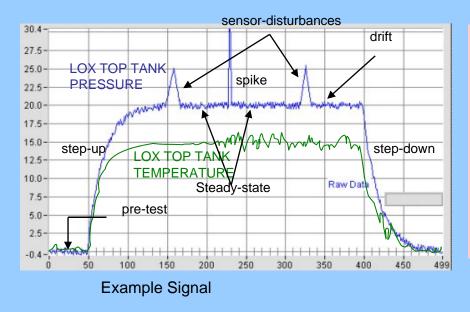
E1HPLOXV1: Valve position, Loc: Bottom							
CESS RELATED CONDITION MONITORING							
avior discrepancies	E1HPLOXP1: spike						
	E1HPLOXP1: disturbance						
	E1HPLOXP1: disturbance						
	E1HPLOXT1: high noise						

Sensor E1HPLOXP1: Pressure, Strain-Gauge - Process: HP LOX Start: 2/5/01, 13:08 End: 2/6/01, 8:45							
Condition Monitoring							
flat-with-noise	normal, occurrences: 5						
step-up	normal, occurrences: 2 Exp. time-constant:0.50s Spec. time-constant: 0.52s						
sensor-disturbance	occurrences: 5 Exp. time-constant:0.50s Spec. time-constant: 0.52s Limit-violation-count since 1/3/01, 3:45: 7						
flat-with-noise	normal, occurrences: 6						
spike	Spike-count since 1/3/01, 3:45: 35						
sensor-disturbance	Occurrences: 6 Exp. time-constant:0.55s Spec. time-constant: 0.52s Limit-violation-count since 1/3/01, 3:45: 8						
drift-with-noise	normal, occurrences: 3 drift-slope: -0.05 PSI/s expected drift with temp: -0.001 PSI/s expected-warm-up-drift: -0.005 PSI warm-up period: 2 hr. time-since-turn-on: 5 hr. 45 min expected-wear-drift: -0.005 PSI op-time-since-last-cal: 54 hr						
step-down	normal, occurrences: 2 Exp. time-constant:0.51s Spec. time-constant: 0.52s						

Process: HP LOX - Start: 2/5/01, 13:08 End: 2/6/01, 8:45									
Sensors: E1HPLOXP1: Pressure, Strain-Gauge. Loc: Top									
E1HPLOXP2: Pressure,	Piezoelectric. Location: Bottom								
E1HPLOXT1: Tempera	ture, Thermocouple K, Loc: Top								
E1HPLOXT2: Temperature, Thermocouple K, Loc: Bo									
E1HPLOXV1: Valve position, Loc: Bottom									
PROCESS RELATED CONDITION MONITORING									
Behavior discrepancies	E1HPLOXP1: spike								
	E1HPLOXP1: disturbance								

E1HPLOXP1: disturbance E1HPLOXT1: high noise

Sensor E1HPLOXP1: Pressure, Strain-Gauge - Process: HP LOX Start: 2/5/01, 13:08 End: 2/6/01, 8:45							
Condition Monitoring							
flat-with-noise	normal, occurrences: 5						
step-up	normal, occurrences: 2 Exp. time-constant:0.50s Spec. time-constant: 0.52s						
sensor-disturbance	occurrences: 5 Exp. time-constant:0.50s Spec. time-constant: 0.52s Limit-violation-count since 1/3/01, 3:45: 7						
flat-with-noise	normal, occurrences: 6						
spike	Spike-count since 1/3/01, 3:45: 35						
sensor-disturbance	Occurrences: 6 Exp. time-constant:0.55s Spec. time-constant: 0.52s Limit-violation-count since 1/3/01, 3:45: 8						
drift-with-noise	normal, occurrences: 3 drift-slope: -0.05 PSI/s expected drift with temp: -0.001 PSI/s expected-warm-up-drift: -0.005 PSI warm-up period: 2 hr. time-since-turn-on: 5 hr. 45 min expected-wear-drift: -0.005 PSI op-time-since-last-cal: 54 hr						
step-down	normal, occurrences: 2 Exp. time-constant:0.51s Spec. time-constant: 0.52s						


15-						di Persona	arons	-	A Starte	Million Concern	-	J					ļ	
14-				June	-4-1-1	P 1.						1						
			j,	-								ŀ.						
13-		-	1									ŀ		+				
12-			+									╫		+			-	
11 -			—									1		_				
10-			\square									<u>n</u>						
			1									11						
9-			Í									Ħ		+				
8-			í									H	-Ra	N Da	ata -			
7 -		!										1		+		—ľ		
6-													Υ					
5 - Marallymore													15	4				wh _{end} ertaffer
	1.00 Proc	and -													(Sectore)	4 4 197 - 1		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
4-			_	- 10	~		~	~	-			-		100				
-1 5	-	100		15	U 119	20	-	25		300)50 250	2.67	400		45		500:
Point # Deviation	N	101 N	109 N	112 H	H	N	<i>180</i> N				352 N	359 H	<u>- 10</u> H	H	373 H	390 H	<i>404</i> N	413 N
_check																	_	
Amplitude _check	И	Ν	И	Ν	N	Ν	И				Ν	Ν	Ν	Ν	Ν	Ν	Ν	N
Limit	N	Ν	N	Ν	N	Ν	N				Ν	N	Ν	N	Ν	Ν	Ν	N
_check					- ·													
Estimate check	G	G	G	G	G	G	G				G	G	В	G	G	G	G	G
Sign_check	S	Р	Р	Р	P	S	S				Μ	Μ	Μ	Μ	Μ	Μ	Μ	S
STC_check	V	V	V	V	V	V	V				V	V	V	V	V	V	V	V
MTC_check	V	V	V	V	V	V	V				V	V	V	V	V	V	V	V
Samples_ concept	1	Ĵ	1	1	1	1	1				1	1	1	1	1	1	1	1
ModelTrend	+	+	+	+	+	+	+				-	-		-	+	-	-	+
ModelType	1	2	3	3	2	2	1				2	2	3	2	1	2	2	1
ModelCoeff1	w	x	x	x	v	0	m				m	1	z		w	u	w	w
ModelCoeff2	_				Ĺ		_				}	}		}	Ι	}	}	_
Courses of the							_						_					
Concept: c(x) Behavior	0 - 6(1)	1	2 b(3 2)	4 50	<u>1</u> ম	0	h			5	б - Ъ(:	7	б	8 - b(6 6)	5	0 ზ(7)
Behavior Name		, stWith	Ste	•	· ·	s) geUp	High			ithNoise		Ster		Step	o Cha			ConstWith
	Not	ise	Chang	- ge Up	Set	ile						Chai	ngeD		vn Se			Noise

5/13/2011

NA SA

INTELLIGENT ISHM

Record: pre-test, step-up, sensor disturbance, steady state, spike, steady-state, sensor-disturbance, drift, step-down Abnormal Conditions: sensordisturbance, spike, sensordisturbance Potential Abnormal Conditions: drift.

• Extract continuously intuitive descriptions of all signals before, during, and after tests (create a complete and meaningful record).

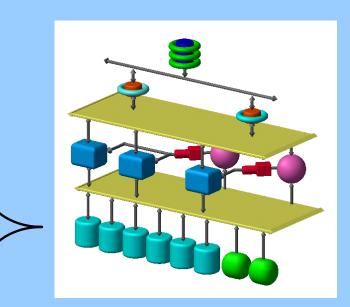
• Identify, diagnose, and propose remedies to abnormal or potentially abnormal conditions occurring in all test-stand components (sensors, actuators, processes).

5/13/2011

ISHM RELATED NEWS ARTICLES

Leonard Nicholson, the Northrop Grumman-Boeing team's deputy program manager.

- "The CEV we plan to build will benefit not so much from a single, technical breakthrough but rather from evolutionary improvements in structural technologies, electronics, avionics, thermal-management systems, software and integrated system health management systems over the past 40 years."
- CEV will use two fault-tolerant subsystems and integrated system health management systems to allow it to detect, isolate and recover from subsystem failures. By comparison, Apollo generally had only single fault tolerance.


ISHM RELATED NEWS ARTICLES

- The last Delta 4 to fly was the heavy-lift version, which blasted off from Cape Canaveral Air Force Station in December of last year. However, during what looked like a flaw-free ride to space, its first stage failed and its payload -- a mock weight simulating a satellite -- ended up 10,000 miles short of its target.
- The problem: fuel sloshing inside the booster caused some sensors to believe the rocket's tanks had run dry, shutting down the first-stage engines earlier than expected.

This is a case when a decision to shut down engines is done with limited information that does not take advantage of integrated awareness brought about by ISHM capability. Other relevant conditions such as the pressure in the tanks, signs of leakage in the tank and valves/pipes attached to it, other indicators that the engines and surrounding elements may (or may not) be entering a regime associated with fuel starvation, etc. could have been considered.

- Smart sensor
 - NCAP (Go Active, Announce)
 - Publish data
 - Set/Get TEDS
- Intelligent sensor
 - Set/Get HEDS
 - Publish health
- Detect classes of anomalies using:
 - Using statistical measures
 - Mean
 - Standard deviation
 - RMS
 - Polynomial fits
 - Derivatives (1st, 2nd)
 - Filtering—e.g., Butterworth HP
 - FFT-e.g., 64-point
 - Wavelet Transforms (segmentation)
 - Algorithms for
 - Flat
 - Impulsive ("spike") noise
 - White noise
 - Other (ANN, etc.)

Intelligent Sensors have embedded ISHM functionality and support Smart Sensor standards

Interrelationship Between Traditional Avionics Systems, Time Critical ISHM and Advanced ISHM

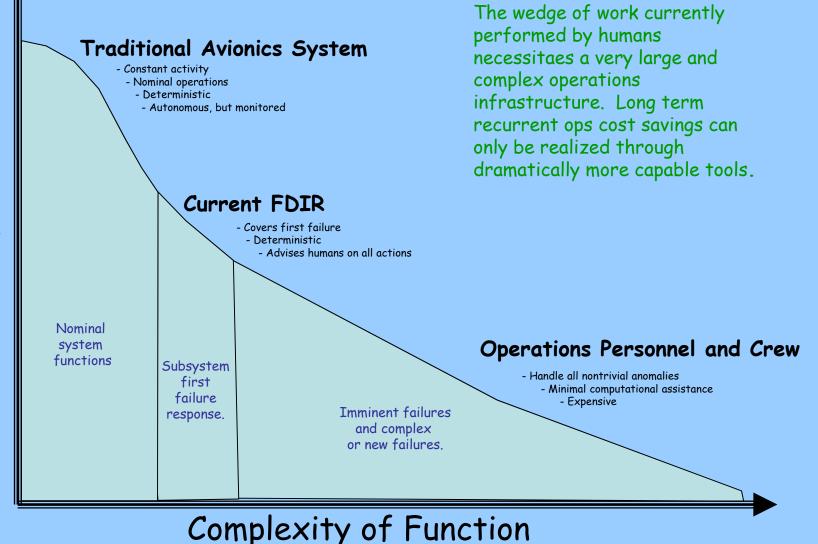
Time Critical ISHM System

Where traditional avionics systems become uncontrollably complex is in handling the interactions between multiple systems and in providing significant FDIR capabilities. Time Critical ISHM is a deterministic and verifiable method of handling first failure responses and intersystem interactions.

Humans

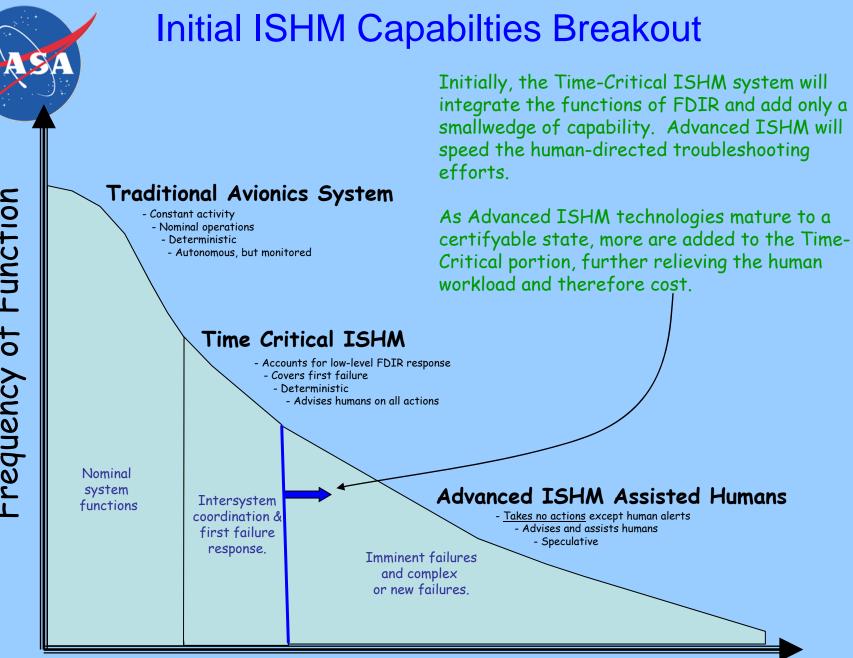
Direct mission and solve problems beyond the reach of automated systems with the help of automated, diagnostic and prognostic tools.

Advanced ISHM

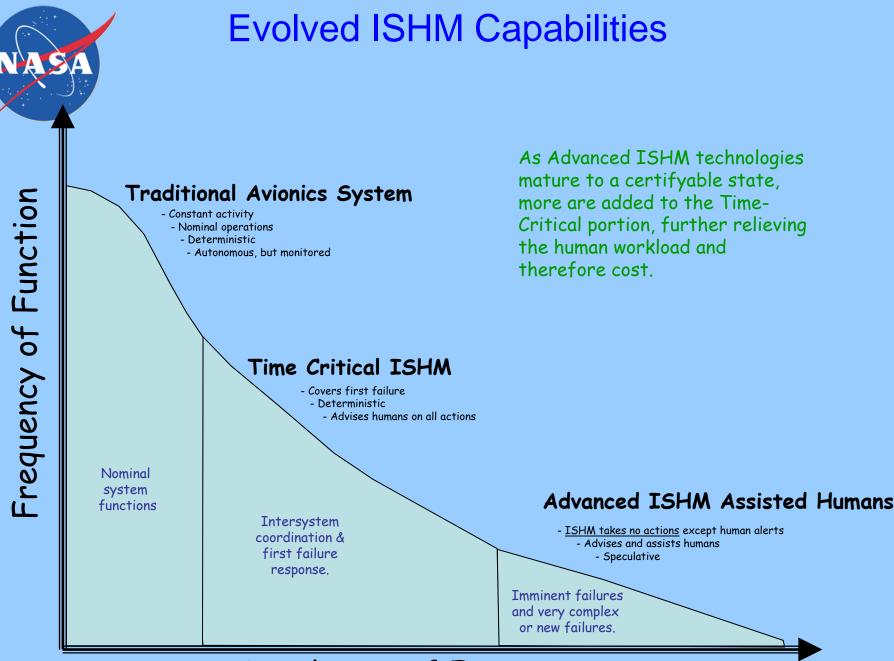

Advanced ISHM provides toolsets designed to speed human-driven diagnostics of complex system failures and interactions. Relying on model-based and data mining techniques, it:

- isolates likely candidate failure causes
 - prognosticates possible
 workarounds and repairs
 - predicts degradation
 caused future failures

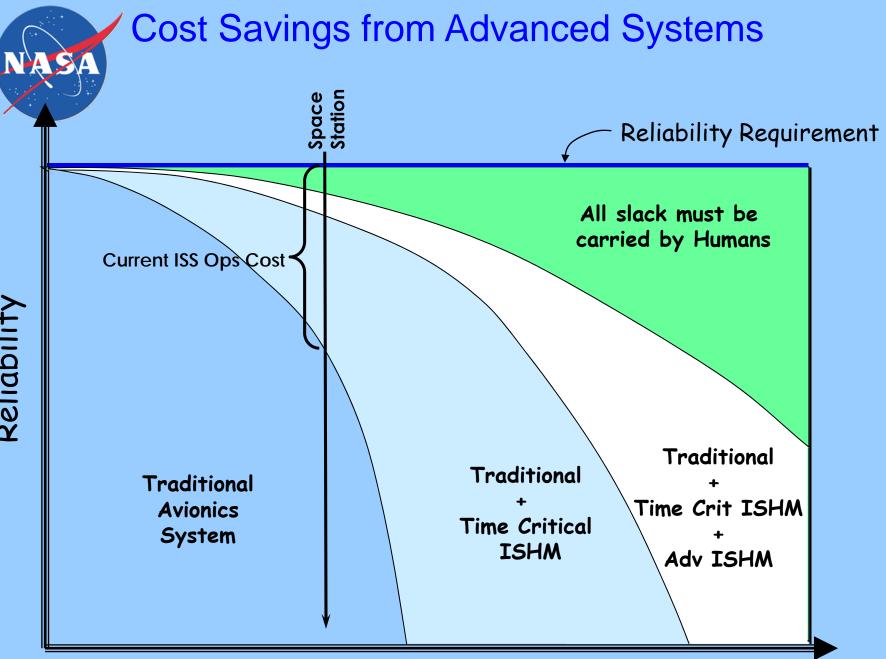
Traditional Avionics Systems


Traditionally designed subsystems form the basis of this architecture. This type of design has proven to be extremely reliable and predictable when used within its limits. Provided that the software complexity remains in a region where determinism is reasonably guaranteed, only evolutionary change is necessary.

Current Division of Capabilities


Frequency of Function

VA SA



Complexity of Function

Frequency of Function

Complexity of Function

Complexity of System

Reliability

Safety Impacts

Source: 2002 Aerospace Safety Advisory Panel (ASAP) Report on ISS

"The C&DH system is vulnerable to instability under heavy load conditions. The ISS has developed operational guidelines that control this problem. This is an acceptable mode of operation during the construction phase of the ISS. But is not adequate for conducting scientific research in a production environment in which many activities execute concurrently. Recommendation 01-20a indicated that NASA should <u>"Gain an improved understanding of the range of commanding problems that lead to constraints on the system."</u> Although the Panel believes that NASA is making progress on this recommendation, the Panel plans to reexamine the issue in the coming year. Recommendation 01-20a is continuing."

ISHM technologies being matured include real time and design-time tools which assist in uncovering the state space of software and hardware-software interactions

"Recommendation 01-20c renews the earlier concern about the adequacy of the current C&DH architecture and component performance. The recommendation is "Evaluate potential architectures that would <u>improve the systems stability and</u> <u>robustness and ensure safe operations</u>. Implement architecture improvements as soon as it is prudent to do so." Therefore Recommendation 01-20c is continuing."

One purpose of advanced components of ISHM is to address those faults and errors which are too complex to be programmed into a deterministic system. ISHM increases the robustness by accelerating and improving the ability of operators to handle complex faults.

"Finding 01-17 Instances of <u>anomalies in crew performance</u> may be increasing. Recommendation 02-17: Review all data on crew performance and all root causes of crew incidents to determine if a trend is apparent. Take appropriate action."

ISHM provides the crew with two capabilities:

(a) increased insight into the system and correlations between events and

(b) moving training and operations away from fixed procedures and towards problem solving and adaptable mission management.

Safety Impacts

Source: 2002 Aerospace Safety Analysis Panel (ASAP) Report on ISS

Recommendation 02-18: Ascertain the availability of <u>functional redundancy through dissimilar computer hardware and</u> <u>software</u> for all safety-critical functions. Predicated on a prioritization of criticality, develop a program to provide requisite functional redundancy.

ISHM components can be implemented as in-band and out-of-band systems, operating on different hardware, software and design processes than the core system. The ISHM embedded system can therefore provide critical system diversity without the added cost of providing redundant disparate control systems.

"<u>Finding 02-22</u>: It is necessary for software assurance, of which IV&V is a part, to evolve in response to advances in information technology. <u>Nondeterministic systems, such as those constructed from neural nets and other artificial-intelligence approaches</u>, offer particular challenges for validation and verification. The attempt to take advantage of COTS software requires that such software be verified and validated not only in accord with its original intent, but also in case it is modified or customized for a specific application and within its new environment. <u>Recommendation 02-22</u>: Maintain a <u>robust research and development</u> effort within the NASA IV&V program. Establish reasonable and supportive funding levels for this effort. Create a research agenda in cooperation with NASA's operational and research enterprises. Provide oversight by program and project managers to ensure that the research meets their needs."

ISHM addresses this recommendation in two ways:

1) ISHM brings the world's leaders in artificial intelligence, information technology, and COTS together. An endogenous expertise in these areas will facilitate the development of V&V technology designed for these types of computational systems.

2) ISHM is, at its core, a runtime V&V system. The state space of any large software product is vast enough to invalidate the concept of complete testing. However, the state space of any software at a point in the runtime is calculable. Therefore, ISHM extends the viability of the formal V&V methods to the runtime environment, increasing their utility.

Sustaining Engineering Cost Savings

Source: 2003 Cost Assessment Requirements Document (CARD) for ISS

Hardware Software Integration: CARD Table 3.7.4.D-1 identifies "Resources provided to support PR analysis" as a 1st order I&O cost driver. The same table identifies: "Resources required to support testing and other verification activities" as a 1st order cost driver for both I&O and DDT&E.

Software Development and Integration Lab: CARD Table 3.7.5.B-1 identifies "...test rig troubleshooting and anomaly resolution support..." as a Key Product and Service.

Prime Command & Data Handling Sustaining:

CARD Table 3.4.3.2.D-1 identifies "Number and complexity of anomalies; real time anomaly resolution; unknown variable increases as more HW added on-orbit; number of PRACAS requiring C&DH expertise; amount of on-going monitoring and trending" as the #1 cost driver for this \$22M/year cost element. The third driver includes: "Number and complexity of C&DH system on-orbit."

Prime Communication & Tracking, Guidance Navigation & Control and other Sustaining:

The CARD contains language for these areas that is similar to C&DH sustaining.

The #1 target of ISHM is rapid anomaly resolution. While current ISHM tools are targeted at acceleration of on-orbit anomaly resolution, the basic ISHM structure and technology is extensible to the more complex problems often faced in ground testing.

Training & Operations Cost Savings

Source: 2003 Cost Assessment Requirements Document (CARD) for ISS

SSTF: CARD Section 4.3.3.2.1C: "Space Station Training Facility costs are heavily dependant on the number of training hours required for both the crew and flight controller training" and "secondary cost drivers include troubleshooting..."

ISHM increases the ability to move training away from the large, costly integrated simulators used for troubleshooting of systems anomalies. Operating the still-required high fidelity simulators is facilitated by ISHM because many of the same ISHM components and algorithms used on the flight system are identical in the simulator.

Training Hours:

The current budget for ISS Prime Crew Training is 4552 hours. Of that, 970 hours (21%) are allocated to ISS systems which are related to the ISHM target. The #1 cost driver (CARD Table 4.3.4.D-1) for Flight Operations, Training and Mission Preparation is the "Number of hours of training instruction required." This includes crew, instructor and flight controller training.

Movement towards skills-based training has been hindered by the need for detailed system understanding. This need is driven by the lack of high level troubleshooting tools such as ISHM.

MCC Console: CARD Table 4.3.4.D-1 identifies "Number of hours of on-console support," "Continuous mission support," and the number of "people who must be in MCC at a given time" as major cost drivers. It also points to this being "diminished by how many Gemini shifts are applied." Simply achieving the current POP guidelines requires the replacement of 40% of the current full shifts by Gemini in FY05.

ISHM is absolutely required to move our operations concept away from a massive Mission <u>Control</u> Center towards a leaner Mission <u>Support</u> Center.