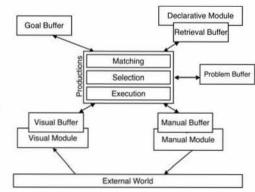
5.3 ACT-UP: A Toolkit for Hampton, Cognitive Modeling Composition, Reuse and Integration


October 13-15, 2010 Hampton, Viroinia

ACT-UP: A Cognitive Modeling Toolkit for Composition, Reuse and Integration

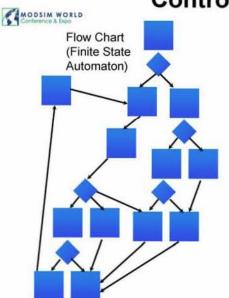
Christian Lebiere and David Reitter Carnegie Mellon University <u>cl@cmu.edu</u>; <u>reitter@cmu.edu</u>

ACT-R Cognitive Architectures

- Computational implementation of unified theory of cognition
- Commitment to taskinvariant mechanisms
- · Modular organization
- · Limited capacity
- Hybrid symbolic statistical processes

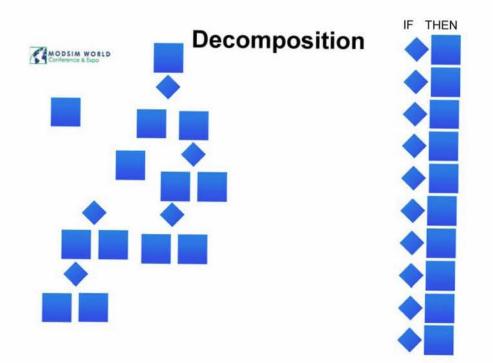
Motivations and Applications

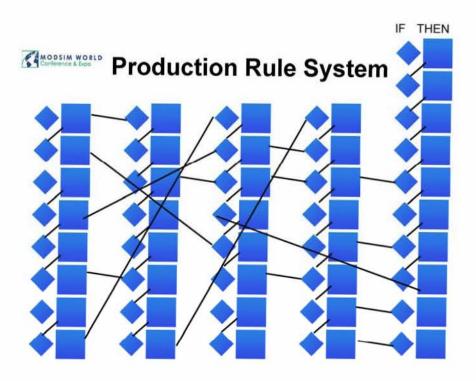
- · Philosophy: Unified understanding of the mind.
- · Psychology: Account for experimental data.
- Education: Provide cognitive models for intelligent tutoring systems and other learning environments.
- Human Computer Interaction: Evaluate artifacts and help in their design.
- Computer Generated Forces: Provide cognitive agents to inhabit training environments & games.
- Neuroscience: Provide a framework for interpreting data from brain imaging.


Goals

- Enable the implementation of more complex ACT-R models
- Scale up cognitive models to simulate learning / adaptation in communities (e.g., about 1,000 models in parallel)
- · Treat models as hard claims
 - Evaluate each specified component against data
 - Underspecify the rest and fit free parameters

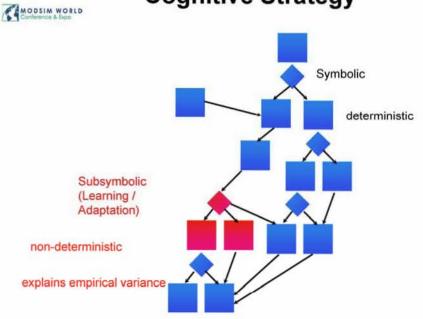
MODSIM WORLD


The Argument


- Constraints: Architectural advances require further constraints
- Scaling it up: Complex tasks, broad coverage of behavior (e.g., linguistic), use of microstrategies and predictive modeling may serve to motivate further architectural constraints
- Difficulties: ACT-R is heavily constrained already, and models are difficult to develop, reuse and exchange

Control Structure

A flow-chart describes an algorithm (or a cognitive strategy) Decision-making points and states Not easy to reuse: it fails to capture generalizations Computer Science: pre-Object Orientation, pre-Functional Programming



Conference & Bipo

The Argument

- Constraints: Architectural advances require further constraints
- Scaling it up: Complex tasks, broad coverage of behavior (e.g., linguistic), use of microstrategies and predictive modeling may serve to motivate further architectural constraints
- Difficulties: ACT-R is heavily constrained already, and models are difficult to develop, reuse and exchange
- We need to produce models at a higher abstraction level
 - However, we'd like to leverage successful cognitive modules, describing memory retention, cue-based retrieval, routinization, reinforcement learning

Cognitive Strategy

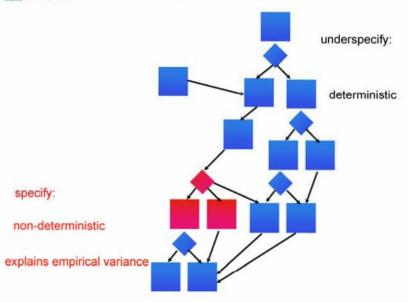
Priming Model

Crucial request of a chunk from declarative memory

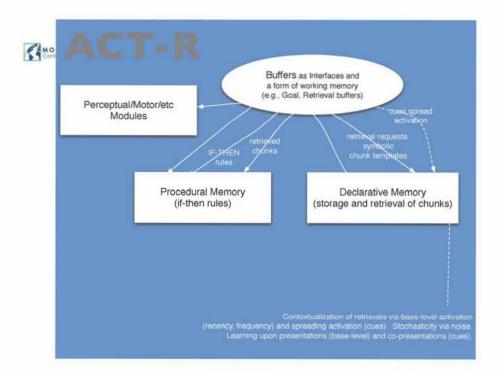
- Only a small portion of the model explains the behavioral data at hand
- The rest explains that the task can be accomplished in principle with a parallel architecture and with specific cognitive representations (chunk types)

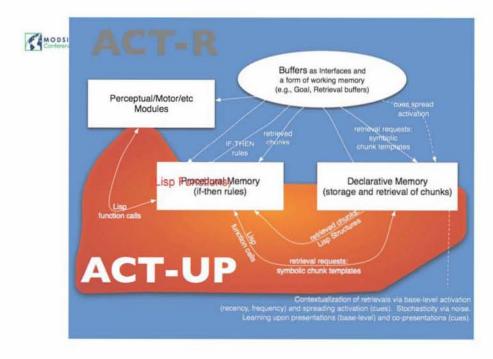
Production Systems vs. assembly language

evensum:	cir.1	D1	Zero-out
Carl Concentration Sector (C			Accumulator
sumloop:	add.1	D0, D1	;Add current
			;counter value to
accumulate	or		
	subq	#1,D0	;Decrement
			;counter by one
	bne	sumloop	juntil it
			;reaches zero
	muls	#2,D1	;Double sum to account
			;for even numbers
	rts	;Return	
			;to caller


~1990

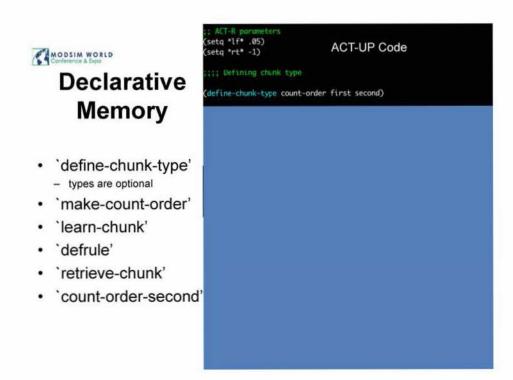
The Argument


 Constraints: Architectural advances require further constraints


MODSIM WORLD

- Scaling it up: Complex tasks, broad coverage of behavior (e.g., linguistic), use of microstrategies and predictive modeling may serve to motivate further architectural constraints
- Difficulties: ACT-R is heavily constrained already, and models are difficult to develop, reuse and exchange
- Abstraction: To implement those, we need to produce models at a higher abstraction level
- Underspecification is the key to focus on verifiable claims, and to avoid overfitting by fitting free parameters to data

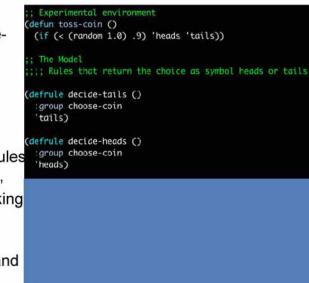
Underspecified Models



MODSIM WORLD Conference & Expo

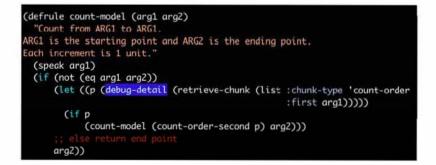
ACT-UP

- A stand-alone system on the basis of Common Lisp
- targets an audience that can write simple Lisp programs (unlike, e.g., CogTool)
- Toolbox approach to ACT-R
 - light-weight: it's a Lisp library
 - does not produce production rules (ACT-R/Lisa, ACT-Simple, CogTool)
- Not aimed at implementing all constraints of ACT-R 6 (unlike Java ACT-R, Python ACT-R)


ACT-UP is not ACT-R 6...

- ACT-UP Interface is synchronous
 - Serial execution
 - Deterministic strategies defined as programs
- Parallelism (e.g., perceptual/motor modules) possible [not implemented]
- · Non-deterministic rule choice is possible
 - Reinforcement-learning as in ACT-R 6

PM / Utility learning


Conference & Expo

- `choose-coin'
- calls either `decideheads or `decide-tails'
- `assign-reward' reinforces the decision
- Exact production rules are underspecified,
 - but decision-making point is explicit
- Choice model replicates ACT-R and empirical results

Debugging

Debugging

CL-USER> (debug-detail (do-it 1))

Make-match-chunk (make-TYPE*): No such chunk in DM. Returning new chunk (not in DM) of nome LOSE Presentation of chunk LOSE (MP: NIL t=72761.26. M: MDDELS21436, t=0. Implicitly creating chunk of name RLANK. Presentation of chunk LOST (MP: NIL t=72761.365. M: MDDELS21436, t=72761.305. make-match-chunk (make-TYPE*): No such chunk in DM. Returning new chunk (not in DM) of name HAVE Presentation of chunk NUKE (MP: NIL t=72761.305. M: MDDELS21436, t=72761.305. make-match-chunk (Make-TYPE*): No such chunk in DM. Returning new chunk (not in DM) of name HAVE Presentation of chunk NUKE (MP: NIL t=72761.345. M: MDDELS21436, t=72761.445. Implicitly creating chunk of name HAD. Presentation of chunk HAD (MP: NIL t=72761.445. M: MDDELS21436, t=72761.445. Group FAST-TENSE with 3+0 matching rules, choosing rule PTMDDEL (Utility 5.0709996) froup FORM-PAST-TENSE with 3+0 matching rules, choosing rule STRATEGY-RITHOUT-ANALOGY (Utility 5.225957) retrieve-chunk: spec: (OHUMK-TYPE PASTTENSE VERB GET) cues: NIL pmat: NIL filtered 0 matching chunks. retrieved on mat of 0 matching chunks. NIL Assigning reward 3.9 Assigning reward 3.9 Assigning reward 0.0 to PTMODEL. Best regular rule among alternatives in group PAST-TENSE-MDDEL! NII CL-USERS |

Implemented Models

- · 10 Classic models implemented:
 - count, addition, siegler, zbrodoff, paired, fan, sticks, semantic, choice, past-tense

* past-tense not yet complete

Conference & Expo

Efficiency

- · Sentence production (syntactic priming) model
 - 30 productions in ACT-R, 720 lines of code
 - 82 lines of code in ACT-UP (3 work-days)
 - ACT-R 6: 14 sentences/second
 - ACT-UP: 380 sentences/second

Scalability

- Language evolution model
 - Simulates domain vocabulary emergence (ICCM 2009, JCSR 1010)
 - 40 production rules in ACT-R (could not prototype)
 - 8 participants interacting in communities
- In larger community networks: 1000 agents, 84M interactions (about 1 minute sim. time each), 37 CPU hours

Rapid prototyping/Reuse

- Dynamic Stocks&Flows model (JAGI 2010)
 - Competition entry, model written in < 1 person-month
 - Instance-based learning (IBL, Gonzales&Lebiere 2003)
 - Blending (Wallach&Lebiere 2003)
 - free parameters (timing) estimated from example data
 - Model generalized to novel conditions
 - (.... NOT. but it did so better than others.)
- Same IBL/blending micro-strategy was re-used directly in a *Lemonade Stand Game* entry to a 2009 competition (BRIMS 2010)

Drawbacks

- · Less established code-base than ACT-R 6
- Lisp
- Lack of architectural timing predictions from rule matching
- · Lack of parallelism (planned: fall 2010)
- · lack of perception/motor modules
 - Will be available in ACT/Simple-style interface (Salvucci&Lee 2003)

MODSIM WORLD Conference & Expo

Beta-Test

- · Limited Release of ACT-UP test version
 - comes with 10 example models
 - 4 tutorials (paralleling the ACT-R 6 ones)
 - Full API documentation plus How-do-I... document
- Testing period: Fall 2010
- Task: implement 1-2 models of your own
- Review letter requested (journal-review style)