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Abstract. The Next Generation Air Transportation System will introduce new, advanced sensor technologies into the cockpit that
must convey a large number of potentially complex alerts. Our work focuses on the challenges associated with prioritizing aircraft
sensor alerts in a quick and efficient manner, essentially determining when and how to alert the pilot. This “alert decision" becomes
very difficult in NextGen due to the following challenges: 1) the increasing number of potential hazards, 2) the uncertainty associated
with the state of potential hazards as well as pilot state, and 3) the limited time to make safety-critical decisions. In this paper, we
focus on pilot state and present a model for anticipating duration and quality of pilot behavior, for use in a larger system which
issues aircraft alerts. We estimate pilot workload, which we model as being dependent on factors including mental effort, task
demands, and task performance. We perform a mathematically rigorous analysis of the model and resulting alerting plans. We
simulate the model in software and present simulated results with respect to manipulation of the pilot measures.

1.0 INTRODUCTION

The introduction of Next Generation Air
Transportation System (NextGen)
technologies into the cockpit is expected to
dramatically increase the responsibilities of
the pilot (JPDO, 2007). In particular,
additional aircraft alerting systems will be
introduced, and the pilot will need to adapt
to the increase in both the number and
types of possible hazard alerts. NextGen
will also introduce additional automation
technologies into the cockpit, capable of
addressing alerts with minimal assistance
from the human pilot. However, interfacing
these technologies with both the human
pilot as well as the large number of possible
hazard alerts introduces a set of research
challenges, including how to prioritize the
alerts, how to plan the interaction between
human and automation to address the
prioritized hazards, and how to adjust the
plan according to the state and capabilities
of the pilot.

In order to address these challenges,
Aptima, Inc., in cooperation with SAIC and
under the supervision of NASA, is
developing a NextGen aircraft system called
ALARMS (ALerting And Reasoning
Management System). The system has four
parts: Bayesian reasoning to determine type
and priority of existing hazards, a Time
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Dependent Markov Decision Process
(TMDP)-based planner to address the
hazards in a timely fashion, a human
performance estimator to inform the planner
as to the state and capabilities of the pilot,
and an interface to inform the pilot of alerts
in the best possible manner.

In this paper, we concern ourselves with the
third item, how to estimate pilot state and
capabilities in order to inform a plan for the
human and automation to cooperate.
Defining a plan to cooperate has been the
subject of empirical research (Galster, 2003;
Galster & Parasuraman, 2003;
Parasuraman & Riley; Parasuraman,
Sheridan, & Wickens, 2000). One approach
is to describe a level of automation in a
continuum between fully automated hazard
response, to fully manual hazard response
(Wickens, Mavor, Parasuraman, & McGee,
1998; Sheridan & Verplank, 1978). An
extended method, proposed by
Parasuraman et al. models human
information processing in four stages:
Sensory Processing, Perception/Working
Memory, Decision Making, and Response
Selection (Parasuraman, Sheridan, &
Wickens, 2000). Differing circumstances
may call for differing stages of automation.
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Figure 1: ALARMS System Diagram

But which stage of automation is
appropriate may depend on several
variables, including the characteristics of the
hazards, as well as “pilot state,” the ability of
the pilot to perform under a given stage of
automation. In this paper we introduce a
model for estimating pilot state on the
aircraft, for the purposes of informing the
hazard alerting system. The model
leverages existing literature on pilot
workload as well as pilot performance. The
model in this paper uses three stages of
automation, each of which corresponds to a
flight deck display. In Stage 1 of
automation, increasing workload will greatly
decrease quality and increase duration for
high workload conditions as compared to
low workload conditions. In Stage 2,
increasing workload will decrease quality
and increase duration. In Stage 3, the
effects will be negligible.

The outline for the rest of the paper follows:
First, we introduce the ALARMS system
architecture and briefly outline its
components, including a hazard state
estimation module and a planning module
for stages of automation. Next, we outline
the pilot state estimation module, which
estimates pilot workload. WWe show how the
pilot state can be used as input for the
ALARMS planning module. Finally, we show
modeled results for how changes of pilot
state will change temporal plans for stages
of automation, and conclude with a
summary and a discussion of future steps.
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2.0 BODY: ALARMS SYSTEM
ARCHITECTURE

The ALARMS system architecture is shown
in Figure 1. Proceeding from left to right,
multiple hazards exist in the environment
and result in alerts on the flight deck. The
hazards themselves, and the sensor alerting
systems, are external to the ALARMS
system. The alerts are issued to the
ALARMS Integrated System User Model.
The system alerts are treated as evidence,
and from this evidence the ALARMS state
estimation module estimates the actual
hazards. A more detailed description of this
estimate can be found in a companion
paper to this work (9). To summarize, a
Dynamic Bayesian Network (DBN) is used.
DBN's have been found in similar systems,
notably in medical diagnosis (Shwe &
Cooper, 1991). Our use of a DBN in the
ALARMS system is analogous, if the system
alerts are treated as “"symptoms” to estimate
the “disease” of the actual hazard.

The hazard state is combined with the
estimated state of the pilot (which we will
return to in a moment), to form a complete
state estimate. This pilot and hazard
estimate is fed into a Planning module. The
Planning module recommends the stage of
automation for the hazards, which is fed into
the ALARMS interface for display. The
result is displayed to the pilot.

In this work, we focus on the Human
Performance module in the diagram. This
module estimates the status of the pilot,
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Figure 2: Human Performance Module

which in turn is used to estimate the
performance of the pilot at each stage of
automation. The planner will then select the
appropriate stage of automation that
maximizes the effectiveness of the
combined pilot and automation.

2.1 Human Performance Module

We model human performance as shown in
Figure 2. The Output from the module is an
estimate of expected pilot performance, in
terms of duration and quality of pilot
handling of hazards. The Variable of
Interest, Workload, is the key parameter
representative of pilot state that changes
over time and directly impacts performance.
The Mediating Variable, Fatigue, influences
the relationship. Other variables of interest
(e.g., situation awareness) or mediating
variables may be considered in future work.

In environments with task demands,
workload affects the mental resources that a
pilot can access to address the demands
(Wickens & Hollands, 2000). Specifically,
the effect can be modeled through a
performance resource function, or PRF
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(Norman & Bobrow, 1975). When cognitive
resources are unavailable or unused for a
task, performance will be diminished. As
more resources are dedicated, performance
will improve, until the task becomes limited
by data and not resources. When multiple
tasks must be accomplished, such as is the
case when a pilot must supervise multiple
systems in the cockpit, resource limitation
becomes an issue (Kantowitz & Casper,
1988). The workload of the pilot will define
the availability of a pilot’s resources to
handle alerts.

It is possible to assess workload as an
index, and several criteria have been
specified to compute the index (Wickens &
Hollands, 2000; O'Donnell & Eggemeier,
1986). Among these criteria: a satisfactory
workload index is sensitive to changes in
task demands, diagnoses the cause of
workload variation, is selective in that
factors that do not affect workload are not
included in the index, is unobtrusive in that
the computation of the index does not affect
workload itself, and is reliable.

For ALARMS, we identify three factors that
predict workload: mental effort. task



demands, and ongoing task performance.
We also identify relevant measures of these
factors from the literature.

2.1.1 Mental Effort

We follow the literature by specifying mental
effort as a contributing factor to workload.
High levels of performance can be achieved
under conditions of normal mental effort
while extremely high mental effort situations
tend to result in decreased performance.
Measures of mental effort include both
subjective and physiological measures
(Veltman, 2001).

Subjective information in our model
includes potential measures such as the
NASA TLX scale (Hart & Staveland, 1988),
which allows the operator to specify mental
demand, physical demand, temporal
demand, performance, effort, and frustration
level. The Bedford Workload scale (Roscoe,
1984), on the other hand, is a decision tree,
and the leaves of the tree provide a
workload score on a single dimension.

Physiological information can also be
obtained. Examples of potential measures
include electroencephalography (EEG) or
heart rate variability (HRV). It has been
shown that heart rate can differentiate
between phases of flight (which require
different levels of mental effort) for pilots
and co-pilots (Bonner & Wilson, 2002), even
when subjective measurements do not.

2.1.2 Task Demands

In the prior subsection, mental effort is
described as being necessary to accomplish
tasks. The level of effort demanded will
depend on the task. Simple tasks will
require smaller amounts of resources, while
complex tasks will require a higher degree
of mental effort. Measures of Task
Demands include both the complexity of
tasks and the number of tasks.

Task complexity can affect workload,;
specifically, complex tasks will result in a
higher workload. For example, the landing
phase of flight produces higher workload
than the enroute phase (Bonner & Wilson,
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2002). As a second example, more
automated tasks consume fewer resources
than less automated ones (Schneider &
Fisk, 1982).

Number of tasks affects workload as well,
in two ways. First, the presence of
additional tasks adds to workload. Second,
there is a cost to switching among tasks
(Rogers & Monsell, 1995). Thus, the
contribution of tasks to workload exceeds
the sum of the tasks complexities.

2.1.3 Ongoing Task Performance
Workload contributes to the model insofar
as it is predictive of pilot performance. Thus,
a well-accepted manner of estimating
workload is to examine performance
directly. Potential measurements include
Flight Technical Errors, Navigation
Errors, and Communication Errors.
These errors can be measured by the
ALARMS system at run-time.

2.2 Interface to ALARMS Planner

The goal of estimating pilot Workload is to
predict the quality and duration of pilot
actions so that a joint pilot/automation plan
can be formed to address hazards. In this
section, we describe the details of the
interface to the planner. We begin by
summarizing the planner itself, as
introduced in (Carlin, Marecki, & Schurr,
2010) and adjusted in this paper to account
for pilot state.

2.21 ALARMS TMDP Planner

We model the ability of the pilot and system
to address hazards with a Time-Dependent
Markov Decision Process (TMDP) (Boyan_&
Littman, 2000). A TMDP is a tuple
<§S,A,P,.D,R>, where S is a set of states, A
represents a set of actions, Pis a transition
matrix, D is a set of probability density
functions, and R is a reward. Assume a
finite set S of discrete states and a finite set
A of actions. When the state s in S, and
action action a in A is executed, the process
transitions with probability P(s,a,s’) to state
s’in S. The transition consumes t units of



time with probability d(s,a,s’,f), where
d(s,a,s’t) is a probability density function
over t for a given s,a, and s’. Similarly, the
reward R(s,a,s’) depends on s, a, and s’
Reward occurs when an action terminates.
A deterministic TMDP policy is a mapping
S x [0,A] —> A where A (the deadline) is the
earliest point in time after which all rewards
are zero.

Let ¥ be a set of alert levels (e.g. “Nominal”
(N), “Advisory” (A), “Caution” (C), “Warning”
(W), or “Directive” (D)), ® be an ordered set

of hazards, and Q) be a set of autonomy
stages. A TMDP problem in ALARMS is
defined as follows:

e States A state sin Sis a mapping
from the hazards to their aleret
levels. For example, given three
hazards, state s = <C,N,W> defines
that the first hazard is at Caution
level, the second hazard is at
Nominal level, and the third hazard
is at a Warning level.

¢ Actions The actions of the ALARMS
system represent the different ways
in which the system displays the
information about the hazards on the
pilot's GUI. Each component of an
action represents a stage of
autonomy. For example, given three
hazards, action a = <1,3,2> will
present three hazards at stages 1,3,
and 2 of autonomy. It is possible to
represent different hazards at the
same stage of autonomy (e.g.
<2,2,2>).

e Transitions: ALARMS assumes that
all hazards will eventually be
addressed (their alert levels will
return to N as a result of human or
autonomy actions. An exception is
when the action is not to address the
hazard at any stage of automation
(e.g. <0>), in which case the state
remains the same for that hazard.

e Durations: ALARMS models action
duration distributions by assuming
that actions at differing stages of
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automation take different durations.
The specific durations of actions will
be affected by pilot state, as we will
specify in the next section.

e Reward: Reward is achieved for
addressing the hazard and
transitioning back to a nominal state.
Each hazard can have a different
reward associated with it. Reward
will also depend on the pilot state, as
we will see in the next section.

2.2.2 Pilot State in ALARMS TMDP

As shown in Figure 2, Workload affects the
duration and quality of pilot actions in the
ALARMS model. This is accomplished by
performing a two step process. First, a
workload score is computed from
measurements of factors. This is
accomplished through a linear weighting of
the factors:

Workload = a*ME + B*TD + y*TP

where ME represents Mental Effort, TD
represents Task Demands, and TP
represents Task Performance. a, 3, and y
represent linear weights that allow the
prioritization of the factors to be varied.

In the second step, the workload score is
used to modify the Duration and Reward
function of the ALARMS TMDP. We use the
Workload estimate to feed information into
the Integrated User Module about the
expected capabilities of the pilot, specifically
the expected performance quality and the
expected duration of pilot actions. The effect
of Workload varies according to the stage of
automation. In Stage 1 of automation,
increasing workload in our model will greatly
decrease quality and increase duration for
high workload conditions as compared to
low workload conditions. In Stage 2,
increasing workload will decrease quality
and increase duration. In Stage 3, we make
the effects negligible.

The specific quantities attached to these
terms “greatly decrease”, etc, are
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parameters in our model. At present, we set quality and duration to decrease and
quality and duration to halve and double, increase 25% in Stage 2, and to decrease
respectively, in Stage 1, when workload is and increase 5% in Stage 3. Medium
changed from Low to High. Similarly we set workload is currently simulated by
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interpolating between the high and low
workload conditions.

3.0 DISCUSSION/EVALUATION

In order to evaluate the effect of the factors
on workload and on existing plans, an
ALARMS System Designer Interface was
developed. The interface is shown in Figure
3. On the top, multiple system alerts can be
specified at various levels of alert.
Directives are the highest priority of alert,
followed by Warnings, Cautions, and
Advisories. The entries “TCAS” and “Traffic
information display” are indicative of a loss
of separation hazard, and the entries
“Landing Gear” and “Flight deck display” are
indicative of a system failure hazard
encountered while landing. Thus, we see in
the figure that there is a caution-level alert
for loss of separation, and a lower-priority
advisory for a system failure hazard. Below
the hazards, the factors affecting pilot state
are specified, including Mental Effort, Task
Demands, and Task Performance. Each
factor is given a weight (corresponding to
a, B, v), in this case the weights are all 1.0.
The figure shows that factors are all
selected as “Low,” and thus the pilot is
under low workload conditions.

Below, we see a time-dependent plan for
addressing the hazards, as computed by
ALARMS. The x-axis is in time units.
Without loss of generality, it is assumed that
the tasks have a “deadline” at the 20 unit
mark on the x-axis, and the plan works
backwards from that mark. The y-axis
shows the utility of the plan (on a relative
scale to the ALARMS planning problem). As
expected, utility decreases as the deadline
approaches. The figure shows that
ALARMS produces a 3-part plan for
addressing the hazards under these
conditions. Each part of the plan consists of
the letter “L” followed by a stage of
automation for each hazard, thus “L11”
denotes that both hazards are handled at a
stage of automation of 1, “L12” indicates
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that the loss of separation hazard is handled
at stage 1 and the system failure hazard is
handled at stage 2. The figure shows that
when there are more than 8 time units
remaining, the hazards are both handled at
Stage 1 of automation. As the deadline
approaches, the recommended stage of
automation transitions to “L12,” that is, the
lower priority hazard is handled at a higher
stage of automation. Within 1.5 time units of
the deadline, the stage of automation
transitions to “L13” the lower priority hazard
is handled at Stage 3 of automation.

Figure 4 shows a second plot. Here, the
Phase of Flight has been changed to Land,
Mental Effort and Task performance are
labeled as indicating “High” workload
conditions, and Task Demands are
"Medium.” This is a higher workload
condition than the first example. As a result,
the ALARMS planner is informed that low
stages of automation will be less effective.
The resulting plan at the bottom of the figure
shows that higher stages of automation are
selected at earlier points in time.

4.0 CONCLUSION

In this paper, we introduced a model
designed to predict pilot performance in the
cockpit, proposed to be implemented as a
component of NextGen alerting systems.
The larger ALARMS system design consists
of Bayesian reasoning to determine type
and priority of existing hazards, a Time
Dependent Markov Decision Process-based
planner to address the hazards in a timely
fashion, a human performance estimator to
inform the planner as to the state and
capabilities of the pilot, and an interface to
inform the pilot of alerts in the best possible
manner. In this paper we focused on a
model to contribute to the human
performance estimator.

Key components of the model are that it
estimates workload, it predicts the duration
and quality of pilot performance, and it can
be used to recommend what information will
be displayed to the pilot, and what



information processing stage will be
supported.

Future work consists of several directions.
First, we will focus on the real-time nature of
the measures, and how such
measurements can be integrated into the
cockpit in an unobtrusive manner. Second,
we will embellish the model further. For
example, the literature on task switching as
well as issues related to attention (Yerkes &
Dodson, 1908) can be added to the model.

5.0 BIBLIOGRAPHY

Bonner, M. A., & Wilson, G. F. (2002). Heart
rate measures of flight test and evaluation.
International Journal of Aviation
Psychology, 12, 63-77.

Boyan, J., & Littman, M. (2000). Exact
solutions to time dependent MDPs.
Proceedings of Neural Information
Processing Systems, (pp. 1026-1032).

Carlin, A., Marecki, J., & Schurr, N. (2010).
ALARMS: Alerting and Reasoning
Management System for Next Generation
Aircraft Hazards. The 26th Conference on
Uncertainty in Artificial Intelligence. Catalina
Island, CA: UAI.

Galster, S. (2003). An examination of
complex human-machine system under
multiple levels and stages of
automation..(Technical Report No. AFRL-
HE-WP-TR-2003-0149). WPAFB, OH.

Galster, S., & Parasuraman, R. (2003). The
application of a qualitative model of human-
intereaction with automation in a complex
and dynamic combat flight task.
Proceedings of the 12th International
Symposium on Aviation Psychology.
Dayton, OH: Wright State University.

Hart, S., & Staveland, L. (1988).
Development of NASA-TLS (Task Load
Index): Results of empirical and theoretical
research. In P. H. (Eds.), Human mental
workload. Amsterdam: North Holland.

658

JPDO. (2007). Concept of Operations for
the Next Generation Air Transportation
System. Joint Planning and Development
Office.

Kantowitz, B., & Casper, P. A. (1988).
Human workload in aviation. In E. L. Wiener
& D. C. Nagel (Eds.), Human factors in
aviation (pp. 157-187). San Diego, CA:
Academic Press.

Norman, D., & Bobrow, D. (1975). On data-
limited and resource limited processing.
Journal of Cognitive Psychology , 7, 44-60.

O'Donnell, R., & Eggemeier, F. (1986).
Workload assessment methodology. In L. K.
K. Boff (Ed.), Handbook of perception and
performance (vol 2). New York: Wiley.

Parasuraman, R., & Riley, V. (1997).
Humans and automation: Use, misuse,
disuse, abuse. Human Factors , 39, 230-
253.

Parasuraman, R., Sheridan, T., & Wickens,
C. (2000). A model of types and levels of
human interaction with automation. /EEE
Transactions on Systems, Man and
Cybernetics , 30, 286-297 .

Pritchett, A. R., Vandor, B., & Edwards, K.
(2002). Testing and implementing cockpit
alerting systems. Reliability Engineering and
System Safety , 75, 193-206.

Rogers, R., & Monsell, S. (1995). Costs of a
predictable switch between simple cognitive
tasks. Journal of Experimental Psychology:
General , 124, 207-231.

Roscoe, A. H. (1984). Assessing pilot
workload in flight. Conference Proceedings
No. 373. Flight Test Techniques. Paris:
AGARD.

Schneider, W., & Fisk, A. (1982).
Concurrent automatic and controlled visual
sarch: Can processing occur without cost?
Journal of Experimental Psychology:
Learning, Memory, and Cognition , 8, 261-
278.



Shwe, M., & Cooper, G. (1991). An
empirical analysis of likelihood-weighting
simulation on a large, multiply connected
medical belief network. Computers and
Biomedical Research, 5, 453-475.

Sheridan, T., & Verplank, W. (1978). Human
and Computer Control of Undersea
Teleoperators. Cambridge, MA: MIT Man-
Machine Systems Laboratory.

Veltman, H. (2001). Mental Workload:
Lessons learned from subjective and
physiological measures..

Wickens, C. D., & Hollands, J. (2000).
Engineering Psychology and Human
Performance. Upper Saddle River, NJ:
Prentice Hall, Inc.

Wickens, C., Mavor, A., Parasuraman, R., &
McGee, J. (1998). The Future of Air Traffic

Control: Human Operators and Automation.
Washington D.C.: National Academy Press.

Yerkes, R., & Dodson, J. (1908). The
relation and strength of stimulus to rapidity
of habit formation. Journal of Comparative
Neurology and Psychology , 459-482.

6.0 ACKNOWLEDGEMENTS

We would like to thank Gilbert Mizrahi for
the graphical interface, and Andy Chang for
helpful visualizations of stages of
automation in the cockpit.

This paper is based upon work supported
by the National Aeronautics and Space
Administration (NASA) under Contract No.
NNLOBAAZ20B issued through the Aviation
Safety Program and monitored by Kara
Latorella, whom the authors wish to thank.
Any opinions, findings, and conclusions or
recommendations expressed in this paper
are those of the authors and do not
necessarily reflect the views of NASA.

659



Modeling Pilot State in Next
Generation Aircraft Alert
Systems

APTI MA glc?hnu?r' Carlin, Amy L. Alexander, Nathan

HUMAN-CENTERED ENGINEERING

22010, &ptima, Inc

notification (IAN) -
— Continuously monitor info from various sources to evaluate hazart potential

— Consider immediate hazards (current) and situations requiring re-planning
or coordination (future)

— Provide caution/alert/warning automated notifications

— Provide context-relevant decision support to pilot and other aircraft
automation functions

= |nterdisciplinary effort

660



! % APTIMA
Levels of Automation® HUMAN-CENTERED

s . ENGINEERING

& Inorme TR

4 — Suggests one alternative

3 — Narrows selection to a few

2 — Offers complete set of alternatives
1 — No computer assistance

*Wickens 1998, based on Sheridan and Verplank 1978

E2010, Aptima, Inc:

] 4 APTIMA
Stages of automation S | e

\L ENGINEERING

= Four classes of functions
— Information acquisition
— Information analysis
— Decision and action selection
— Action implementation

@2010, dptima, Inc

661



Integrated User Model /7 APTIMA

HUMAN-CENTERED
Y ENGINEERING

E2010, Aptima, Inc:

A APTIMA
Integrated User Model b ENENERR

@2010; Aptima, Inc

662



[weamer ] Vertical DISplay

Horizontal Display

Timeline

Color-coded urgency

Mock-ups designed by Andy Chang M.S. and Dr. Amy Alexander

E2010, Aptima, Inc i

Supports analysis

Information
automatically
displayed on right

Mock-ups designed by Andy Chang M.S. and Dr. Amy Alexander

@2010, Aptima, Inc

663



Stage 3 Automation

Decision Support

Mock-ups designed by Andy Chang M.S. and Dr. Amy Alexander

E2010, Aptima, Inc 8

@2010, dptima, Inc o

664



P

; ; /x' APTIMA
Pilot State Refinement Lk ENINEERiNG

hysiological Measures
(e.g., EEG, HRV)

| Subjective Measures (e.g.,
| Bedford Scale, NASATLX) |

Number of Tasks l\\

Gomplexity of Tasks |/

‘ Flight Technical Errors |\

Navigation Errors |/

‘ Communication Errors

E2010, Aptima, Inc: 11

'APTIMA

Workload 2 H ucate

— Satisfactory workload Index has these properties:
= Diagnoses cause of variation
= Selective of factors
= Unobtrusive
= Reliable

@2010, dptima, Inc 12

665



— APTIMA

HUMAN-CENTERED
O\ ENGINEERING

« Bedfc

— Physiological Information (EEG, HRV)
» Task Demands

— Task Complexity

— Number of Tasks
» Ongoing Task Performance

E2010, Aptima, Inc:

Pilot State Refinement i+ APTIMA

£ HUMAN-CENTERED
1L ENGINEERING

ateand

I- and duration of

= |ncreasing Pilot Workload leads to:
— Greatly decreasing quality, increasing duration in Stage 1

— Decreasing quality, increasing duration in Stage 2
— Very small effects in Stage 3

» Thus, increasing Pilot Workload will tend to increase the
stage of automation.

@2010, dptima, Inc

666



Integrated User Model

-~ APTIMA

HUMAN-CENTERED
L ENGINEERING

I
b et e il

E2010, Aptima, Inc:

Identify CWA (Caution/VWarning/Alerting) APTIMA

\r HUMAN-CENTERED

Applications For NextGen and Develop a System L ENGINEERING

Architecture

Alert Timeframe
Directive <10 seconds
10--15 seconds |

<40 seconds

non-critical

— Define Hazard List

2009, Aptima, Inc

System Failure

System Performance Compromised
Loss of Separation

Adverse Weather Encounter
Altitude Deviation

Navigation Deviation
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= Controlled Flight Into Terrain

= Crew Incapacitation

= Flight Performance Compromised
= Structural Failure

= Life Support

= Protected Airspace Incursion

= | oss of Communication

= Runway Incursion



. ~ APTIMA
Hazard Matrix N e

System ‘Adverse
Performance Loss of ‘Weather  Altitude .
. Fallure  Compromised Separation Encounter Deviation [
;W‘Ihohmlm]!ymu Sub-Systems

i

A=Advisory, C=Caution, W=Waming
Blue=Aviation, Green=Navigation, Purple=Communication
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ALARMS Bayesian Network

Subsystem
Alert

Cautions
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Integrated User Model L b ENGINEE RN
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— Probabilistic Transitions: P(s.a.s’)

— Action Durations: Probability Density Function d(s.a.s".t)
= Deadline A after which there is no reward
= More automated actions: Quicker

— Reward for addressing hazard and returning to nominal state
= More automated actions: Lower reward

Policy: Mapping from state and time to action

®2010, Aptima, Inc 20
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Pilot State Refinement L ERERNERRR

— Workload is combined with n about hazard state and
stage of automation to determine the quality and duration of
action.

* |ncreasing Pilot Workload leads to:

— Greatly decreasing quality, increasing duration in Stage 1

— Decreasing quality, increasing duration in Stage 2

— Very small effects in Stage 3

= Thus, increasing Pilot Workload will tend to increase the
stage of automation.

E2010, Aptima, Inc 2

| APTIMA
CPH Planner (marecki et al. 2007) BN

arg max ( S PGl [ pral)(RGs.0,) + VA0 - f))dt')

T agA(s) \s‘eS

= Since continuous, need approximate value functions
— Convolution becomes intractable
— Solution: phase-type distributions
— Convertto MDP with uniform action durations

| pe)VE) ) av
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: 55 APTIMA
Conclusions :-

L HUMAN-CENTERED
L ENGINEERING

| g of interface stages of automation

= TMDP planning reasons about time duration uncertainty
= TMDP model is adaptable to empirical findings

— Accounts for pilot state

— Developed system designer interface for understanding system
behavior

= Future work

— System integration and empirical evaluation

E2010, Aptima, Inc:

=

Questions?

. APTIMA
HUMAN-CENTERED
I ENGINEERING
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